用户名: 密码: 验证码:
基于分形维数的中国海常见浮游植物细胞图像特征提取
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮游植物作为海洋生态系统中最重要的初级生产者,对海洋生态环境和海洋生物资源影响巨大。以分形理论为基础,本文主要对中国海常见浮游植物细胞显微图像分析和特征提取进行了研究。在深入分析浮游植物细胞生物特征的基础上,尝试使用分形维数对中国海常见浮游植物细胞的形状和纹理特征进行提取。围绕这一问题,本文主要进行了下面五个方面的工作。
     在进行灰度图像分形维数计算时,目前广泛使用的是盒维数法,但这种方法计算出的分形维数比较粗糙。针对这一问题,本文提出了一种基于面积覆盖计算分形维数的方法,这种方法所计算出的分形维数几乎是连续的,可以比较精确地反映灰度图像的分形特征。
     根据分形维数灰度映射图像的分形性质,本文提出了一种边缘检测方法。应用这种方法对基于面积覆盖法计算得到的分形维数灰度映射图像进行处理后,可以较好地提取出浮游植物细胞的边缘形状,从而有利于同一种浮游植物细胞不同展现形态的划分和不同科属下浮游植物细胞之间的分类。
     针对角毛藻细胞图像中角毛边缘轮廓较难提取这一问题,本文对毯覆盖计算分形维数的方法进行了改进。将使用改进后的毯覆盖法计算得到的分形维数灰度映射图像与边缘检测算法相结合,比较完整地提取出了角毛的边缘信息。
     为全面地描述角毛藻细胞图像中角毛的分布特征,本文提出了一种灰度图像方向角提取方法,并将其引入到了二值图像分形矢量的计算当中,提出了方向分形矢量的概念。应用方向分形矢量对角毛藻边缘二值图像进行描述,可以体现出角毛的方向信息,为角毛藻属下各种的分类奠定了基础。
     根据圆筛藻壳面筛室的排列特点,结合基于分数布朗运动的分形维数计算方法,本文提出了一种圆筛藻特征提取方法。使用这种方法可以较好地描述圆筛藻的壳面纹理特征,为圆筛藻属下各种的分类提供了一种有效途径。
     本文通过对以上四种分形维数计算方法的改进,有效地分析、提取和描述出了中国海常见浮游植物细胞的多种生物特征,为下一步中国海常见浮游植物细胞的分类识别奠定了基础。
As the most important primary producer in the marine ecosystems, phytoplankton influences the marine environments and the living marine resources enormously. Based on the fractal theory, the analyse and feature extraction of the phytoplankton cell micrograph are studied in this paper mainly. After analyzing and studying the biologic features of the phytoplankton deeply, fractal dimension is used exploringly to extract the shape and texture features of the cell images of the phytoplankton appearing frequently in China’s sea areas. Around this problem, the following work is done in this paper.
     Box-counting method is used widely to estimate the fractal dimension of the gray level image. But the results computed by the method are so coarse that they could hardly be used as the feature for image analysis. So a new fractal dimension estimating method based on area covering is proposed in this paper. The fractal dimensions estimating by this method are continuous almost, which can depict the fractal features of the gray level image accurately.
     According to the fractal character of the fractal dimension gray map image, an edge detection method is proposed. The edge shape of the cell of the phytoplankton can be detected using this method well from the fractal dimension gray level mapping images obtained by area covering method. The edge can be used to differentiate the different states of the same alga or to classify the alga belong to different family or genus.
     The edges of the setae in the Chaetoceros cell images are difficult to detect. The blanket method is improved in this paper to solve the problem. The edges of the setae can be detected perfectly by processing the fractal dimension gray level mapping images, which are estimated by improved blanket method, using the proposed edge detection method.
     For depicting the distributing feature of the Chaetoceros cell setae roundly, an image orientation angle estimating method is proposed. Then a new conception named orientate fractal vector is proposed by introducing the orientation angle into the computation of the fractal vector of the binary image. The orientate fractal vectors are good features for describing the orientate information of the setae, which are benefit for the classification of the Chaetoceros cells.
     According to the arrangement characteristic of the lucolus on the Coscinodiscus valve, a method of Coscinodiscus features extraction is proposed by using the fractal dimension estimating method based on fractional brown motion. The valve texture features can be described well using this method, which is useful for the classification of the Coscinodiscus cells.
     By improving the four methods for estimating the fractal dimension, many kinds of the biologic features of the phytoplankton are analyzed ,extracted and described effectively, which lays a foundation for the classification and the recognition of the phytoplankton appearing frequently in China’s sea areas.
引文
[1]朱树屏,郭玉洁.烟台、威海鲐鱼渔场及其附近海区角毛硅藻属的研究.海洋与湖沼,1957,1(1):27-29.
    [2]朱树屏,郭玉洁.我国十年的海洋浮游植物研究.海洋与湖沼,1959,2(4):223-232.
    [3]康元德.渤海浮游植物的数量分布和季节变化.海洋水产研究,1991,12:31—44.
    [4]俞建銮,李瑞香.渤海、黄海浮游植物生态的研究.黄渤海海洋,1993,11(3):52-29.
    [5]王俊,康元德.渤海浮游植物种群动态的研究.海洋水产研究,1998,19(1):51-59
    [6]金德祥,陈金环,黄凯歌.中国海洋浮游硅藻类.上海:上海科学出社,1965.
    [7]孙军,刘东艳,杨世民,郭健,钱树本.渤海中部和渤海海峡及邻近海域浮游植物群落结构的初步研究.海洋与湖沼,2002,33(5):461-471.
    [8]郭玉洁.南海圆筛藻属的五个新种.海洋科学集刊,1976,11:77-90.
    [9]郭玉沽.南海浮游圆筛藻的分类研究.海洋科学集刊,1981,18:149-179.
    [10]郭玉洁.三十年来我国海洋浮游植物的研究.第一届中国藻类学术讨论会论文集,北京:科学出版社.1983,9-14.
    [11]郭玉沽,周汉秋,叶嘉松.条纹藻属的一个新种—南海条纹藻.海洋科学集刊,1978,12:53-58.
    [12]郭玉洁,叶嘉松.南海中部海域浮游植物的水平和垂直分布.南海海区综合调查研究报告(一),北京:科学出版社,1982.217-230.
    [13]杨清良,林更铭,蔡秉及.厦门东侧海域浮游植物的种类组成与分布.台湾海峡,2000,19(3):337-343.
    [14]陈菊芳,齐雨藻,徐宁,王朝晖.大亚湾澳头水域浮游植物群落结构及周年数量动态.水生生物学报,2006,30(3):311-317.
    [15]高东阳,李纯厚,刘广锋,张汉华.北部湾海域浮游植物的种类组成与数量分布.湛江海洋大学学报,2001,21(3):14-18.
    [16]宋星宇,黄良民,钱树本,尹建强.南沙群岛邻近海区春夏季浮游植物多样性研究.生物多样性,2002,10(3):258-268.
    [17]王志勇.天津港南部海区海洋生态环境调查初步研究.交通环保,2002,23(6):25-28.
    [18]孙军,刘东艳.2000年秋季渤海的网采浮游植物群落.海洋学报,2005,27(3):124-132.
    [19]王俊,黄海秋.冬季浮游植物的调查研究.海洋水产研究,2003,24(1):15:23.
    [20]李广楼,陈碧鹃,崔毅,马绍赛,唐学玺.莱州湾浮游植物的生态特征.中国水产科学,2006,13(2):292-299.
    [21]金海卫,徐汉祥,姚海富,王伟定,潘国良.浙江沿岸夏季浮游植物分布特征.浙江海洋学院学报(自然科学版),2005,24(3):231-235.
    [22]冯洁娉,姜胜,冯佳和,白洁.广州海域浮游植物群落结构特征.生态科学,2006,25(3):210-212.
    [23]赖廷和,邱绍芳.北海近岸水域浮游植物群落结构及数量周年变化特征.海洋通报,2005,24(5):27-32.
    [24]王小冬,孙军,刘东艳,汪岷.海洋中型浮游动物的选择性摄食对浮游植物群落的控制.海洋科学进展,2005,23(4):524-535.
    [25]乐凤凤,孙军,宁修仁,宋书群,蔡昱明,刘诚刚. 2004年夏季中国南海北部的浮游植物.海洋与湖沼,2006,37(3):238-248.
    [26]吴玉霖,孙松,张永山等.胶州湾浮游植物数量长期动态变化的研究.海洋与湖沼,2004,35(6):518-523.
    [27]吴玉霖,孙松,张水山等.环境长期变化对胶州湾浮游植物群落结构的影响.海洋与湖沼,2005,36(6):487-498.
    [28] Hallegraeff G M.A review of harmful algal blooms and their apparent global increase. Phycoiogya,1993,32(2):79-99.
    [29]陈洋,颜天,周名江.有害赤潮对浮游动物摄食的影响.海洋科学,2005,29(12):81-87.
    [30]钱树本,刘东艳,孙军.海藻学.青岛:中国海洋大学出版社,2005.4-5.
    [31]晁敏,张利华,张经.流式细胞计在海洋浮游植物研究中的应用.海洋科学,2003,27(4):18-22.
    [32]晁敏,张利华,张经.海洋微微型浮游植物的流式细胞计数据分析.华东师范大学学报(自然科学版),2003,3:105-108.
    [33] Paau A S, Oro J, Cowles J R.Application of microfluorometry to the study ofalgal cells and isolated chloroplasts.Exp Bot,1978,29:10l1-1020.
    [34] Paau A S, Cowles J A, Oro J, et a1.Separation of anga1 mixtures and bacterial mixtures with flow-microfluorometer using chlorophyll and ethidiuna bromide fluorescence.Archives of Microbiology,1979,120:27l-273.
    [35] Yentsch C M,Horan P K.Cytometry in aquatic sciences.Special Issue of Cytometry,1989,10(5):1250-1255.
    [36] Yentsch C M, Horan P K, MuirheadK, et a1.Flow cytometry and cell sorting:a technique for an analysis and sorting of aquatic particles.Limnolegy &Oceanography,1983,28(6):1275-l280.
    [37] Yentsch C M, Flow cytometry methods to assess our water world. In: Darzyn kiewicz Z, SSiTlanH A eds.. Methods in Cel1 Biology.New York: Academic Pres. 1990. 33.
    [38]张前前,类淑河,王修林,王磊,于萍.浮游植物活体三维荧光光谱分类判别方法研究.光谱学与光谱分析,2004,20(10):1227-1229.
    [39]李水根,吴纪桃.分形与小波.北京:科学出版社,2002.
    [40] Falconer K .J. Fractal Geometry: Mathematical Foundation and Application. NewYork:Wiley,1990.
    [41] Robert Ma?y sz. Convergence of trajectories in fractal interpolation of stochastic processes.Chaos,Solitons & Fractals,2006,27(5):1328-1338.
    [42] Hans Triebel. Approximation numbers in function spaces and the distribution of eigenvalues of some fractal elliptic operators.Journal of Approximation Theory, 2004,129(1):1-27.
    [43] Ervin Goldfain.Complexity in quantum field theory and physics beyond the standard model.Chaos,Solitons & Fractals,2006,28(4):913-922.
    [44] Oldrich Zmeskal,Miroslav Buchnicek and Pavel Bednar.Coupling constants in fractal and cantorian physics. Chaos,Solitons & Fractals,2004,22(5):985-997.
    [45] Bret A. Morris,Ajit Sadana. A fractal analysis for the binding of riboflavin binding protein to riboflavin immobilized on a SPR biosensor.Sensors and Actuators B:Chemical,2005,106(2):498-505.
    [46] Rhonald Lua,Alexander L. Borovinskiy,Alexander Yu. Grosberg. Fractal and statistical properties of large compact polymers:a computational study.Polymer, 2004,45(2):717-731.
    [47] A. Carpinteri,B. Chiaia,P. Cornetti.A fractal theory for the mechanics of elastic materials.Mathrials Science & Engineering A,2004,365:235-240.
    [48] Bruce J.West.Fractal statistics in biology.Physica D,1995,86:12-18.
    [49]S.Havlin,S.V.Buldyrev,A.L.Goldberger,R.N.Mantegna,S.M.Ossadnik,C.-K.Peng,M.Simons,H.E.Stanley.Fractals in Biology and Medicine.Chaos,Solitons & Fractal, 1995,6:171-201.
    [50] M.V.Sebastiána,M.A.Navascuésb,J.R.Valdizánc.Surface Laplacian and fractal brain mapping.Journal of Computationl and Applied Mathematics,2006,189:132-141.
    [51] Pinnaduwa H.S.W. Kulatilake,Reno Fiedler,Bibhuti B.Panda. Box fractal dimension as a measure of statistical homogeneity of jointed rock masses.Engineering Geology,1997,48:217-229.
    [52] James R. Carr. Statistical self-affinity,fractal dimension,and geologic interpretation.Engineering Geology,1997,48:269-282.
    [53] Reinhard J. Mittag. Fractal analysis of earthquake swarms of Vogtland/NW-Bohemia intraplate seismicity.Journal of Geodynamics,2003,35:173-189.
    [54] Bikas K. Chakrabarti,Robin B. Stinchcombe.Stick-slip statistics for two fractal surfaces:a model for earthquakes.Physica A,1999,270:27-34.
    [55] L.M. Alves. Fractal geometry concerned with stable and dynamic fracture mechanics. Theoretical and Applied Fracture Mechanics,2005,44:44-57.
    [56] H.J. de Vega,N. Sa′nchez.The statistical mechanics of the self-gravitating gas:equation of state and fractal dimension.Physics Letters B,2000,490:180-186.
    [57] Guiyun Zhou,Nina S.-N. Lam.A comparison of fractal dimension estimators based on multiple surface generation algorithms.Computers & Geosciences,2005,31: 1260–1269.
    [58] Hsueh-Ting Chu,Chaur-Chin Chen.On bounding boxes of iterated function system attractors.Computers & Graphics,2003,27:407–414.
    [59] Xiao-yan Li,Jian-jun Zhang,Joseph H.W.Lee. Modelling particle size distribution dynamics in marine waters.Water Research,2004,38:1305–1317.
    [60] M.V. Budyansky,M.Yu. Uleysky.S.V. Prants.Lagrangian coherent structures, transport and chaotic mixing in simple kinematic ocean models.Communications in Nonlinear Science and Numerical Simulation,2007,12:31–44.
    [61] M. M. Dubovikov,N. V. Starchenko, M. S. Dubovikov. Dimension of the minimal cover and fractal analysis of time series.Physica A: Statistical and Theoretical Physics,2004,339(3-4):591-608.
    [62] Ryszard Kutner and Filip S w itata . Remarks on the possible universal mechanism of the non-linear long-term autocorrelations in financial time-series. Physica A: Statistical and Theoretical Physics,2004,344(1-2):244-251.
    [63] L.G. Moyano,J. de Souza,S.M. Duarte Queirós.Multi-fractal structure of traded volume in financial markets. Physica A: Statistical and Theoretical Physics, 2006,371(1):118-121.
    [64] Arvind Verma.The fractal dimension of policing.Journal of Criminal Justice,1998,26(5):425:435
    [65]张济忠.分形.北京:清华大学出版社,1997.
    [66] Renyi A.Probability Theory.Nolland:Amsterdan,1970.
    [67] P.Grassberger,I.Procaccia.Measuring the strangeness of strange attractors, Physica D,1983,9:189-208.
    [68] Dubuisson M.P., Dubes, R.C..Efficacy of fractal features in segmenting images of natural textures. PatternRecogn.Lett,1994,15:419–431.
    [69] Cheong C.K.,Aizawa, K.,Saito, T.,Hatori, M..Adaptive edge detection with fractal dimension.Trans.Inst.Elec.Inform.Commun.Eng,1993,J76-D-II(11):2459–2463.
    [70] Niels Haering,Niels da Vitoria Lobo.Features and Classification Methods to Locate Deciduous Trees in Images.Computer Vision and ImageUnderstanding,1999,75(1-2):133-149.
    [71] Pyung-Kyu Park,Chung-Hak Lee,Sangho Lee.Determination of cake porosity using image analysis in a coagulation–microfiltration system.Journal of Membrane Science,2007,29(3):66-72.
    [72] Kuniahru Imai,Mitsuru Ikeda,Yukihiro Enchi,Takanaga Niimi.Fractal-Feature Distance Analysis of Radiographic Image.Academic Radiology,2007,14(2):137-143.
    [73] Li Yu,David Zhang,Kuanquan Wang,Wen Yang,Coarse iris classification using box-counting to estimate fractal dimensions.Pattern Recognition,2005,38(11):1791-1798.
    [74] Soe Win Myint,Nina Lam.A study of lacunarity-based texture analysis approaches to improve urban image classification. Computers, Environment and Urban Systems, 2005,29(5):501-523.
    [75] Peleg S., Naor J., Hartley R.,Avnir D.Multiple resolution texture analysis and classification.IEEE Trans.Pattern Anal.Mach,Intell,1984,6:518-523.
    [76] Pentland A.P.Fractal based description of natural scenes.IEEE Trans. Pattern Anal.Mach,Intell,1984,6:661-674.
    [77] Gangepain J,Roques-Carmes C.Fractal approach to two dimensional and three dimensional surface roughness.Wear,1986,109:119-126.
    [78] Chaudhuri B B,Sarkar N,Kundu P.An improvedfractal geometry based texture segmentation technique.Proc.IEE Part E,1993,140(5):233–241.
    [79] Sarkar N,Chaudhuri B B.An efficient differential box-counting approach to compute fractal dimension of image.IEEE Trans.Systems Man Cybernet,1994, 24(1):115-120.
    [80] Chen S S,Keller J M,Crownover R M.On the calculation of fractal features from images.IEEE Trans.Pattern Anal.Machine Intell.,1993,15(10):1087-1090.
    [81] Keller J M,Chen S,Crownover R M.Texture description and segmentation through fractal geometry.Comput.Graphics Image Process,1989,45:150–166.
    [82] Ajay Kumar Bisoi,Jibitesh Mishra On calculation of fractal dimension of images.Pattern Recognition Letters,2001,22:631-637.
    [83] Maeda J,Anh V V,Ishizaka T,Suzuki Y.Integration of local fractal dimension and boundary edge in segmenting natural images.Proc. IEEE Int. Conf. Image Processing,Lausanne,Switzerland,1996,1:845–848.
    [84] Maeda J,Iizawa T,Ishizaka T,Ishikawa C,Suzuki Y.Segmentation of natural images using anisotropic diffusion and linking of boundary edges. Pattern Recogn, 1998,31(12):1993–1999.
    [85] Maeda J,Novianto S,Anh V V,Tieng Q,Suzuki Y.Accurate estimation of local fractal dimension innatural images using Fourier-wavelet transform. Trans.Inst.Elec. Inform Commun.Eng,1999,J82-A(5):750–754.
    [86] Maeda J, Novianto S,Saga S,Suzuki Y,Anh V V.Rough and accurate segmentation of natural images using fuzzy region-growing algorithm. Proc.IEEE Int.Conf.Image Processing,Kobe,Japan,1999,3:227–231.
    [87] Novianto S,Suzuki Y,Maeda J.Near optimum estimation of local fractal dimension for image segmentation.Pattern Recognition Letters,2002,24:365-374.
    [88] Keller,J.M.,Seo,Y.B..Local fractal geometric features for image segmentation. Int.J.Imaging Sys.Tech,1990,2:267–284.
    [89] Maeda,J.,Anh,V.V.,Ishizaka,T.,Suzuki,Y..Integration of local fractal dimension and boundary edge in segmenting natural images.Proc.IEEE Int.Conf.Image Processing,Lausanne,Switzerland,1996,1:845–848.
    [90]巫兆聪,方圣辉.基于分形理论的SAR图像边缘检测.武汉测绘科技大学学报,2000, 25(4): 334-337.
    [91] B.B.Mandelbrot,The Fractal Geometry of Nature.New York:Freeman,1983.
    [92]李粤青,蒋金山,汪国强,张佳温.基于分形特征的二值图像检索方法的研究.计算机工程与应用,2004,17:102-105.
    [93]郭玉洁,钱树本.中国海藻志,第五卷,硅藻门,第一册,中心纲.北京:科学出版社,2003.
    [94]刘龙飞,陈云浩,李京.遥感影像纹理分析方法综述与展望.遥感技术与应用,2003,18(6):441-447.
    [95] Haralick R M.Statistical and Structural Approaches to Texture.Proceeding of the IEEE,1979,67:786-804.
    [96] Povlow B R,Dunn S M.Texture classification using noncausal hidden Markov models.IEEE trans PAMI,1995,17(10):1010-1014.
    [97] Manjtmath B S,Chellappa R.Unsupervised texture.Segmentation using Markov random field models.IEEE Trans PAMI,1991,13(5):479-482.
    [98] Sivakumar.Morphologically constrained GRFS applications to texture synthesis and applications to texture synthesis and analysis.IEEE Trans PMMI,1999,21(2):148-153.
    [99] U Indhal.Evaluation of alternative spectral feature extraction Methods of textural images for multivariate modeling.Joumal of Chemometrics,1998 ,12(4):261-278.
    [100] Clmng T.Kuo C C J.Texture analysis and classification with tree-structured Wavelet transform[J].IEEE Trans Image Processing,1993,2(4):429-441.
    [101] Laine A,Fan J.Texture classification by wavelet packet signatures.IEEE Trans PAMI,1993,l5(11):l186-1191.
    [102] Laine A.Frame representation for texture segmation.IEEE Trans on Image Processing,1996,5:771-779.
    [103] Unser M.Texture classification and segmentation using wavelet frames.IEEE Trans on Image Processing,1995,4(11):1549-1560.
    [104] Lei Wang,J Liu.Texture classification using multiresolution Markov random field models.Pattern Recognition Letters,1999,20:171-182.
    [105] Mandelbrot B B,Van Ness J W.Fractional Brownian motion,fractional noise and applications.SIAM Rev.,1968,10(4):422-437.
    [106] Roberto Quevedo, López-G.Carlos, JoséM.Aguilera, Laura Cadoche. Description of food surfaces and microstructural changes using fractal image texture analysis. Journal of Food Engineering,2002,53:361-371.
    [107] Chin-Hsiang Luo, Whei-May Grace Lee, Yan-Chiou Lai, Che-Yen Wen, Jiun-Jian Liaw.Measuring the fractal dimension of diesel soot agglomerates by fractional Brownian motion processor.Atmospheric Environment,2005,39:3565-3572.
    [108] Chin-Hsiang Luo,Che-Yen Wen,Jiun-Jian Liaw,Shih-Hsuan Chiuc,Whei-May Grace Lee.Texture characterization of atmospheric fine particles by fractional Brownian motion analysis.Atmospheric Environment,2004,38:935–940.
    [109] A.Taleb-Ahmed,P.Dubois,E.Duquenoy.Analysis methods of CT-scan images for the characterization of the bone texture:First results.Pattern Recognition Letters,2003,24:1971-1982.
    [110]胡金艳,张太镒,张春梅.基于分数布朗运动的概率神经网络的自然纹理分类.电子与信息学报,2004,26(3):389-393.
    [111] Brodatz P.Texture: A Photographic Album of Artists and Designers.New York: Dover.1966.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700