用户名: 密码: 验证码:
复杂工业过程多模型预测控制策略及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预测控制来源于工程实践,具有模型精度要求低、在线计算方便、控制综合效果好的特点,在实践中得到十分成功的应用。随着工业过程控制要求的不断提高,基于单一模型的预测控制器已经难以满足复杂工业过程的控制要求,对多模型预测控制的研究能够拓宽预测控制的应用范围,提高复杂工业过程的控制性能,无疑具有理论意义和实际价值。
     文章首先总结已有的研究成果,将多模型预测控制分为加权多模型预测控制和切换多模型预测控制,根据控制律求取方式的不同,每一类又可分为基于控制器的和基于模型的两种形式。多模型预测控制的关键不在于预测控制算法本身,而在于如何选择加权或者切换策略,文中总结了已有的切换和加权方式,提出多步预测控制律加权平均是多模型预测控制特有的平滑切换方式。文章主要对以下几个方面进行了研究:
     在建立多模型集方面,针对一类工业过程,采用可以描述系统动态特性且容易获得的主要参数如主导时间常数、增益和纯滞后时间的极大极小值,通过等模型距离的方法建立系统的多模型集表示,以在线递推贝叶斯概率加权方法组合子模型作为预测模型设计预测控制器,仿真结果验证了此方法的有效性。
     在控制算法方面,为了减少计算量,对具有较少计算量的预测函数控制进行了研究。针对具有时滞可测扰动的一阶惯性典型工业过程,基于Smith预估补偿思想,考虑扰动通道和控制通道纯滞后时间的相对大小,提出一种改进的具有解析解的预测函数控制算法,并将其推广到了多变量系统;另外,针对基于T-S模糊模型的预测控制存在计算量大的缺点,从预测控制的误差补偿环节入手,提出一种简化的控制算法,相对于多步线性化方法,减少了计算量,相对于单步线性化方法,提高了控制精度。通过仿真验证了上述结论的正确性。
     在应用研究方面,将模糊增益调度多模型预测控制应用于ALSTOM气化炉控制标准问题,以负荷作为调度变量,选取3个工况点的线性模型为基准模型,仿真结果表明,按照标准问题的测试要求,本方法具有最好的控制性能,证明了多模型预测控制解决复杂工业过程控制问题的有效性。
Model predictive control (MPC) coming from engineering practice has many merits such as lower demand for model matching, convenience to calculate on-line and higher control quality, so it was applied successfully in the industrial application. With more and more rigorous demands of control quality in industrial processes, MPC based on one model can’t already satisfy the control requirements of the complex industrial processes. Research on multi-model predictive control(MMPC) is significant in theory and valuable in application because it can not only widen the applying range of MPC but of improve the control quality for complex industrial processes.
     Firstly, the dissertation summarizes the present researches and classifies MMPC into two groups: weighting MMPC and switching MMPC, witch each one can be sorted as two forms: by controllers and by models. The key of MMPC is not the MPC algorithm itself but how to select the weighting strategies and switching strategies. it is proposed that the weighting average to the multi-step moves is impactful method to switch controllers smoothly. Afterward, the study addresses the following topics:
     At the aspect of building multi-model bank, a simple effective method is presented for a class of industrial process. The maximum and minimum values of the parameters describing system dynamic behavior such as time-constant, model-gain and dead-time can be acquired from experiential knowledge and testing data, then the multi-model bank was set up by the means of dividing its extreme models composed of the maximum and minimum parameters via equidistance between sub-models. The predictive model is obtained by weighting the sub-models with the recursive Bayesian scheme. Simulation results demonstrate the efficiency of the method.
     At the aspect of control algorithm, the predictive functional control (PFC) was studied so as to reduce the calculation load of MMPC. Focusing on the first order plus dead time system with measurable disturbance, an improved PFC algorithm was proposed based on the ideal of Smith predictor, which emphasize the difference between control channel dead-time and disturbance channel dead-time. The algorithm was applied further to multiple variable systems. In addition, focusing on the MPC based on T-S fuzzy model, a new error compensating means is stated to simplify the calculation of the control moves. It has less computing load comparing with multi-step linearization method and better control quality comparing with one-step linearization method. They are all proved correct by simulations.
     In the sixth chapter, fuzzy gain scheduled MMPC was applied to the ALSTOM gasifier benchmark problem, in which the load is selected as scheduled variable and three models lying respectively at three operation conditions are select as sub-models. Simulation results, accordingly to the requirement of the benchmark problem, show that the method has best control performances. The ability to control the complex industrial processes for MMPC was qualified once more.
引文
[1] Richalet J, et al. Model predictive heuristic control: applications to industrial processes[J]. Automatica, 1978,14(5): 413-428.
    [2] Rouhani R, Mehra R K, Model algorithmic control (MAC): basic theoretical properties[J]. Automatica, 1982, 18(4): 401-414.
    [3] Culter C R, Ramaker B L, Dynamic matrix control-a computer control algorithm[C]. Proc. JACC, San Francisco: American Automatic Control Council,1980, WP5-B.
    [4] Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control-part 1: basic algorithm[J]. Automatica, 1987, 23(2): 137-148.
    [5] Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control-part 2: extensions and interpretations[J]. Automatica, 1987,23(2): 149-162.
    [6] Lelic M A, Zarrop M B. Generalized pole-placement self-tuning controller[J]. Int. J. Control, 1987, 46(2): 547-601.
    [7]褚键,潘红华,苏宏业.预测控制技术的现状和展望[J].机电工程, 1999,第5期:3-7.
    [8]席裕庚.预测控制[M].北京:国防工业出版社, 1993.
    [9]舒迪前.预测控制系统及其应用[M].北京:机械工业出版社, 1996.
    [10]王伟.广义预测控制理论及其应用[M].北京:科学出版社, 1998.
    [11]李少远,李柠.复杂系统的模糊预测控制及其应用[M].北京:科学出版社,2003.
    [12] Qin S J, Badgwell T A . An overview of industrial predictive control technology[C]. In Chemical Process Control-AIChE Symposium Series, 1996, 232-256.
    [13]陆恩锡,张慧娟,甄惠清.化工过程模拟及相关高新技术: (Ⅲ)化工过程先进控制[J].化工进展, 2000,2:16-19.
    [14] Kaufman W E. Multiple-model adaptive control[J]. IEEE Trans on Biomed Eng ,1986 ,BEM 40 :10-16.
    [15] Middleton R H, Goodwin G C, Hill D J, et al. Design issues in adaptive control[J]. IEEE Trans. Automat. Contr., 1988, 33(1)50-58.
    [16] Narendra K S, Balakrishnan. Improving transient response of adaptive control systems using multiple models and switching[J]. IEEE Trans on Autom Contr, 1994, 39(9): 1861-1866.
    [17] Fu M Y, Barmish B R. Adaptive stabilization of linear system viaswitching control[J], IEEE.Trans on Automat Contr, 1986, 31(12): 1097-1103.
    [18] Fu M Y. Minimum switching control for adaptive tracking[C]. Proceedings of the IEEE Conference on Decision and Control v4.Dec.1996, 11-13.
    [19] Ha T Y, Binder Z, Horacek P, Perret R. fuzzy supervisory control[C]. Proc 5th Symposium on Low Cost Automantion, Shengyang,P.R.China,1998.
    [20] Narendra K S, George K. Adaptive control of simple nonlinear systems using multiple models[C]. Proceedings of the American Control Conference 2002: 8-10.
    [21] Narendra K S, Driollet O A. stochastic adaptive control using multiple estimation models[C]. Proceedings of the American Control Conference. 2001:25-27.
    [22] Narendra K S, Xiang C. Adaptive control of discrete-time systems using multiple models[J]. IEEE Transactions on Automatic Control. 2000, 45(9): 1669-1686.
    [23] Ren Lixin, Irwin G W, Flynn D. Nonlinear identification and control of a turbo generator an on-line scheduled multiple model/controller approach[J]. IEEE Trans. Energy Conversion, 2005, 20(1): 237-245.
    [24]赵付涛,杜维,徐义亨,等.多模态控制器的设计及应用[J].仪器仪表学报, 1998,19(5): 520-524.
    [25]刘吉臻,陈彦桥,曾德良,等. 500MW单元机组模糊多模型协调控制系统[J].动力工程,2003,23(6):2790-2793.
    [26]席裕庚,王凡.非线性系统预测控制的多模型方法[J].自动化学报,1996,22(4):456-460.
    [27]华建兴,席裕庚.基于多模型分解的内模极点配置控制[J].控制理论与应用, 1999,16(1):113-116.
    [28]李柠,李少远.基于LPE算法的多模型建模方法[J].控制与决策, 2002,17(1):11-14.
    [29]胡国龙,孙优贤.多模型控制方法的研究进展及其应用现状[J].信息与控制,2004,33(1):72-76.
    [30]李晓理,王伟.多模型自适应控制[J].控制与决策,2000,15(4):390-394.
    [31] Yu C, He W G, So J G, et al. Improvement in arterial oxygen control using multi-model adaptive control[J]. IEEE Trans. Biomed. Eng., 1987, 34:567-574.
    [32]皮道映,孙优贤.多模型系统的模糊加权控制策略[J].自动化学报,1998,24(3):387-390.
    [33] Danielle Dougherty, Doug Cooper. A practical multiple model adaptive strategy for single-loop MPC[J] .Control Engineering Practice 11 (2003) 141–159.
    [34] Danielle Dougherty, Doug Cooper. A practical multiple model adaptive strategy for multivariable model predictive control[J]. Control Engineering Practice 11 (2003) 649–664.
    [35] Li Ning, Li Shao-Yuan, Xi Yu-Geng. Multi-model predictive control based on the Takagi–Sugeno fuzzy models: a case study[J]. Information Sciences 165 (2004) 247–263.
    [36]潘天红,乐艳,李少远.大范围工况热工过程的多模型预测控制[J].系统工程与电子技术,2004,26(10):1439-1443.
    [37]栾秀春,李士勇.基于局部神经网络模型的过热汽温多模型预测控制的研究[J].中国电机工程学报.2004,24(8):190-195.
    [38]张智焕,王树青,王让定.非线性多模型控制及仿真研究[J].系统仿真学报, 2003,15(7):919-921.
    [39]谢磊,张泉灵,王树青,张智焕.基于多模型的自适应预测函数控制[J].浙江大学学报,2003,37(2):190-193.
    [40]谢永斌,朱刚,冯祖人,等.加权模型预测控制(WMPC)[J].控制与决策, 1996, 11(4): 506– 509.
    [41] Brian Aufderheide,Vinay Prasad, B.Wayne Beguette. A comparison of fundamental model-based and multiple model predictive control[C]. Proceedings of the 40th IEEE conference on Decision and Control Orlando, Florida USA, December 2001,4683-4688.
    [42] Ramesh R. Rao, Brian Aufderheide, B. Wayne Bequette. Experimental studies on multiple-model predictive control for automated regulation of hemodynamic variables[J]. IEEE Transaction on Bionedical Engineering. 2003,50(3):277-288.
    [43] Brian Aufderheide, B. Wayne Bequette. A variably tuned multiple model predictive controller based on minimal process knowledge[C]. Proceedings of the American Control Conference, Arlington, June 25-27, 2001,3490-3495.
    [44] Brian Aufderheide, B. Wayne Bequette. Extension of dynamic matrix control to multiple models[J] .Computers and Chemical Engineering 27 (2003) 1079-1096.
    [45]李柠,李少远,席裕庚. MIMO系统的多模型预测控制[J].自动化学报, 2003,29(4):516-523.
    [46] Bjarne A F, and Cong, S B. Nonlinear MPC based on multi-model for distillation columns[C]. Proc. Of 14th IFAC world congress, Beijing.1999.
    [47] Narendra K S, Balakrishnan J. Adaptive control using multiple models[J]. IEEE Trans. Automatic Control, 1997,42(2):171-187.
    [48] Morse A S. Supervisory control of families of linear set-point controller -part1: exact matching[J]. IEEE Trans. Automatic Control, 1996,41(10): 1413-1431.
    [49] Gabriele Pannocchia, Daniele Semino. Use of different kinds of linear Models in predictive control of distillation columns[C]. IFAC International Symposium Advanced Control of Chemical Processes. Pisa, Italy, June, 2000:713-718.
    [50]刘刚强.基于模型切换的多模型预测控制研究[D].浙江大学博士学位论文,1999,5.
    [51]张智焕,王树青.基于多模型pH非线性过程的预测控制[J].浙江大学学报,2002,36(1):29-33.
    [52]张智焕,王树青.基于多模型切换的大范围预测函数控制[J].浙江大学学报, 2002,36(3):290-293.
    [53]王卓,李平,郭烁.基于多模型的非线性系统广义预测控制[J].微计算机信息,2004,20(8):32-33.
    [54] Zhong Zhao, Xiaohua Xia, Jingchun Wang, et al. Nonlinear dynamic matrix control based on multiple operating models[J]. Journal of Process Control 13(2003) 41–56.
    [55]李少远,席裕庚.多模型预测控制的平滑切换[J].上海交通大学学报, 1999, 33(11): 1345-1347.
    [56]张智焕.复杂系统预测控制算法及其应用研究[D].浙江大学博士学位论文,2002,5.
    [57]王伟,李晓理.多模型自适应控制[M].北京:科学出版社, 2001.
    [58] Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Trans. Syst., Man, Cybern. 1985,15(1):116-132.
    [59]张铁军,吕剑虹,华志刚.机炉协调系统的模糊增益调度预测控制[J].中国电机工程学报,2005,25(4):158-165.
    [60]张化光.模糊自适应控制理论及其应用[M].北京:北京航空航天大学出版社, 2002.
    [61] Jang J -S R. ANFIS: Adaptive-Network-based Fuzzy Inference Systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23(03):665-685.
    [62] Jang J -S R. Input selection for ANFIS learning[C]. Proceedings of the Fifth IEEE International Conference on Vol 2,8-11, pp:1493–1499,1996.
    [63] Chang Hyum Kim and Ju-Jang Lee. Adaptive Network based Fuzzy Inference System with Pruning[C]. SICE 2003 Annual Conference Volume 1, 2003, pp:140-143.
    [64]祖家奎,戴冠中,张骏.基于聚类算法的神经模糊推理系统结构和参数的优化[J].系统仿真学报, 2002,14(4),501-503.
    [65]高军伟.切换系统建模、控制理论与应用研究[D].铁道科学研究院博士论文,2003,9.
    [66]韩璞,王东风,王国玉,等.多模型预测函数控制及其应用研究[J].控制与决策,2003,18(3):375-378.
    [67] Palma F D,Magni L.A multi-model structure for model predictive control[J].Annual reviews in control,2004,28:47-52.
    [68]韩忠旭,张智.状态观测器及状态反馈控制在亚临界锅炉蒸汽温度控制系统中的应用[J].中国电机工程学报,1999,19(11):76-80.
    [69]杨志远,陆会明,王欣,等.自适应预估控制及其在火电厂中的应用[J].自动化学报, 1999,25(3):365-369.
    [70]祁昶,陈跃华,黄天戍.模糊自适应预测控制在电厂主汽温控制的应用[J].电力自动化设备,2005,25(5):15-19.
    [71]孙建平,梅华,杨振勇.应用模糊预测控制实现主汽温控制[J].华北电力大学学报,2003,30(2):49-52.
    [72]杨锡运,徐大平,柳亦兵,等.过热汽温多模型预测函数控制策略的研究[J].动力工程,2005,25(4): 537-540.
    [73]范永胜,徐治皋,陈来九.基于动态特性基理分析的锅炉过热汽温自适应模糊控制系统研究[J].中国电机工程学报,1997,17(1): 23-28
    [74] Kuntze H B, Richalet J. On the predictive functional control of an elastic industrial robot[C]. Proc,25th CDC,Athens,Greece,1986.
    [75] Richalet J, Ata-Doss S A, Arber C, et al. Predictive Functional Control: Application to Fast and Accurate Robots[C]. IFAC 10th World Congress. Munich, FRG, 1987:251-258.
    [76]胡家升,潘红华,苏宏业,等.预测函数控制系统的闭环性能分析[J].控制理论与应用, 2001,18(5):774-778.
    [77]王国玉,梅华,韩璞,等.主汽温系统模糊自适应预测函数控制[J].中国电机工程学报,2003,23(10):230-235.
    [78]金秀章,刘吉臻,牛玉广,等.自适应内模控制在主蒸汽温度系统中的应用研究[J].中国电机工程学报,2003,23(10):225-229.
    [79]张泉灵,王树青.化学反应器温度跟踪预测函数控制的研究及应用[J].控制理论与应用, 2001,18(4):559-563.
    [80]王国玉,韩璞,王东风,等. PFC-PID串级控制在主汽温控制系统中的应用研究[J].中国电机工程学报,2002,22(12):50-55.
    [81]夏泽中,张光明.预测函数控制及其在伺服系统中的仿真研究[J].中国电机工程学报,2005,25(14):130-134.
    [82]王树青.先进控制技术及应用[M].北京:化学工业出版社, 2001.
    [83]王国玉,王东风,韩璞,等.具有对负荷变化前馈补偿的过热汽温系统预测函数控制[J].计算机仿真, 2003,20(2):103-106.
    [84] Xiyun Yang , Daping Xu , Yibing Liu. Study of Multivariable Predictive Functional Control for Reheats Temperature System [C]. Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, P.R. China. 2004,600-603.
    [85]王东风,韩璞,王国玉,等.基于前馈补偿解耦的多变量汽温系统预测函数控制[J].中国电机工程学报,2003,23(2):158-162.
    [86]牛培峰.循环流化床锅炉汽温自适应解耦控制系统[J].自动化学报,1999,25(1):127-132.
    [87]吕剑虹,张世君,陈来九.自学习多变量汽温控制系统[J].东南大学学报,1995,25(5):33-39.
    [88]张建华,侯国莲,李农庄,等.基于内模控制的再热汽温控制系统[J].现代电力, 1999,16(1):5-10.
    [89]陈福祥,金晖.模糊预测控制机理研究[J].武汉工业大学学报,1997, 19(1):48-52.
    [90]谢克明,马小军.模糊预测控制的实现形式[J].太原理工大学学报,1999,30(6):575-579.
    [91] Sugeno M, Tanaka K. Successive identification of a fuzzy model and its application of prediction of a complex system[J]. Fuzzy Sets and Systems, 1991, 42:315-334.
    [92] Sugeno M, Kang G T. Structure identification of fuzzy model[J]. Fuzzy Sets and Systems, 1988, 28: 15-33.
    [93] Huang Y L, Lou Helen H, Gong P J, et al. Fuzzy model predictive control[J]. IEEE Transaction on Fuzzy System,2000, 8(6):665-678.
    [94]刘忠信,陈增强,袁著祉.基于T-S模型的模糊广义预测控制[J].南开大学学报,2000,33(4):114-119.
    [95]刘忠信,孙青林,陈增强,等.基于T-S模型的钻杆对中自适应预测控制[J].控制与决策,2002,17(3):372-375.
    [96]王寅,荣冈,王树青.基于T-S模糊模型的非线性预测控制策略[J],控制理论与应用,2002,19(4):599-602.
    [97]刑宗义,胡维礼,贾利民.基于T-S模型的模糊预测控制研究[J].控制与决策,2005,20(6):495-499.
    [98] Tanaka K, Sugeno M. Stability analysis and design of fuzzy control systems[J]. Fuzzy Sets and System, 1992,45(2):135-156.
    [99] Wang H O,Tanaka K,Griffin M. Parallel distributed compensation of nonlinear systems by Takagi-Sugeno fuzzy model[C]. Proc. FUZZ-IEEE/ IFES’95, 1995: 531-538.
    [100]姚秀平.燃气轮机及其联合循环发电[M].北京:中国电力出版社,2004.
    [101] Dixon R. Alstom benchmark challenge II: Control of a nonlinear gasifier model, ALSTOM, available from http://www.iee.org/ OnComms /PN/ controlauto.pdf. 2002.
    [102] Dixon R, Pike A W. Introduction to the 2nd ALSTOM benchmark challenge on gasifier control[C].Control 2004, University of Bath, UK, 2004.
    [103] Simm A, Liu G P. Improveing the performance of the ALSTOM baseline controller using multiobjective optimization[J]. IEE Proc-Control Theory Appl., 2006, 153(3): 286-292.
    [104] Gatley S L, Btates D G, Postlethwaite I. H∞Control and anti-windup compensation of the nonlinear ALSTOM gasifier model[C]. Control 2004, University of Bath, UK,2004.
    [105] Farag A, Werner H. Multivariable PID-controller design for a gasifier plant using penalty-based-multi-objective GA[C]. Control 2004, University of Bath,UK,2004.
    [106] Wilson J A, Chew M, Jones W E.State estimation-based control of a coal gasifier[J]. IEE Proc-Control Theory Appl., 2006,153(3):268-276.
    [107] Taylor C J, Shaban E M. Multivariable Proportional-Integeral- Plus(PIP) control of the ALSTOM nonlinear gasifier model[C]. IEE Proc Control Theory Appl., 2006, 153(3): 277-285.
    [108] Al Seyab R K, Cao Y, and Yang S H. Predictive control for the ALSTOM gasifier problem[J]. IEE Proc Control Theory Appl., 2006, 153(3): 293-301.
    [109]黄祖毅,李东海,姜学智,等.机炉协调的增益调度伺服系统[J].中国电机工程学报,2003,23(10):191-198.
    [110]周克敏,Doyle J C,Glover K,(毛剑琴等译).鲁棒与最优控制[M].北京:国防工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700