用户名: 密码: 验证码:
青藤碱保护大鼠原位肝移植缺血再灌注损伤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝脏缺血再灌注损伤是肝脏移植中常见的问题之一,缺血再灌注引起的肝脏损伤是一个连续不断的过程,并最终导致肝细胞损伤。这个过程是在肝脏短暂缺氧再氧合时触发,临床上许多情况下可发生肝脏缺血再灌注,例如肝脏低灌流状态,各种各样的外科手术操作,以及移植中的供体器官切取。实际上肝脏缺血再灌注损伤是抗原成分获取的结果,是影响肝脏移植结果的重要因素,引起10%左右的早期移植后器官功能衰竭,并且急性和慢性排异的发生率较高。此外,由于边缘性供体对于缺血再灌注损伤非常敏感,这加剧了供体器官的短缺。因此减少缺血再灌注损伤能明显增加获得手术成功的病人数量。然而,到目前为止仍没有可以预防缺血再灌注损伤的有效方法。所以,为了保护细胞和器官的功能,需要通过广泛的研究更好的了解肝脏缺血再灌注损伤的机制以及寻找合适的干预方法必要的。
     青藤碱是从防己科防己属植物青风藤Sinomenium acutum Rehd.et Wils.根茎中分离出的主要活性成分,其结构类似于吗啡,分子式为C_(19)H_(23)NO_4,分子量为329.38,具有镇痛,抗炎等作用,临床主要用于类风湿病的治疗,疗效确切。国内外的研究表明,青藤碱具有良好的抗炎、免疫抑制作用。但是在缺血再灌注损伤中的作用却未见报道。本课题应用“二袖套”法建立大鼠原位肝移植模型,研究青藤碱在肝脏缺血再灌注损伤中的保护作用,并对其作用机制进行探讨。
     第一部分:青藤碱对大鼠原位肝移植缺血再灌注损伤的保护作用
     目的:探讨青藤碱对大鼠原位肝移植缺血再灌注损伤的保护作用。方法:应用SD大鼠为模型动物;采用Kamada's“二袖套法”建立SD→SD大鼠原位肝移植模型,大鼠196只随机分为假手术组、生理盐水对照组、低剂量(40mg/kg)和高剂量青藤碱治疗组(80mg/kg),将供肝在4℃林格液中保存5h后植入受体,分别观察移植术后1周存活率,检测移植术后2,6,12,24h血清ALT、AST,TUNEL法检测肝细胞凋亡指数(AI),RT-PCR检测肝脏组织中的TNF-α、IL-β、ICAM-1mRNA的含量,ELISA检测血清IL-2含量,并观察移植肝脏病理形态学的改变。结果:与对照组比较,青藤碱低剂量、高剂量治疗组术后1周存活率显著提高(75%,75%vs12.5%,P<0.01),在各个时间点,青藤碱治疗组的ALT、AST水平明显低于生理盐水对照组(P<0.01),肝组织中的TNF-α、IL-1β、ICAM-1mRNA表达与对照组相比均显著减少(P<0.01),肝细胞凋亡指数下降,在肝移植术后24小时,生理盐水对照组的AI为37.0±4.30,而在青藤碱两治疗组分别为23.8±3.27、18.6±3.03,与对照组相比有显著差异(P<0.01)。血清IL-2含量降低,肝细胞和肝窦内皮细胞形态也明显改善。
     结论:青藤碱可以通过抑制Kupffer细胞激活及释放TNF-α、IL-1β等炎症性细胞因子及ICAM-1等粘附分子,抑制肝细胞凋亡,减少细胞免疫相关IL-2的分泌,减轻肝细胞及肝窦内皮细胞的损伤,达到保护肝移植缺血再灌注损伤的效果。
     第二部分青藤碱对大鼠肝移植缺血再灌注后TLR4、MAPKs和NF-κB表达的影响
     目的:通过观察不同剂量的青藤碱对大鼠肝移植术后TLR4、MAPKs和NF-κB的影响,探讨青藤碱保护大鼠肝移植缺血再灌注损伤的机制。方法:应用“二袖套法”建立SD→SD大鼠原位肝移植模型,大鼠196只随机分为假手术组、对照组、低剂量(40mg/kg)和高剂量青藤碱治疗组(80mg/kg),将供肝在4℃林格液中保存5h后植入受体,选择缺血再灌注后大鼠肝功能损伤最严重的术后6小时为观察点。采用Western Blot方法检测大鼠肝脏组织的TLR4、磷酸化JNK、ERK、p38 MAPK和NF-κB蛋白表达的变化情况。结果:在假手术组TLR4呈低表达,生理盐水对照组TLR4呈高表达,青藤碱显著降低了肝组织TLR4的表达(P<0.01)。磷酸化JNK、ERK在各组的表达比较无明显差异。磷酸化p38 MAPK和NF-κB在假手术组呈低表达,在生理盐水对照组高表达,而青藤碱明显抑制了磷酸化p38 MAPK和NF-κB的表达(P<0.01)。结论:青藤碱保护大鼠肝移植缺血再灌注损伤的机制与抑制TLR4介导的天然免疫反应有关,通过抑制p38MAPK信号通路和NF-κB通路,减少下游TNF-α、IL-1β和ICAM-1等炎症细胞因子的分泌。
     第三部分青藤碱对肝脏缺血再灌注后抗原提呈细胞的影响
     目的:通过观察不同剂量的青藤碱对大鼠肝移植缺血再灌注后肝脏来源的DC成熟和功能的影响,深入了解青藤碱保护缺血再灌注损伤作用的机制。方法:应用“二袖套法”建立SD→SD大鼠原位肝移植模型,大鼠48只随机分为生理盐水对照组、低剂量(40mg/kg)和高剂量青藤碱治疗组(80mg/kg),将供肝在4℃林格液中保存2h后植入受体,术后第三天切取肝脏,分离纯化肝脏DC,观察青藤碱对其成熟和功能的影响。以荧光抗体标记和流式细胞仪对DC进行表型分析OX62和MHC-Ⅱ、CD86等分子。FACS检测移植后肝脏DC对荧光标记的卵清蛋白(OVA-FITC)能力,分析青藤碱对肝脏DC内吞功能的影响。收集获取的DC,用RT-PCR方法测定其中具有免疫调节作用的细胞因子IL-12,IL-1,TNF-αmRNA的表达水平,Western Blot方法检测各组肝脏DC表达的TLR4。收集各处理组肝脏DC以~3H-TdR掺入法进行DC刺激同种异基因T细胞增殖功能(MLR)的检测。结果:FACS分析显示,青藤碱处理组DC呈现不成熟DC的表型,DC表面MHC-Ⅱ类分子和CD86等分子表达均显著下降,而对照组则表现为成熟DC表型,高表达MHC-Ⅱ类分子和CD86分子。内吞功能试验发现青藤碱处理组平均荧光强度较对照组的明显增强,表明了青藤碱对肝脏DC向成熟DC转化具有抑制作用。提示青藤碱可显著降低缺血再灌注后肝脏DC的抗原提呈功能。对照组肝脏DC表达IL-12,IL-1,TNF-αmRNA等水平明显增高,TLR4蛋白的表达明显升高,而青藤碱处理组可不同程度抑制这种效应(P<0.01)。DC刺激同种T细胞增殖功能(MLR)的检测发现青藤碱处理后肝脏DC的混合淋巴细胞反应明显减弱,提示青藤碱能明显抑制DC向T细胞提呈抗原的能力。结论:青藤碱对大鼠缺血再灌注后肝脏DC的成熟和功能具有抑制作用,青藤碱对肝移植缺血再灌注损伤的保护作用可能通过期其抑制DC成熟和功能,抑制缺血再灌注后T细胞的免疫应答有关。
Effect of Sinomenine on ischemia-reperfusion injury in orthotopic rat liver transplantation
     The damage to the liver caused by ischemia and reperfusion(I/R) represents a continuum of processes that culminate in hepatocellular injury. These processes are triggered when liver is transiently deprived of oxygen and reoxygenated, and can occur in a number of clinical settings, such as those associated with low flow states, diverse surgical procedures, or during the organ procurement for transplantation. In fact, I/R injury to the liver, an antigenindependent component of "harvesting" insult, represents an important problem affecting transplantation outcome. It causes up to 10% of early organ failure, and can lead to the higher incidence of both acute and chronic rejection. Moreover, I/R injury contributes to the acute shortage of livers available for transplantation because of the higher susceptibility of marginal livers to the ischemic insult. Indeed, minimizing the adverse effects of I/R injury could significantly increase the number of patients that may successfully undergo liver transplantation. However, at present there is no treatment available to prevent hepatic I/R injury. As intervention on more than one level is most likely needed to allow the recovery of cellular and organ function, extensive research efforts to better understand the mechanisms of hepatic I/R injury are warranted.
     The medicinal plant Sinomenium acutum Rehd.et Wils. has been used in China for more than 2000 years, for the treatment of various diseases. The main active constituent has been identified as the alkaloid Ssinomenine(7, 8-didehydro-4-hydroxy-3, 7-dimethoxy-17-methyl-9α, 13α, 14α-morphinan-6-one). Sinomenine is in clinical use in China and Japan due to its analgetic andanti-inflammatory activities. Its anti-rheumatic properties have been proved inclinical studies.
     Based on the conclusions mentioned above, in this study, we observe the effect of different dosage of Sinomenine on ischemia and reperfusion injury during orthotopic liver transplantation of rat and try to explore the possible mechanisms.
     PARTⅠProtective effects of Sinomenine on ischemia-reperfusioninjury during orthotopic liver transplantation in rats
     Objective: To investigate the protective effect of Sinomenine on the cold ischemia and reperfusion(I/R) injury during orthotopic liver transplantation (OLT). Methods: We used syngeneic SD as animal model, OLT were performed in normal rats based on Kamada's two-cuff technique. 196 syngeneic SD rats were randomly divided into sham operation, NS control and two Sinomenine groups. The rats in sinomenine groups were treated with low(40mg/kg) and high dose(80mg/kg) of sinomenine respectively. After the donor liver was preserved in Ringer's(LR) solution for 5 h, the orthotopic implantation was performed. The serum and tissue samples of 2, 6, 12 and 24 h were collected for analysis after reperfusion of the portal vein, and the one-week survival rate was observed in each group. The apoptosis index(AI) of liver after OLT was detected by TUNEL; The level of TNF-α、IL-1βand ICAM-1mRNA in rat's liver were detected by RT-PCR; The level of IL-2 in serum was detected by ELISA. Results: In comparison with those in the NS control group, the levels of ALT and AST decreased significantly in low and high dose treatment groups at different time point post-transplantation, and their one-week survival rates also increased markedly (75%, 75% vs 12.5%, P<0.01). The AI was decreased markedly in Sinomenine treatment groups. At the 24h after liver transplantation, the AI of saline control group was 37.0±4.30, and in two Sinomenine treatment groups, the AI wre 23.8±3.27、18.6±3.03, respectively. Compared with saline control group, there was significant difference(P<0.01). Sinomenine treatment decreased the expression of tumor necrosis factor-a(TNF-α)、interleukin-1β(IL-1β) and intercellular adhesion molecule-1(ICAM-1) in rat's livers, The elevation of serum IL-2 was suppressed by Sinomenine and Sinomenine treatment markedly ameliorated the focal necrosis of hepatocytes. Conclusion: Sinomenine can inhibit hepatocyte apoptosis by decreasing the discharge of TNF-α、IL-1βand ICAM-1, and decrease secretion of IL-2 correlating with T cell-mediated immunity. Sinomenine can prevent hepatic cells and SEC from cold ischemia and reperfusion injury during orthotopic liver transplantation in rats.
     PARTⅡEffect of Sinomenine on TLR4、MAPKs and NF-κB inrat's liver after ischemia-reperfusion
     Objective: To investigate the effect of Sinomenine on TLR4、MAPKs and NF-κBafter ischemia and reperfusion injury during orthotopic liver transplantation (OLT) and the mechanism of Sinomenine's protection of ischemia and reperfusion injury.
     Methods: We used syngeneic SD as animal model, OLT were performed in normal rats based on Kamada's two-cuff technique. 196 syngeneic SD rats were randomly divided into sham operation, NS control and two Sinomenine groups. The rats in Sinomenine groups were treated with low(40mg/kg) and high dose(80mg/kg) respectively. After the donor liver was preserved in Ringer's(LR) solution for 5 h, the orthotopic implantation was performed. We selected the sixth hour after ischemia and reperfusion injury as our observation points when the rat's liver function was the worst. The protein expression of TLR4、phosphorylated JNK、ERK、p38 MAPK and NF-kB were detected by Western Blot. Results: In the sham operation group, the TLR4 was low expression. High expression of TLR4 in saline control group, sinomenine decreased significantly the expression of TLR4 in liver tissue (P<0.01).The expression of phosphorylated JNK and ERK were no difference between four group, But the expression of phosphorylated p38 MAPK and NF-κB were low in sham operation group. The expression of phosphorylated p38 MAPK and NF-kB in saline control group were high, Sinomenine decreased significantly the expression of phosphorylated p38 MAPK and NF-kB in liver tissue (P<0.01).
     Conclusion: The mechanisms of sinomenine's protection of ischemia-reperfusion injury during liver transplantation in rats was related with its inhibition of innate immune responses mediated by TLR4. Sinomenine reduced the secretion of inflammatory cytokines such as TNF-α、IL-1βand ICAM-1 by inhibiting p38 MAPK and NF-κB signaling pathway.
     PARTⅢEffect of Sinomenine on the liver APC afterischemia-reperfusion
     Objective: To understand the Sinomenine's protective mechanism inischemia-reperfusion injury preferably, we investigated the effects of Sinomenine on maturation of liver derived dendritic cells (DC). Methods: We used syngeneic SD as animal model, OLT were performed in normal rats based on Kamada's two-cuff technique. 48 syngeneic SD rats were randomly divided into NS control and two Sinomenine groups. The rats in Sinomenine groups were treated with low(40mg/kg) and high dose(80mg/kg), respectively. After the donor liver was preserved in Ringer's(LR) solution for 2h, the orthotopic implantation was performed. Three days after operation, We Reseced the liver, separated and purificated liver DC, and observated the effects of Sinomenine on the maturion and function of DC. With fluorescent antibody markers and FACS, we analyzed the DC phenotypic expression of MHC-Ⅱ、OX62 and CD86. To investigate the effect of Sinomenine on the endocytosis of DC, we used FACS to analysis DCs endocytosis of protein antigen with OVA-FITC. Then detected the expressof IL-12, IL-1, TNF-αmRNA of liver DC by RT-PCR, and detected the expression of TLR4 on the liver DC of three groups. We collected the liver DC of three groups, and investigated allogeneic mixed lymphocyte reaction with ~3H-TdR. Results: The DC treated with sinomenine showed immature phenotype, and the liver DC of control group showed matured phenotype which MHC-Ⅱand CD86 were high expression. In Sinomenine treatment groups, the average intensity of fluorescence was stronger than that of the control group, and that showed the Sinomenine have the ability of inhibition on conversion of DC from immaturity to maturity. The test of endosome function found that Sinomenine can significantly decrease the antigen presenting function of liver DC. In addition, the liver DC treated with Sinomenine showed the expression of TLR4 and the IL-12、IL-1、TNF-αmRNA were low. At the same time, we found that the Sinomenine can significantly inhibit the liver DC mixed lymphocyte reaction result from MLR.
     Conclusion: Sinomenine can inhibit the maturity and function of liver DC. The effects of Sinomenine on ischemia-reperfusion injury during orthotopic liver transplantation in rats may be related to inhibition of the immune response mediated by T cell through inhibiting the maturation and function of liver DC.
引文
1 Howard TK,Klintmalm G.B,Cofer JB,et al.The influence of preservation injury on rejection in the hepatic transplant recipient[J].Transplantation,1990,49(1):103-107.
    2 Fellstrom B,Akuyrek LM,Backman U,et al.Postischemic reperfusion injury and allograft arteriosclerosis[J].Transplant Proc,1998,30(18):4278-4280.
    3 Lemasters JJ,Bunzendahl H,Thurman RG.Reperfusion injury to donor livers stored for transplantation[J].Liver Transplant Surg,1995,1(2):124-138.
    4 Amersi F,Buelow R,Kato H,et al.Upregulation of heme oxygenase-1 protects genetically fat Zucker rat livers from ischemia/reperfusion injury[J].Clin Invest,1999,104(12):1631-1639.
    5 叶仙蓉,颜克序,吴克美,等.青藤碱衍生物的合成及其抗炎镇痛活性[J].药学学报,2004,39(3):180-182.
    6 Weighardt H,Holzrnann B.Role of Toll-like receptor responses for sepsis pathogenesis[J].Immunobiology,2007,212(9-10):715-722.
    7 Wu HS,Zhang JX,Wang L,et al.Toll-like receptor 4 involvement in hepatic ischemia/reperfusion injury in mice[J].Hepatobiliary Pancreat Dis lnt,2004,3(2):250-253.8 Kaczorowski DJ,Nakao A,Mollen KP,et al.Toll-like receptor 4 mediates the early inflammatory response after cold ischemia/reperfusion[J].Transplantation,2007,84(10):1279-1287.
    9 Miyaso H,Morimoto Y,Ozaki M,et al.Protective effects of nafamostat mesilate on liver injury induced by lipopolysaccharide in rats:possible involvement of CD14 and TLR-4 downregulation on Kupffer cells[J].Dig Dis Sci,2006,51(11):2007-2012.
    10 Sabroe I,Dower SK,Whyte MK.Polymorphisms of the Toll-like receptors and human disease[J].Clin Infect Dis,2005,41(Suppl 7):S408-415.
    11 Shimamoto A,Chong AJ,Yada M,et al.Inhibition of Toll-like receptor 4 with eritoran attenuates myocardial ischemia-reperfusion injury[J].Circulation,2006,114(Suppl 1):I270-274.
    12 Tsung A,Hoffman RA,Izuishi K,et al.Hepatic ischemia/reperfusion injury involves functional TLR4 signaling in nonparenchymal cells[J].J Immunol,2005,175(11):7661-7668.
    13 Hua F,Ha T,Ma J,et al.Protection against myocardial ischemia/reperfusion injury in TLR4-deficient mice is mediated through a phosphoinositide 3-kinase-dependent mechanism[J].J Immunol,2007,178(11):7317-7324.
    14 Wang H,Li ZY,Wu HS,et al.Endogenous danger signals trigger hepatic ischemia/reperfusion injury through toll-like receptor 4/nuclear factor-kappa B pathway[J].Chin Med J(Engl),2007,120(6):509-514.
    15 Williams DL,Ozment-Skelton T,Li C.Modulation of the phosphoinositide 3-kinase signaling pathway alters host response to sepsis,inflammation,and ischemia/reperfusion injury[J].Shock,2006,25(5):432-439.
    16 Kwak HJ, Song JS, Heo JY, et al. Roflumilast inhibits lipopolysaccharide-induced inflammatory mediators via suppression of nuclear factor-kappaB, p38 mitogen-activated protein kinase, and c-Jun NH2-terminal kinase activation[J]. J Pharmacol Exp Ther, 2005, 315(3):1188-1195.
    17 Dambach DM, Durham SK, Laskin JD, et al. Distinct roles of NF-kappaB p50 in the regulation of acetaminophen-induced inflammatory mediator production and hepatotoxicity [J]. Toxicol Appl Pharmacol, 2006, 211(2): 157-165.
    18 Nam K.W, Kim J, Hong JJ, et al. Inhibition of cytokine-induced IkappaB kinase activation as a mechanism contributing to the anti-atherogenic activity of tilianin in hyperlipidemic mice[J]. Atherosclerosis, 2005,180(1):27-35.
    19 Huang Y, Rabb H, Womer KL. Ischemia-reperfusion and immediate T cell responses[J]. Cell Immunol, 2007,248(1):4-11.
    20 Loverre A, Capobianco C, Stallone G, et al. Ischemia-reperfusion injury-induced abnormal dendritic cell traffic in the transplanted kidney with delayed graft function[J]. Kidney Int, 2007, 72(8):994-1003.
    21 Kim BS, Lim SW, Li C, et al. Ischemia-reperfusion injury activates innate immunity in rat kidneys[J]. Transplantation, 2005, 79(10):1370-1377.
    22 Dong X, Swaminathan S, Bachman LA, et al. Antigen presentation by dendritic cells in renal lymph nodes is linked to systemic and local injury to the kidney[J]. Kidney Int, 2005, 68(3): 1096-1108.
    1 Decker K. Biologically active products of stimulated liver macro-phages(Kupffer cells)[J].Eur J Biochem, 1990, (2):245-261.
    2 Quiroga J, Colina I, Demetris AJ, et al. Cause and timing of first allograft failure in orthotopic liver transplantation:A study of 177 consecutive patients[J]. Hepatology, 1991,14(10):1054-1058.
    3 Ploeg RJ, D'Alessandro AM, Knehtle SJ, et al. Risk factors for primary dysfunction after liver transplantation: a multivariate analysis[J]. Transplantation, 1993, 55(4):807-813.
    4 Vukovic R, Simic M, Tasic M, et al. Analysis of ischemic lesions of the liver after various periods of warm a nd cold ischemia[J]. Med Pregl, 1996,49(7-8):263-267.
    5 Luis C, Francisco SB, Sola J, et al. Effect of cold ischemia time on the graft after orthotopic liver transplantation[J].Transplantation, 1996,61(3):393-396.
    6 Moreno Sanz C, Jimenez Romero C, MorenoG onzalezE, et al. Primary dysfunction after liver transplantation. Is it possible to predict this complication[J]? Rev Esp Enferm Dig, 1999, 91(6):401-419.
    7 Kamada N, Calne RY. A surgical experience with five hundredand thirty liver transplantation in the rat[J]. Surgery, 1983, 93(1): 64-69.
    8 Patel T. Apoptosis in hepatic pathophysiology[J].Clin Liver Dis, 2000,4(2): 295-317.
    9 Jaeschke H. Preservation injury: mechanisms, prevention and consequences[J]. Journal of Hepatology, 1996,25(5):774-780.
    10 Shaw BW. Auxiliary liver transplantation for acute liver failure[J]. Liver Transplantation and Surgery, 1995,1(3): 194-200.
    11 Howard TK, Klintmalm GB, Cofer JB, et al. The influence of preservation injury on rejection in the hepatic transplant recipient[J]. Transplantation, 1990,49(1): 103-107.
    12 Fellstrom B, Akuyrek LM, Backman U, et al. Postischemic reperfusion injury and allograft arteriosclerosis[J].Transplant Proc, 1998, 30(18):4278-4280.
    13 Lemasters JJ, Bunzendahl H, Thurman RG. Reperfusion injury to donor livers stored for transplantation[J]. Liver Transplant Surg, 1995,1(2):124-138.
    14 Busuttil RW, Tanaka K. The utility of marginal donors in liver transplantation[J]. Liver Transplantation, 2003,9 (7):651-663.
    15 Reddy S, Zilvetti M, Brockmann J, et al. Liver transplantation from non-heart-beating donors: current status and future prospects[J]. Liver Transplantation, 2004,10( 10): 1223-1232.
    16 Selzner M, Clavien PA. Fatty liver in liver transplantation and surgery[J]. Seminars in Liver Disease, 2001,21(1):105-113.
    17 Amersi F, Buelow R, Kato H, et al. Upregulation of heme oxygenase-1 protects genetically fat Zucker rat livers from ischemia/reperfusion injury[J]. Clin Invest, 1999, 104(12):1631-1639.
    18 liang ju,Eberhard B,Dennis B,et al.Amelioration of experimental arthritis by treatment with the alkaloid sinomenine[J].Int J Immunophamac,1996,18(10):529-532.
    19 叶仙蓉,颜克序,吴克美,等.青藤碱衍生物的合成及其抗炎镇痛活性[J].药学学报,2004,39(3):180-182.
    20 戴英波,黄循,罗志刚,等.青藤碱对大鼠肾移植排斥反应时细胞间黏附分子-1表达的抑制作用[J].现代中西医结合杂志,2003,12(13):1358-1361.
    21 王毅,陈正,熊烈,等.青藤碱对肾移植大鼠急性排斥反应及T细胞增殖的影响[J].中华实验外科杂志,2004,21(5):573-576.
    22 李嗣英.青藤碱对小鼠免疫功能的影响[J].中草药,1992,23(2):81-83.
    23 Wang Jun,Xiao Peigen.The inhibitory effects of sinomenine on immunological function in mice[J].Phytotherapy Research,1992,6(1):117-120.
    24 Candinas D,Mark W,Kaever V,et al.Immunomodulatory effects of the alkaloid sinomenine in the high responder Aci-to-lewis cardiac allograft model[J].Transplatation,1996,62(12):1855-1860.
    25 Sumimoto R,Jamieson NV,Wake K,et al.24-hour rat liver preservation using UW solution and some simplified variants[J].Transplantation,1989,48(1):1-5.
    26 Monbaliu D,Van Pelt J,De Vos R,et al.Primary graft nonfunction and Kupffer cell activation after liver transplantation from non-heart-beating donors in pigs[J].Liver Transpl,2007,13(2):239-247.
    27 Hirsch J,Hansen KC,Choi S,et al.Warm ischemia-induced alterations in oxidative and inflammatory proteins in hepatic Kupffer cells in rats[J].Mol Cell Proteomics,2006,5(6):979-986.
    28 Lasnier E,Blanc MC,Housset C,et al.Cytotoxic response of sinusoidal endothelial cells to polymorphonuclear leukocytes and its potential implication in hypoxia-reoxygenation injury[J].Liver,2002,22(6):495-500.
    29 Kawamura E,Yamanka N,Okamoto E,et al.Response of plasma and tissue endothelial-1 to ischemia and its implication in isch emia-reperfusionin jury[J].Hepatology,1995,21(4):1138-1141.
    30 Puhl G,Schaser KD,Pust D,et al.Initial hepatic microcirculation correlates with early graft function in human orthotopic liver transplan tation[J].Liver Transpl,2005,11(2):555-563.
    31 Mueller TH,Kienle K,Beham A,et al.Caspase 3 inhibition improves survival and reduces early graft iniurv after ischemia and reperfusion in rat liver transplantation[J].Transplantation,2004,78(5):1267-1273.
    32 Malhi h,Gores GJ,Lemasters JJ.Apoptosis and nerosis in the liver:a tale of two deaths[J]?Hepatology,2006,43:S31-44.
    33 Clavien PA,Harvey PR,Strasberg SM.Preservation and reperfusion injury in liver allograft[J].Transplantation,1992,53(5):957-962.
    34 闫小华,李焕德,彭文兴,等.高效液相色谱法测定人血清和尿中盐酸青藤碱浓度及药代动力学研究[J].药学学报,1997,32(8):620-623.
    35 Belzer FO,Southard JH.Principles of solid-organ preservation by cold storage[J].Transplantation,1988,45(3):673-676.
    36 Teramoto K,Bowers JL,Kruskal JB,et al.Hepatic microcirculatory changes after reperfusion in fatty and normal liver transplantation in the rat[J].Transplantation,1993,56(5):1076-1082.
    37 Caldwell-Kenkel JC,Currin RT,Tanaka Y,et al.Reperfusion injury to endothelial cells following cold ischemic storage of rat livers[J].Hepatology,1989,10(2):292-299.
    38 Nagendra AR,Mickelson JK,Smith CW.CD18 integrin and CD54-dependent neutrophil adhesion to cytokine-stimulated human hepatocytes[J].Am J Physiol,1997,272(2):408-416.
    39 Colletti LM,Cortis A,Lukacs N,et al.Tumor necrosis factor up-regulates intercellular adhesion molecule 1,which is important in the neutrophil-dependent lung and liver injury associated with hepatic ischemia and reperfusion in the rat[J].Shock,1998,10(1):182-191.
    40 Leist M,Gantner F,Bohlinger I,et al.Murine hepatocyte apoptosis induced in vitro and in vivo by TNF-alpha requires transcriptional arrest[J].J Immunol,1994,153(6):1778-1788.
    41 Puellmann K,Beham A,Kienle K,et al.Inhibition of apoptosis reduces immunogeneic potential of adenoviral-treated syngeneic liver grafts[J].Transplantation,2006,27(10):1377-1382.
    42 Baker SJ,Reddy EP.Modulation of life and death by the tumor necrosis receptor superfamily[J].Oncogene,1998,17(13):3261-3270.
    43 Wanner GA,Ertel W,Muller P.Liver ischemia and reperfuison induces a systemic inflammatory response through Kupffer cell activation[J].Shock,1996,5(1):34-40.
    44 Yamauchi N,Kuriyama H,Watanabe N,et al.Intercellular hydroxyl production induced by recombinant human TNF and its implication in the killing of tumor cells in vitro[J].Cancer Res,1989,49(7):1671-1675.
    45 Sgurasygi N,Wakabayashi G,Shimazu M.Up-regulation of oxygen-derived free radicals by interleukin-lin hepatic ischemia/reperfusion injury[J].Transplantation,1987,64(5):1389-1403.
    46 Michic HR,Manogue KR,Spriggs DR,et al.IL-1β induced by TNF-α in macrophanges in vivo[J].N Engl J Med,1998,318(10):1481-1490.
    47 Singh I,Zibari GB,Brown MF,et al.Role of P-selectin expression in hepatic ischemia and reperfusion injury[J].Clin Transplant,1999,13(1):76-82.
    48 Sindram D, Porte RJ, Hoffman MR, et al. Platelets induced sinusoidal endothelial cell apoptosis upon reperfusion of the cold ischemic rat liver[J]. Gastroenterology, 2000, 118(1):183-191.
    49 Le Moine O, Louis H, Demols A, et al. Cold liver ischemia-reperfusion injury critically depends on liver T cells and is improved by donor pretreatment with interleukin-10 in mice[J].Hepatology, 2000, 31(6): 1266-1274.
    50 ShitoM, Wakabayashi G, Ueda M, et al. Interleukinl receptor blockade reduces tumor necrosis factor production, tissue injury, and mortality after hepatic ischemia-reperfusion in the rat[J].Transplantation, 1997,63(1):143-148.
    51 Glasgow SC, Ramachandran S, Csontos KA, et al. Interleukin-1 beta is prominent in the early pulmonary inflammatory response after hepatic injury[J]. Surgery, 2005,138(1):64-70.
    52 Colletti LM, Kunkel SL, Walz A, et al. The role cytokine networks in the local liver injury following hepatic ischemia/reperfusion in the rat[J]. Hepatology, 1996,23(2):506-514.
    53 Witthaut R, Farhood A, Smith CW, et al. Complement and tumor necrosis factor-a contribute to Mac-1( CD116/CD18) upregulation and systemic neutrophil activation during endotoxemia in vivo[J]. J Leukoc Biol, 1994, 55(1):105-111.
    54 Springer TA. Adhesion receptors of the immune system[J]. Nature, 1990,346(2):425-434.
    55 Uchida Y, Tamaki T, Tanaka M, et al. Induction of specific stress response increases resistance of rat liver allografts to cold ischemia and reperfusion injury[J]. Transpl Int, 2003,16(6):396-404.
    56 Shimizu H, Kataoka M, Ohtsuka M, et al. Extended cold preservation of the graft liver enhances neutrophil-mediated pulmonary injury after liver transplantation[J]. Hepatogastroenterology, 2005, 52(64): 1172-1175.
    1 Shimamoto A, Chong AJ, Yada M, et al. Inhibition of Toll-like receptor 4 with eritoran attenuates myocardial ischemia-reperfusion injury[J]. Circulation, 2006,114(Suppl 1):I270-274.
    2 Tsung A, Hoffman RA, Izuishi K, et al. Hepatic ischemia/reperfusion injury involves functional TLR4 signaling in nonparenchymal cells[J]. J Immunol, 2005,175(11):7661-7668.
    3 Hua F, Ha T, Ma J, et al. Protection against myocardial ischemia/reperfusion injury in TLR4-deficient mice is mediated through a phosphoinositide 3-kinase-dependent mechanism[J]. J Immunol, 2007,178(11):7317-7324.
    4 Wang H, Li ZY, Wu HS, et al. Endogenous danger signals trigger hepatic ischemia/reperfusion injury through toll-like receptor 4/nuclear factor-kappa B pathway[J]. Chin Med J (Engl), 2007, 120(6):509-514.
    5 Williams DL, Ozment-Skelton T, Li C. Modulation of the phosphoinositide 3-kinase signaling pathway alters host response to sepsis, inflammation, and ischemia/reperfusion injury[J]. Shock, 2006, 25(5):432-439.
    6 Kwak HJ, Song JS, Heo JY, et al. Roflumilast inhibits lipopolysaccharide-induced inflammatory mediators via suppression of nuclear factor-kappaB, p38 mitogen-activated protein kinase, and c-Jun NH2-terminal kinase activation[J]. J Pharmacol Exp Ther, 2005, 315(3):1188-1195.
    7 Dambach DM, Durham SK, Laskin JD, et al. Distinct roles of NF-kappaB p50 in the regulation of acetaminophen-induced inflammatory mediator production and hepatotoxicity [J]. Toxicol Appl Pharmacol, 2006,211(2):157-165.
    8 Nam KW, Kim J, Hong JJ, et al. Inhibition of cytokine-induced IkappaB kinase activation as a mechanism contributing to the anti-atherogenic activity of tilianin in hyperlipidemic mice[J]. Atherosclerosis, 2005, 180(1):27-35.
    9 Weighardt H, Holzmann B. Role of Toll-like receptor responses for sepsis pathogenesis[J]. Immunobiology, 2007,212(9-10):715-722.
    10 Andrade CF, Kaneda H, Der S, et al. Toll-like receptor and cytokine gene expression in the early phase of human lung transplantation[J]. J Heart Lung Transplant, 2006,25(11):1317-1323.
    11 Wu HS, Zhang JX, Wang L, et al. Toll-like receptor 4 involvement in hepatic ischemia/reperfusion injury in mice[J]. Hepatobiliary Pancreat Dis Int, 2004, 3(2):250-253.
    12 Kaczorowski DJ, Nakao A, Mollen KP, et al. Toll-like receptor 4 mediates the early inflammatory response after cold ischemia/reperfusion[J]. Transplantation, 2007, 84(10):1279-1287.
    13 Miyaso H, Morimoto Y, Ozaki M, et al. Protective effects of nafamostat mesilate on liver injury induced by lipopolysaccharide in rats: possible involvement of CDM and TLR-4 downregulation on Kupffer cells[J]. Dig Dis Sci, 2006, 51(11):2007-2012.
    14 Zhang Z, Schluesener HJ. Mammalian toll-like receptors: from endogenous ligands to tissue regeneration[J].Cell Mol Life Sci, 2006, 63(24):2901-2907.
    15 Sabroe I, Dower SK, Whyte MK. Polymorphisms of the Toll-like receptors and human disease[J]. Clin Infect Dis, 2005, 41(Suppl 7):S408-415.
    16 Peng Y, Gong JP, Liu CA, et al. Expression of toll-like receptor 4 and MD-2 gene and protein in Kupffer cells after ischemia-reperfusion in rat liver graft[J]. World J Gastroenterol, 2004, 10(19):2890-2893.
    17 Dong W, Liu Y, Peng J, et al. The IRAK-1-BCL10-MALT1-TRAF6-TAK1 cascade mediates signaling to NF-kappaB from Toll-like receptor 4[J]. J Biol Chem, 2006,281(36):26029-26040.
    18 Colletti L M, Remick D G, Burtch G D, et al. Role of tumor necrosis factor-a in the pathophysiologic alterations after hepatic ischemia / reperfusion injury in the rat[J]. J Clin Invest, 1990,85(5):1936-1943.
    19 Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation[J].Oncogene, 2004, 23 (16):2838-2849.
    20 Lee CW, Chien CS, Yang CM. Lipoteichoic acid-stimulated p42/p44 MAPK activation via Toll-like receptor 2 in tracheal smooth muscle cells[J]. Lung Cell Mol Physiol, 2004, 286(5):L921-930.
    21 Kyosseva SV. Mitogen-activated protein kinase signaling[J]. Int Rev Neurobiol, 2004, 59(1 ):201-220.
    22 Craig R, Larkin A, Mingo AM, et al. p38MAPK and NF-kappa B collaborate to induce interleukin-6 gene expression and release.Evidence for a cytoprotective autocrine signaling
    pathway in a cardiac myocyte model system[J]. J Biol Chem, 2000,275(31):23814-23824.
    23 Ichijo H, Nishida E, Irie K, et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways[J]. Science, 1997,27 5(5296):90-94.
    24 L'Allemain G.Deciphering the MAP kinase pathway[J]. Prog Growth Factor Res, 1994, 5(3):291-233.
    25 Lee YJ, Kuo HC, Chu CY, et al. Involvement of tumor suppressor protein p53 and p38MAPK in caffeic acid phenethyl ester-induced apoptosis of C6 glioma cells[J]. Biochem Pharmacol, 2003, 66 (12):2281-2289.
    26 Saklatvala J, Dean J, Clark A. Control of the expression of inflammatory response genes[J]. Biochem Soc Symp, 2003, 70 (1):95-106.
    27 Carter Y, Liu G, Stephens WB, et al. Heat shock protein (HSP72) and p38 MAPK involvement in sublethal hemorrhage (SLH)-induced tolerance[J]. J Surg Res, 2003, 111(1):70-77.
    28 Raingeaud JS, Gupta JS, Rogers M, et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine[J].J Biol Chem,1995,270(24):7420-7426.
    29 闫文生,阚文宏,黄巧冰,等.脂多糖诱导小鼠肠组织ICAM-1表达的变化及p38 MAPK 在其中的作用[J].中国病理生理杂志,2002,18(9):1029-1033.
    30 Weinbrenner C,Liu GS,Cohen MV,et al.Phosphorylation of tyrosine 182 of p38mitogen-activated protein kinase correlates with the protection of preconditioning in the rabbit heart[J].J Mol Cell Cardiol,1997,29(9):2383-2391.
    31 Schneider S,Chen W,Hou J,et al.Inhibition of p38 MAPK alpha/beta reduces ischemic injury and does not block protective effects of preconditioning[J].Am J Physiol Heart Circ Physiol,2001,280(2):H499-508.
    32 Kohmoto J,Nakao A,Stolz DB,et al.Carbon monoxide protects rat lung transplants from ischemia-reperfusion injury via a mechanism involving p38 MAPK pathway[J].Am J Transplant,2007,7(10):2279-2290.
    33 Man K,Ng KT,Lee TK,et al.FTY720 attenuates hepatic ischemia-reperfusion injury in normal and cirrhotic livers[J].Am J Transplant,2005,5(1):40-49.
    34 Yan Z,Stapleton PP,Freeman TA,et al.Enhanced expression of cyclooxygenase-2 and prostaglandin E2 in response to endotoxin after trauma is dependent on MAPK and NF-kappaB mechanisms[J].Cell Immunol,2004,232(1-2):116-126.
    35 Chen XL,Xia ZF,Yu YX,et al.p38 mitogen-activated protein kinase inhibition attenuates burn-induced liver injury in rats[J].Burns,2005,31(3):320-330.
    36 Kaudel CP,Frink M,Schmiddem U,et al.FTY720 for treatment of ischemia-reperfusion injury following complete renal ischemia;impact on long-term survival and T-lymphocyte tissue infiltration[J].Transplant Proc,2007,39(2):499-502.
    37 Napolitani G,Rinaldi A,Bertoni F,et al.Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells[J].Nat Immunol,2005,6(8):769-776.
    38 Kim BS,Lira SW,Li C,et al.Ischemia-reperfusion injury activates innate immunity in rat kidneys[J].Transplantation,2005,79(10):1370-1377.
    1 Huang Y, Rabb H, Womer KL. Ischemia-reperfusion and immediate T cell responses[J]. Cell Immunol, 2007, 248(1):4-11.
    2 Loverre A, Capobianco C, Stallone G, et al. Ischemia-reperfusion injury-induced abnormal dendritic cell traffic in the transplanted kidney with delayed graft function[J]. Kidney Int, 2007, 72(8):994-1003.
    3 Kim BS, Lim SW, Li C, et al. Ischemia-reperfusion injury activates innate immunity in rat kidneys[J]. Transplantation, 2005, 79(10):1370-1377.
    4 Dong X, Swaminathan S, Bachman LA, et al. Antigen presentation by dendritic cells in renal lymph nodes is linked to systemic and local injury to the kidney[J]. Kidney Int, 2005, 68(3):1096-1108.
    5 Hochegger K, Schatz T, Eller P, et al. Role of alpha/beta and gamma/delta T cells in renal ischemia-reperfusion injury[J]. Am J Physiol Renal Physiol, 2007,293(3):F741-47.
    6 Pinheiro HS, Camara NO, Noronha IL, et al. Contribution of CD4+ T cells to the early mechanisms of ischemia-reperfusion injury in a mouse model of acute renal failure[J]. Braz J Med Biol Res, 2007,40(4):557-568.
    7 Yanfei Huang, Hamid Rabb, Karl L, et al. New concepts of complement in allorecognition and graft rejection[J]. Cellular Immunology, 2007,248 (1): 18-30.
    8 CP Kaudel, M Frink, U Schmiddem, et al. FTY720 for Treatment of Ischemia-Reperfusion Injury Following Complete Renal Ischemia; Impact on Long-Term Survival and T-Lymphocyte Tissue Infiltration[J].Transplantation Proceedings, 2007,399(2): 499-502.
    9 Masaki Kaibori, Tomohisa Inoue, Wei Tu, et al. FK506, but not cyclosporin A, prevents mitochondrial dysfunction during hypoxia in rat hepatocytes. Life Sciences, 2001,69(1):17-26.
    10 Dildar Konukolu, 1hsan Tac, Ouz Cetinkale. Effects of cyclosporin A and ibuprofen on liver ischemia-reperfusion injury in the rat[J]. Clinica Chimica Acta, 1998,275(1):1-8.
    11 CP Kaudel, U Schmiddem, M Frink, et al. FTY720 for Treatment of Ischemia-Reperfusion Injury Following Complete Renal Ischemia in C57/BL6 Mice[J]. Transplantation Proceedings, 2006, 38(3):679-681.
    12 Shen XD, Ke B, Zhai Y, et al. CD154-CD40 T-cell costimulation pathway is required in the mechanism of hepatic ischemia/reperfusion injury, and its blockade facilitates and depends on heme oxygenase-1 mediated cytoprotection[J]. Transplantation, 2002,74(3):315-9.
    13 Anselmo DM, Amersi FF, Shen XD, et al. FTY720 pretreatment reduces warm hepatic ischemia reperfusion injury through inhibition of T-lymphocyte infiltration[J]. Am J Transplant, 2002,2(9):843-849.
    14 Clavien PA, Harvey PR, Sanabria JR, et al. Lymphocyte adherence in the reperfused rat liver: mechanisms and effects[J]. Hepatology, 1993, 17(1):131-142.
    15 Zwacka RM, Zhang Y, Halldorson J, et al. CD4(+) T-lymphocytes mediate ischemia/reperfusion-induced inflammatory responses in mouse liver[J]. J Clin Invest, 1997, 100(2):279-89.
    16 Le Moine O, Louis H, Demols A, et al. Cold liver ischemia-reperfusion injury critically depends on liver T cells and is improved by donor pretreatment with interleukin 10 in mice[J].Hepatology, 2000, 31(6):1266-1274.
    17 Natalija Novak, Thomas Bieber. Dendritic cells as regulators of immunity and tolerance[J]. Journal of Allergy and Clinical Immunology, 2008, 121, (Supl 2):S370-S374
    18 Shigeharu Fujita, Naomi Yamashita, Yasuyuki Ishii, et al. Regulatory dendritic cells protect against allergic airway inflammation in a murine asthmatic model[J]. Journal of Allergy and Clinical Immunology, 2008,121(1): 95-104.
    19 Sanjaya Bandara Adikari, Ann Kari Lefvert, Ritva Pirskanen, et al. Dendritic cells activate autologous T cells and induce IL-4 and IL-10 production in myasthenia gravis[J].Journal of Neuroimmunology, 2004, 156(1-2): 163-170.
    20 Tianpei He, Sam Zong, Xiaochu Wu, et al. CD4~+ T cell acquisition of the bystander pMHC I colocalizing in the same immunological synapse comprising pMHC II and costimulatory CD40, CD54, CD80, OX40L, and 41BBL[J]. Biochemical and Biophysical Research Communications, 2007,362(4): 822-828.
    21 L Geng, G Jiang, H Xie, et al. Mycophenolic Acid Upregulates B7-DC Expression on Dendritic Cells, Which Is Associated With Impaired Allostimulatory Capacity of Dendritic Cells[J].Transplantation Proceedings, 2006, 38(5):1622-1624.
    22 Shorena Janelidze, Karin Enell, Edward Visse, et al. Activation of purified allogeneic CD4~+ T cells by rat bone marrow-derived dendritic cells induces concurrent secretion of IFN-γ, IL-4, and IL-10[J]. Immunology Letters, 2005,101(2):193-201.
    23 David Usharauli. Dendritic cells and the immunity/tolerance decision[J]. Medical Hypotheses, 2005,64, (1): 112-113.
    24 Marc A Williams, Michael Porter, Maureen Horton, et al. Ambient particulate matter directs nonclassic dendritic cell activation and a mixed T_H1/T_H2-like cytokine response by naive CD4~+ T cells[J].Journal of Allergy and Clinical Immunology, 2007,119, (2):488-497. Jaeschke H. Preservation injury: mechanisms, prevention and consequences[J]. Journal of Hepatology, 1996, 25 (5):774-780.
    2 Shaw BW. Auxiliary liver transplantation for acute liver failure[J]. Liver Transplantation and Surgery, 1995,1 (3): 194-200.
    3 Busuttil RW, Tanaka K. The utility of marginal donors in liver transplantation[J]. Liver Transplantation, 2003, 9 (7):651-663.
    4 Reddy S, Zilvetti M, Brockmann J, et al. Liver transplantation from non-heart-beating donors: current status and future prospects[J]. Liver Transplantation, 2004,10(10): 1223-1232.
    5 Farmer DG, Yersiz H, Ghobrial RM, et al. Early graft function after pediatric liver transplantation: comparison between in situ split liver grafts and living-related liver grafts[J]. Transplantation, 2001,72 (11): 1795-1802.
    6 Franco-Gou R, Peralta C, Massip-Salcedo M, et al. Protection of reduced-size liver for transplantation[J]. American Journal of Transplantation, 2004,4 (9): 1408-1420.
    7 Selzner M, Clavien PA. Fatty liver in liver transplantation and surgery[J]. Seminars in Liver Disease, 2001,21(1):105-113.
    8 Fan C, Zwacka RM, Engelhardt JF. Therapeutic approaches for ischemia/reperfusion injury in the liver[J]. Journal of Molecular Medicine, 1999,77(8):577-592.
    9 Banga NR, Homer-Vanniasinkam S, Graham A, et al. Ischaemic preconditioning in transplantation and major resection of the liver[J]. British Journal of Surgery, 2005,92 (5):528-538.
    10 Hamer 1, Wattiaux R, Wattiaux-De Coninck S. Deleterious effects of xanthine Oxidase on rat liver endothelial cells after ischemia/reperfusion[J]. Biochimica et Biophysica Acta, 1995,1269 (2): 145-152.
    11 Fernandez L, Heredia N, Grande L, et al. Preconditioning protects liver and lung damage in rat liver transplantation: role of xanthine/xanthine oxidase[J]. Hepatology, 2002, 36 (3): 562-572.
    12 Jaeschke H, Mitchell JR. Mitochondria and xanthine Oxidase both generate reactive oxygen species in isolated perfused rat liver after hypoxic injury[J]. Biochemical and Biophysical Research Communications, 1989, 160(1): 140-147.
    13 Metzger J, Dore SP, Lauterburg BH. Oxidant stress during reperfusion of ischemic liver: no evidence for a role of xanthine Oxidase. Hepatology 1988.8 (3), 580-584.
    14 Jaeschke H, Bautista AP, Spolarics Z, et al. Superoxide generation by neutrophils and Kupffer cells during in vivo reperfusion after hepatic ischemia in rats[J]. Journal of Leukocyte Biology, 1992,2(4):377-382.
    15 Teoh NC, Farell GC. Hepatic ischemia reperfusion injury: pathogenic mechanisms and basis for hepatoprotection[J]. Journal of Gastroenterology and Hepatology, 2003,18 (8):891-902.
    16 Jaeschke H. Xanthine oxidase-induced oxidant stress during hepatic ischemia-reperfusion: are we coming full circle after 20 years[J]? Hepatology, 2002,36 (3):761-763.
    17 Jeon BR, Yeom DH, Lee SM. Protective effect of allopurinol on hepatic energy metabolism in ischemic and reperfused rat liver[J]. Shock, 2001,15(2): 112-117.
    18 Mochida S, Arai M, Ohno A, et al. Oxidative stress in hepatocytes and stimulatory state of Kupffer cells after reperfusion differ between warm and cold ischemia in rats[J]. Liver, 1994, 14 (5): 234-240.
    19 Peralta C, Hotter G., Closa D, et al. Protective effect of preconditioning on the injury associated to hepatic ischemia-reperfusion in the rat: role of nitric oxide and adenosine[J]. Hepatology, 1997,25 (4): 934-937.
    20 Shah V, Kamath PS. Nitric oxide in liver transplantation: pathobiologyand clinical implications[J]. Liver Transplantation, 2003,9 (1):1-11.
    21 Billiar TR. The delicate balance of nitric oxide and superoxide in liver pathology[J]. Gastroenterology, 1995,108 (2): 603-605.
    22 Chung HT, Pae HO, Choi BM, et al. Nitric oxide as a bioregulator of apoptosis[J]. Biochemical and Biophysical Research Communications, 2001, 282 (5): 1075-1079.
    23 Genaro AM, Hortelano S, Alvarez A, et al. Splenic B lymphocyte programmed cell death is prevented by nitric oxide release through mechanisms involving sustained Bcl-2 levels[J]. Journal of Clinical Investigation, 1995,95(4): 1884-1890.
    24 Peralta C, Rull R, Rimola A, et al. Endogenous nitric oxide and exogenous nitric oxidesupplementation in hepatic ischemia-reperfusion injury in the rat[J]. Transplantation, 2001,71(4): 529-536.
    25 Teoh N, Leclercq I, Pena AD, et al. Low-dose TNF-alpha protects against hepatic ischemia-reperfusion injury in mice: implications for preconditioning[J]. Hepatology, 2003, 37(1):118-128.
    26 Iimuro Y, Nishiura T, Hellerbrand C, et al. NFkappaB prevents apoptosis and liver dysfunction during liver regeneration[J]. Journal of Clinical Investigation, 1998,101(4), 802-811.
    27 Peralta C, Fernandez L, Panes J, et al. Preconditioning protects against systemic disorders associated with hepatic ischemia-reperfusion through blockade of tumor necrosis factor-induced P-selectin up-regulation in the rat[J]. Hepatology, 2001a, 33(1), 100-113.
    28 Banga NR, Homer-Vanniasinkam S, Graham A, et al. Ischaemic preconditioning in transplantation and major resection of the liver[J]. British Journal of Surgery, 2005, 92 (5): 528-538.
    29 McCuskey RS, Urbaschek R, Urbaschek B. The microcirculation during endotoxemia[J]. Cardiovascular Research, 1996, 32(4):752-763.
    30 Rentsch M, Post S, Palma P, et al. Anti-ICAM-1 blockade reduces postsinusoidal WBC adherence following cold ischemia and reperfusion, but does not improve early graft function in rat liver transplantation[J]. Journal of Hepatology, 2000,32(5): 821-828.
    31 Essani NA, Fisher MA, Simmons CA, et al. Increased P-selectin gene expression in the liver vasculature and its role in the pathophysiology of neutrophil-induced liver injury in murine endotoxin shock[J]. Journal of Leukocyte Biology, 1998, 63(3):288-296.
    32 Amersi F, Dulkanchainun T, Nelson SK, et al. A novel iron chelator in combination with a P-selectin antagonist prevents ischemia/reperfusion injury in a rat liver model[J]. Transplantation, 2001,71(1):112-118.
    33 Selzner N, Rudiger H, Graf R, et al. Protective strategies against ischemic injury of the liver[J]. Gastroenterology, 2003a, 125(3), 917-936.
    34 Garcia-Criado FJ, Toledo-Pereyra LH, Lopez-Neblina F, et al. Role of P-selectin in total hepatic ischemia and reperfusion[J]. Journal of the American College of Surgeons, 1995, 181(4):327-334.
    35 Yadav SS, Howell DN, Steeber DA, et al. P-Selectin mediates reperfusion injury through neutrophil and platelet sequestration in the warm ischemic mouse liver[J]. Hepatology, 1999, 29(5): 1494-1502.
    36 Malhi H, Gores G.J, Lemasters JJ. Apoptosis and necrosis in the liver: a tale of two deaths[J]? Hepatology, 2006, 43 (2 Suppl 1):S31-S44.
    37 Reed JC. Bcl-2 and the regulation of programmed cell death[J]. Journal of Cell Biology, 1994,124(1-2): 1-6.
    38 Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy[J]. CA: A Cancer Journal for Clinicians, 2005,55 (3):178-194.
    39 Ding WX, Yin XM. Dissection of the multiple mechanisms of NFalpha-induced apoptosis in liver injury[J]. Journal of Cellular and Molecular Medicine, 2004, 8(4): 445-454.
    40 Jaeschke H, Lemasters JJ. Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury[J]. Gastroenterology, 2003,125 (4):1246-1257
    41 Cande C, Cohen I, Daugas E, et al. Apoptosis-inducing factor (AIF): a novel caspaseindependent death effector released from mitochondria[J]. Biochimie, 2002, 84 (2-3): 215-222.
    42 Elmore SP, Qian T, Grissom SF, et al. The mitochondrial permeability transition initiates autophagy in rat hepatocytes[J]. FASEB Journal, 2001, 15(12):2286-2287.
    43 Paxian M, Bauer I, Rensing H, et al. Recovery of hepatocellular ATP and "pericentral apoptosis" after hemorrhage and resuscitation[J]. FASEB Journal 2003,17(9):993-1002.
    44 Lemasters JJ. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis[J]. American Journal of Physiology, 1999,276 (1 Pt 1):G1-G6.
    45 Churchill TA, Green CJ, Fuller BJ. The importance of calciumrelated effects on energetics at hypothermia: effects of membrane-channel antagonists on energy metabolism of rat liver[J]. Cryobiology, 1995, 32(5): 477-486.
    46 Soltys K, Dikdan G., Koneru B. Oxidative stress in fatty livers of obese Zucker rats: rapid amelioration and improved tolerance to warm ischemia with tocopherol[J]. Hepatology, 2001, 34 (1): 13-18.
    47 Fernandez L, Heredia N, Grande L, et al. Preconditioning protects liver and lung damage in rat liver transplantation: role of xanthine/xanthine oxidase[J]. Hepatology, 2002, 36(3):562-572.
    48 Colletti LM, Remick DG., Burtch G.D, et al. Role of tumor necrosis factor-alpha in the pathophysiologic alterations after hepatic ischemia/reperfusion injury in the rat[J]. Journal of Clinical Investigation, 1990, 85(6): 1936-1943.
    49 Carrasco-Chaumel E, Rosello-Catafau J, Bartrons R, et al. Adenosine monophosphate-activated protein kinase and nitric oxide in rat steatotic liver transplantation[J]. Journal of Hepatology, 2005,43(6): 997-1006.
    50 Cheng G, Polito CC, Haines JK, et al. Decrease of intracellular ATP content downregulated UCP2 expression in mouse hepatocytes[J]. Biochemical and Biophysical Research Communications, 2003,308(3):573-580.
    51 Chavin KD, Fiorini RN, Shafizadeh S, et al. Fatty acid synthase blockade protects steatotic livers from warm ischemia reperfusion injury and transplantation[J]. American Journal of Transplantation, 2004,4 (9): 1440-1447.
    52 Vajdova K, Graf R, Clavien PA. ATP-supplies in the cold-preserved liver: a long-neglected factor of organ viability[J]. Hepatology, 2002,36 (6):1543-1552.
    53 Morariu AM, Vd Plaats A, Oeveren V, et al. Hyperaggregating effect of hydroxyethyl starch components and University of Wisconsin solution on human red blood cells: a risk of impaired graft perfusion in organ procurement[J]? Transplantation, 2003,76(1): 37-43.
    54 Pesonen EJ, Linder N, Raivio KO, et al. Circulating xanthine Oxidase and neutrophil activation during human liver transplantation[J]. Gastroenterology 1998,114(5):1009-l 115.
    55 Selzner N, Rudiger H, Graf R, et al. Protective strategies against ischemic injury of the liver[J]. Gastroenterology, 2003a, 125 (3): 917-936.
    56 Moresco RN, Santos RC, Alves Filho JC, et al. Protective effect of fructose-1,6-bisphosphate in the cold storage solution for liver preservation in rat hepatic transplantation[J]. Transplantation Proceedings, 2004,36 (5):1261-1264.
    57 Sonnenday CJ, Warren DS, Cooke SK, et al. A novel chimeric ribozyme vector produces potent inhibition of ICAM-1 expression on ischemic vascular endothelium[J]. Journal of Gene Medicine, 2004,6(12):1394-1402.
    58 Okaya T, Lentsch AB. Hepatic expression of S32A/S36A IkappaBalpha does not reduce postischemic liver injury[J]. Journal of Surgical Research, 2005,124(2):244-249.
    59 Chaisson ML, Brooling JT, et al. Hepatocytespecific inhibition of NF-kappaB leads to apoptosis after TNF treatment, but not after partial hepatectomy[J]. Journal of Clinical Investigation, 2002, 110(2): 193-202.
    60 Kaya Y, Coskun T, Aral E, et al. The effect of trimetazidine on liver regeneration after partial hepatectomy under hepatic blood inflow occlusion[J]. Hepatogastroenterology, 2003, 50(51): 651-655.
    61 Ikizler M, Dernek S, Sevin B, et al. Trimetazidine improves recovery during reperfusion in isolated rat hearts after prolonged ischemia[J]. Anadolu Kardiyoloji Dergisi, 2003, 3(4):303-308.
    62 Castedo E, Segovia J, Escudero C, et al. Ischemiareperfusion injury during experimental heart transplantation. Evaluation of trimetazidine's cytoprotective effect[J]. Revista Espanola de Cardiologia, 2005,58(8): 941-950.
    63 Carrasco-Chaumel E, Rosello-Catafau J, Bartrons R, et al. Adenosine monophosphate-activated protein kinase and nitric oxide in rat steatotic liver transplantation[J]. Journal of Hepatology, 2005,43(6):997-1006.
    64 Guo L, Richardson KS, Tucker LM, et al. Role of the renin-angiotensin system in hepatic ischemia reperfusion injury in rats[J]. Hepatology, 2004,40(3):583-589.
    65 Araya J, Tsuruma T, Hirata K, et al. TCV-116, an angiotensin II type 1 receptor antagonist, reduces hepatic ischemia-reperfusion injury in rats[J]. Transplantation, 2002, 73(4):529-534.
    66 Buehler A, Martire A, Strohm C, et al. Angiogenesis-independent cardioprotection in FGF-1 transgenic mice[J]. Cardiovascular Research, 2002, 55(4):768-777.
    67 Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway[J]. Cardiovascular Research, 2004, 61(3): 448-460.
    68 Carini R, Albano E. Recent insights on the mechanisms of liver preconditioning[J]. Gastroenterology, 2003,125(5):1480-1491.
    69 Cutrin JC, Perrelli MG., Cavalieri B, et al. Microvascular dysfunction induced by reperfusion injury and protective effect of ischemic preconditioning[J]. Free Radical Biology and Medicine, 2002,33(9):1200-1208.
    70 Clavien PA, Yadav S, Sindram D, et al. Protective effects of ischemic preconditioning for liver resection performed under inflow occlusion in humans[J]. Annals of Surgery, 2000, 232(2):155-162.
    71 Castillo C, Salazar V, Ariznavarreta C, et al. Effect of melatonin administration on parameters related to oxidative damage in hepatocytes isolated from old Wistar rats[J]. Journal of Pineal Research, 2005,38(4):240-246.
    72 Koneru B, Fisher A, He Y, et al. Ischemic preconditioning in deceased donor liver transplantation: a prospective randomized clinical trial of safety and efficacy [J]. Liver Transplantation, 2005,11 (2): 196-202.
    73 Azoulay D, DelGaudio M, Andreani P, et al. Effects of 10 minutes of ischemic preconditioning of the cadaveric liver on the graft's preservation and function: the ying and the yang[J] .Annals of Surgery, 2005, 242(1):133-139.
    74 Jassem W, Fuggle SV, Cerundolo L, et al. Ischemic preconditioning of cadaver donor livers protects allografts following transplantation[J]. Transplantation, 2006, 81(2): 169-174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700