用户名: 密码: 验证码:
门静脉淤血对肝脏缺血再灌注损伤的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分门静脉淤血对内毒素血症和肝脏缺血再灌注损伤的影响及机制
     目的
     我们利用家兔肝脏原位冷灌注模型,观察不同门静脉阻断时间恢复灌流时门静脉淤血中内毒素含量的变化,以及去除门静脉淤血对肝脏缺血再灌注损伤的影响,为临床肝移植去除门静脉淤血提供依据。
     方法
     80只健康成年新西兰大白兔,雌雄不拘,体重2.0~2.5kg,由第二军医大学动物中心提供,随机分为对照组(C组)和实验组。实验组动物按门静脉阻断时间(即冷灌注时间)不同分为20min、30min、40min组,再按去除门静脉淤血去除量不同分为3个亚组:A_0组不去除门静脉淤血;A_5组去除门静脉淤血5ml;A_(10)组去除门静脉淤血10ml。每组8只动物,共9组。另外8只动物为C组仅行手术解剖及门、腔静脉插管,不做门静脉阻断及肝脏灌注。观察恢复灌流时门静脉淤血中内毒素含量的变化,以及去除门静脉淤血对血清内毒素、丙氨酸转氨酶(ALT)、透明质酸(HA)、肿瘤坏死因子-a(TNF-a),肝组织匀浆丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性及肝组织核因子-κB(NF-κB)活性的变化和肝脏组织学改变。
     结果
     门静脉淤血中内毒素含量随阻断时间延长明显升高,同一阻断时间每去除2.5ml淤血可使血清内毒素含量显著下降,但去除7.5ml后淤血中内毒素含量不再明显下降。在门静脉阻断30min和40min组,去除门静脉淤血能降低血清内毒素、ALT、HA、TNF-α及肝组织匀浆MDA的含量和肝组织NF-κB活性,增加肝组织匀浆SOD活性,改善肝脏病理学变化,与不去除相比较差异有统计学意义。在阻断20min组去除门静脉淤血与不去除相比较,各检测指标差异无统计学意义。
     讨论
     长时间阻断门静脉,造成胃肠道淤血,肠黏膜缺血、缺氧及通透性升高,导致门静脉血尤其是门静脉淤血中肠源性内毒素明显升高,并且门静脉淤血中的内毒素含量随门静脉阻断时间延长而明显升高。同时发现在最初去除的门静脉淤血中内毒素含量最高,这些高浓度、大剂量的内毒素可能是在恢复灌流时造成肝脏损伤的关键因素。ALT、HA、TNF-α,肝组织匀浆MDA、SOD及肝组织NF-κB的变化和肝脏组织学改变可从不同方面反映肝脏缺血再灌注损伤的程度,去除门静脉淤血能降低复流后血清内毒素、ALT、HA、TNF-α和肝组织匀浆MDA含量及肝组织NF-κB活性,增加SOD活性,改善肝脏病理学变化。
     结论
     门静脉淤血中内毒素含量随阻断时间延长明显升高,首批放出的5ml门静脉淤血中内毒素含量极高,可能是引起肝脏损伤的主要原因;去除门静脉淤血可以减轻肝脏的缺血再灌注损伤,其机制可能与门静脉淤血去除减少内毒素吸收,进而降低了血清TNF-α产生及肝组织NF-κB活化有关。
     第二部分
     不同门静脉淤血去除量对内毒素血症及肝脏缺血再灌注损伤的影响
     目的
     家兔的血容量为人体血容量的1/40,每5ml血液相当于人体血液200ml,我们建立了家兔肝脏原位冷灌注模型,观察恢复灌流时不同去除门静脉淤血去除量对血清内毒素及肝脏再灌注损伤的影响,为临床肝移植提供一种安全有效的方法。
     方法
     88只健康成年新西兰大白兔随机分为对照组(C组)和实验组,每组8只动物。实验组动物按门静脉阻断时间(即冷灌注时间)不同分为30min、40min组,再按去除门静脉淤血去除量不同分为5个亚组:A_1组去除门静脉淤血2.5ml;A_2组去除门静脉淤血5ml;A_3组去除门静脉淤血10ml;A_4组去除门静脉淤血15ml;B组不去除门静脉淤血。C组仅行手术解剖及门、腔静脉插管,不做肝门阻断及肝脏灌注。观察不同门静脉淤血去除量对恢复灌流后1h、2h、4h血清内毒素、ALT、HA、TNF-α,及4h肝组织匀浆MDA、SOD、肝组织NF-κB的变化和肝脏组织学改变。
     结果
     去除门静脉淤血能降低复流后血清内毒素、ALT、HA、TNF-α和肝组织匀浆MDA含量及肝组织NF-κB的活性,增加SOD活性,改善肝脏病理学变化。其中,去除门静脉淤血在5ml与10ml时效果最为明显,与不去除相比较差异有统计学意义;去除门静脉淤血2.5ml、15ml时与不去除相比较差异无统计学意义。
     讨论
     门静脉淤血中内毒素含量随阻断时间延长明显升高,去除门静脉淤血不仅可以从总量上减少内毒素进入肝脏和体循环,也可以减轻峰值内毒素对肝、肺及胃肠道等重要脏器所造成的损伤,减少肠道内毒素进一步吸收。去除门静脉淤血2.5ml与不去除相比未能显示出统计学意义,可能与最初的内毒素含量极高的门静脉淤血未完全去除有关。同时,数据显示随门静脉淤血去除量的继续增加,血清内毒素含量反而有升高趋势,分析主要有一下原因:(1)门静脉淤血最初5ml去除后内毒素含量显著下降,继续去除不能起到同样效果;(2)随去除量增加会出现组织灌注不足,加重器官创伤和内毒素血症。
     结论
     门静脉淤血适量去除可以减轻内毒素血症及肝脏缺血再灌注损伤,其机制可能与门静脉淤血去除减少内毒素吸收,进而降低了血清TNF-α产生及肝组织NF-κB活化有关。去除不足或过多去除意义不大。
     第三部分
     门静脉淤血对肝脏缺血再灌注后肺脏和肾脏损伤的影响
     目的
     去除门静脉淤血可以减轻肝脏的缺血再灌注损伤,能否减轻肝脏缺血再灌注所致肺、肾功能的损伤尚无实验依据。我们利用家兔肝脏原位冷灌注模型,观察恢复灌流时去除门静脉淤血对肺、肾功能的影响,为临床肝移植保护肺、肾等重要脏器,减少术后并发症提供依据。
     方法
     56只健康成年新西兰大白兔随机分为对照组(C组)和实验组。实验组动物按门静脉阻断时间(即冷灌注时间)不同分为30min、40min组,再按去除门静脉淤血去除量不同分为3个亚组:A_0组不去除门静脉淤血;A_5组去除门静脉淤血5ml;A_(10)组去除门静脉淤血10ml。每组8只动物,共6组。另外8只动物为C组作对照。检测去除门静脉淤血对恢复灌流4h后血清内毒素、TNF-α、尿素氮(BUN)、肌苷(Cr)及肺湿/干重、肺灌洗液蛋白含量的变化;肺、肾组织匀浆MDA、SOD及组织病理学改变。
     结果
     去除门静脉淤血能降低复流后血清内毒素、TNF-α、BUN、Cr、肺湿/干重、肺灌洗液蛋白含量和肺、肾组织匀浆中MDA含量;增加肺、肾组织匀浆中SOD活性;改善肺、肾组织学变化。
     讨论
     长时间的门静脉阻断将导致门静脉淤血中毒素含量明显升高,再灌注后激活肝脏枯否细胞,产生以TNF-α为主的大量细胞因子以及活性氧、蛋白水解酶,这些因子一方面造成肝细胞的损伤和肝脏微循环障碍,另一方面活性物质通过体循环到达肺、肾血管床,激活毛细血管内皮细胞、中性粒细胞等,导致肺、肾组织器官结构损伤及功能发生紊乱,表现出体循环压力下降和肝外远端器官的损伤或衰竭。血清内毒素、TNF-α、BUN、Cr、肺湿/干重、肺灌洗液蛋白含量和肺、肾组织匀浆中MDA、SOD及组织病理学该变等指标,客观反映了全身炎症反应综合症及肺、肾组织器官的损伤程度。这些指标的改善提示去除门静脉淤血对肝脏缺血再灌注后肺、肾损伤有保护作用。
     结论
     去除门静脉淤血可以减轻肝脏缺血再灌注后肺、肾功能的损伤,其机制可能与门静脉淤血去除减少内毒素吸收,进而降低了血清TNF-α产生有关。
     第四部分
     不同门静脉淤血去除量对临床肝移植术后早期肝功能的影响
     目的
     放血疗法已为多数临床医生接受,理论上可以减少毒性物质进入肝脏从而减轻对肝脏的再灌注损伤,但临床肝移植门静脉淤血去除量多为经验性,亦未见相关报道。将47例原位肝移植患者按术中门静脉淤血去除量的不同分为50ml和200ml两组,观察各组术后血清内毒素和炎性因子的变化以及肝功能恢复情况,从而为指导临床肝移植去除门静脉淤血提供依据。
     方法
     1.临床资料:2006年1月至2007年10月我院收治的成年同种异体原位肝移植患者47例,男43例,女4例;年龄33~67岁,平均(49.9±8.5)岁;均为首次肝移植患者。术中按门静脉淤血去除量不同随机分为两组:A组(n=26)去除门静脉淤血50ml;B组(n=21)去除门静脉淤血200ml。
     2.观察指标:(1)受者术前及手术情况:性别、年龄、原发疾病类型、Child-pugh分级、供肝冷缺血时间、无肝期时间、手术时间、手术方式、术中出血量及输血量。(2)于麻醉后手术前(T_0)、门静脉阻断开放后60min(T_1)、术毕(T_2)、术后24h(T_3)采集静脉血,测定血清内毒素、D-乳酸、TNF-α、白细胞介素-6(IL-6)的含量。(3)术前、术后1、3、7d生化分析仪检测ALT、天冬氨酸转氨酶(AST)、总胆红素(TBIL)、直接胆红素((DBIL)、白蛋白(Alb)、前白蛋白(PAB)及凝血酶原时间(PT)、部分凝血活酶时间(APTT)、纤维蛋白原(FIB)。
     结果
     两组在性别、年龄、原发疾病类型、Child-pugh分级、供肝冷缺血时间、手术时间、无肝期时间、手术方式、出血量、输血量及术前各项检测指标无显著差异的条件下,多数检测指标显示B组术后恢复优于A组。其中B组术后血清内毒素、D-乳酸、TNF-α、IL-6、ALT、AST、PT、APTT明显低于A组;PAB明显高于A组,差异均有统计学意义(P<0.05)。
     讨论
     血浆内毒素TNF-α、IL-6可以反应肝脏及全身炎症反应程度,血浆D-乳酸水平可以反应肠道的通透性,转氨酶、胆红素、蛋白和凝血功能是评价肝移植术后肝功能恢复的灵敏指标。本研究中,门静脉淤血去除200ml组术后血清内毒素、D-乳酸、TNF-α、IL-6、ALT、AST、PT、APTT明显低于门静脉淤血去除50ml组,术后前白蛋白明显增高,提示200ml门静脉淤血去除较50ml能更加有效地减轻移植肝脏损伤,减轻炎症反应,保护肠黏膜屏障功能,并有助于肝功能的恢复,其机制可能与完全去除最初的内毒素含量极高的门静脉淤血有关。
     结论
     肝移植术中门静脉淤血去除200ml效果优于50ml,可以更好地减轻术后内毒素血症,并有助于肝功能的恢复。
Part One The effect and mechanism of portal blood stasis on intestinal endotoxemia and hepatic ischemia reperfusion injury in a rabbit model
     Objective
     A rabbit hepatic ischemia reperfusion injury model was established by in situ hypothermic irrigation for different time to observe the influence of portal blood stasis removal on intestinal endotoxemia and hepatic ischemia reperfusion injury.The purpose was to find an ideal method for portal blood stasis removal and provide the experimental proof for clinical application of liver transplantation.
     Methods
     Eighty New Zealand white rabbits of both genders,weighing 2.0-2.5 kg,purchased from the Laboratory Animal Center of Second Military Medical University,were randomly divided into control group(group C) and experimental groups.The rabbits of experimental groups were divided into three groups equally by different time of the portal vein occlusion for 20,30,40 minutes and then each group was re-divided into 3 subgroups by different amount of portal blood stasis removal:group A_0 no blood removal,group A_5 5ml blood removal,group A_(10) 10ml blood removal.Each group had eight rabbits,nine groups in all. The other eight rabbits(group C) did not receive hepatic portal occlusion and hypothermic irrigation.Their abdomens were opened and only served as control group.Endotoxin content both in serum and in portal blood stasis,alanine aminotransferase(ALT), hyaluronic acid(HA),tumor necrosis factor-α(TNF-α),hepatic pathology,content of malondialdehyde(MDA) and activity of superoxide dismutase(SOD) and activation of nuclear factor-κB(NF-κB) in liver tissue were examined respectively after reperfusion 4h.
     Results
     The levels of serum endotoxin were significantly increased by extension of portal vein occlusion.At the same time of portal vein occlusion the level of serum endotoxin in portal blood stasis significantly decreased with each 2.5ml blood removal,subsequently reaching a minima at the 7.5ml blood removal.In groups of portal vein occlusion for 30 and 40 minutes,removing portal blood stasis ameliorated hepatic ischemia reperfusion injury as shown by ALT,HA,TNF-α,MDA,SOD,NF-κB and the pathology.Compared with the non-removal group,the effect was significant,while the effect of removing portal blood stasis in the group of portal vein occlusion for 20 minutes was not significant.
     Discussion
     Long-time occlusion of the portal vein in the process of liver transplantation results in gastro-intestinal congestion,barrier failure,insufficient blood and oxygen supply,and increasing gut mucosal permeability,which leads to obvious increase of intestinal endotoxin in portal blood,especially portal blood stasis.The levels of serum endotoxin in portal blood stasis were significantly increased by extension of portal vein occlusion.The first 5ml portal blood stasis contains high volume of endotoxin which may be responsible for hepatic reperfusion injury.The alteration of ALT,HA,TNF-α,MDA,SOD,NF-κB and the pathology can reflect hepatic reperfusion injury in all ways.Removing portal blood stasis also ameliorated hepatic ischemia reperfusion injury as shown by those.
     Conclusion
     The levels of serum endotoxin in portal blood stasis were significantly increased by extension of portal vein occlusion.The first 5ml portal blood stasis contains high volume of endotoxin which may be responsible for hepatic reperfusion injury.Removal of portal blood stasis before the resume of splanchnic circulation may ameliorate hepatic ischemia reperfusion injury.The possible mechanism may be that portal blood stasis removal reduces endotoxin absorption,and this decreases production of serum TNF-αas well as hepatic activation of NF-κB.
     Part Two The effect of different dosage of portal blood stasis removal on endotoxemia and hepatic ischemia reperfusion injury
     Objective
     The blood volume of rabbit is about equal to one fourth that of human body and 5ml blood volume is equivalent to 200ml that of human.A rabbit hepatic ischemia reperfusion injury model was established by in situ hypothermic irrigation for different time to observe the influence of portal blood stasis removal on intestinal endotoxemia and hepatic ischemia reperfusion injury.The purpose was to find an safe and effective method for clnical liver transplantation.
     Methods
     Eighty-eight healthy New Zealand white rabbits were randomly divided into a control group(group C) and experimental groups.The rabbits of experimental groups were divided into two groups equally by different time of the portal vein occlusion for 30,40 minutes and then each group was re-divided into five subgroups by different amount of portal blood stasis removal:group A_1 2.5ml blood removal,group A_2 5ml blood removal, group A_3 10ml blood removal,group A_4 15ml blood removal,and group B no blood removal.Each group had eight rabbits.The other eight rabbits did not receive hepatic portal occlusion and hypothermic irrigation,whose abdomens were opened and only served as control group.Serum endotoxin content,ALT,HA and TNF-αwere examined respectively after reperfusion 1h,2h,and 4h.Hepatic tissues were sampled to determine the pathology,content of MDA and activity of SOD and activation of NF-κB in liver tissue were examined respectively after reperfusion 4h.
     Results
     Removing portal blood stasis also ameliorated hepatic ischemia reperfusion injury as shown by ALT,HA,MDA,SOD and the pathology.5ml and 10ml blood removal had the maximal favorable effect,while the effect of 2.5ml or 15ml blood removal was not significant.
     Discussion
     The levels of serum endotoxin in portal blood stasis were significantly increased by extension of portal vein occlusion.Portal blood stasis removal could not only reduce the total amount of endotoxin absorbed into liver and systemic circulation,but also reduce the damage of some important organs such as liver,lung,gastrointestinal tract.That the effect of 2.5ml or 15ml blood removal was not significant was correlated with that the first portal blood stasis contains high volume of endotoxin were not removed completely.The levels of serum endotoxin tended to rise with more portal blood stasis removal.The main reason was sequence portal blood stasis removal could not improve the protective effect because the first portal blood stasis containing high volume of endotoxin had been removed. Secondly the increase of portal blood stasis removal led to insufficient blood supply which worsened organ injury and endotoxemia.
     Conclusion
     Appropriate quantity of portal blood stasis removal can protect the liver against ischemia reperfusion injury.The possible mechanism may be that portal blood stasis removal reduces endotoxin absorption,and then decreases production of serum TNF-αas well as hepatic activation of NF-κB.But too much or too little of portal congestion blood released could not improve the protective effect.
     Part Three The effect of portal blood stasis on lung and renal injury induced by hepatic ischemia reperfusion in a rabbit model
     Objective
     The portal blood stasis removal can protect the liver against ischemia reperfusion injury,but there was no experimental proof whether it might ameliorate the lung and renal injury induced by hepatic ischemia reperfusion.A rabbit hepatic ischemia reperfusion injury model was established by in situ hypothermic irrigation to observe the effect of portal blood stasis on lung and renal injury induced by hepatic ischemia reperfusion.The purpose was to provide the experimental proof for protecting lung and renal and reducing postoperative complications.
     Methods
     Fifty-six healthy New Zealand white rabbits were randomly divided into control group and experimental groups.
     The rabbits of experimental groups were divided into two groups equally by different time of the portal vein occlusion for 30,40 minutes and then each group was re-divided into three subgroups by different amount of portal blood stasis removal:group A_0 no blood removal,group A_5 5ml blood removal,group A_(10) 10ml blood removal.Each group had eight rabbits.The other eight rabbits did not receive hepatic portal occlusion and hypothermic irrigation,whose abdomens were opened and only served as control group. After reperfusion 4h serum endotoxin content,TNF-α,urea nitrogen(BUN),creatinine (Cr),and wet to dry weight ratio,broncho-alveolar lavage fluid protein content in lung tissues were examined respectively.Meantime,lung and kidney tissues were sampled to determine the content of MDA,SOD and the pathology.
     Results
     Removing portal blood stasis ameliorated lung and renal injury as shown by serum endotoxin,TNF-α,BUN,Cr,wet to dry weight ratio,broncho-alveolar lavage fluid protein content,MDA in lung and kidney tissue being significantly reduced,SOD in lung and kidney tissue being significantly increased and the pathology becoming better.
     Discussion
     Long-time occlusion of the portal vein resulted in obvious increase of endotoxin in portal blood stasis.At reperfusion the endotoxin in portal blood would activate Kupffer cells,which might contribute to produce a great deal of cytokine,reactive oxygen species, and proteolytic enzyme.Those things not only produced liver injury and microcirculation disturbance,but also,through systemic circulation,resulted in lung and kidney injury by activating capillary endothelium and neutrophil.It showed the pressure of systemic circulation decreased and the injury of extra-hepatic organs,serum endotoxin,TNF-α, BUN,Cr,wet to dry weight ratio,broncho-alveolar lavage fluid protein content,MDA, SOD and the pathology objectively reflect the severity of systemic inflammatory response syndrome and the degree of lung and kidney injury.Those index ameliorated showed that the removal of portal blood stasis before the resume of splanchnic circulation may ameliorate the lung and renal injury induced by hepatic ischemia reperfusion.
     Conclusion
     Removal of portal blood stasis before the resume of splanchnic circulation may ameliorate the lung and renal injury induced by hepatic ischemia reperfusion.The possible mechanism may be that portal blood stasis removal reduces endotoxin absorption,and then decreases production of serum TNF-α.
     Part Four Effects of different dosage of portal blood stasis removal on liver function during early stage after liver transplantation
     Objective
     The pricking blood therapy has been accepted by clinician because it would reduce theoretically endotoxin entering into liver and protect the liver against ischemia reperfusion injury.How much portal blood stasis should be removed in clinic liver transplantation was empirical and there was no related report about it.Forty-seven patients who received liver transplantation in our hospital were divided into 2 groups according to different dosage of portal blood stasis removal during operation:group A 50ml and group B 200ml portal blood stasis removal respectively.The levels of plasma endotoxin, inflammatory factors and the restoring of liver function after liver transplantation was observed in order to provide the experimental proofs for clinical liver transplantation.
     Methods
     Clinical data:A total of 47 cases undergoing orthotopic liver transplantation were selected from Eastern Hepatobiliary Surgery Hospital,Second Military Medical University from January 2006 to October 2007.In 47 cases,43 males and 4 females,age from 33 to 67(average 49.9±8.5) years,were randomly divided into two groups by different dosage of portal blood stasis removal:group A(n=26) 50ml blood removal and group B(n=21) 200ml blood removal.
     Measurements:(1) The patients of sex,age,primary liver diseases and Child-pugh's classification,donor liver of cold ischemic time and total operation and anhepatic time, operation methods,volume of blood loss and transfusion were recorded before and in operation.(2) Samples from venous blood were obtained at beginning of surgery(T_0), 60min after graft reperfusion(T_1),at the end of operation(T_2),and 24h after surgery.The levels of plasma endotoxin,D-lactate,TNF-α,Interleukin-6(IL-6) were measured respectively.(3) The levels of plasma alanine aminotransferase(ALT),aspartate aminotransferase(AST),total bilirubin(TBIL),direct bilirubin(DBIL),albumin(Alb), prealbumin(PAB),prothrombin time(PT) activated partial thromboplastin time(APTT) and fibrinogen(FIB) were examined in the day before operation and 1,3,7 d following surgery.
     Results
     There was no significant difference in sex,age,primary liver diseases and Child-pugh's classification,cold ischemic time,total operation and anhepatic time, operation methods,volume of blood loss and transfusion,plasma endotoxin,D-lactate, TNF-α,IL-6,liver function and blood coagulation parameters before operation.Most of observations showed the restoration in group B was better than that in group A.The plasma levels of endotoxin,D-lactate,TNF-α,IL-6,ALT,AST,PT,APTT in group B were significantly lower than those in group A(P<0.05).The level of plasma PAB in group B was significantly higher than that in group A(P<0.05).
     Discussion
     The plasma levels of endotoxin,TNF-α,IL-6 are very sensitive markers of the degree of hepatic and body injury.The plasma levels of D-lactate response gut mucosal permeability.The plasma levels of aminotransferase,bilirubin,prealbumin,blood coagulation are very sensitive markers of liver functional restoration after liver transplantation.Our study showed that the levels of serum levels of endotoxin,D-lactate, TNF-α,IL-6,ALT,AST,PT,APTT after operation in group of 200ml portal blood stasis removal were significantly lower than those in group of 50ml blood removal.Meantime, the level of serum PAB was significantly higher.This study showed 200ml portal blood stasis removal before resuming of splanchnic circulation may ameliorate hepatic ischemia reperfusion injury,ruduce inflammatory reaction,protect intestinal mucosal barrier and liver functional restoration would be more effective than that of 50ml.The reason was that the first 200ml portal blood stasis containing high volume of endotoxin which might be responsible for hepatic reperfusion injury had been removed completely.
     Conclusion
     This study showed the effect of 200ml portal congestion blood removal was better than that of 50ml,which contributed to relieving endotoxemia and restoring liver function after liver transplantation.
引文
[1]李洋,刘作金,龚建平.肝脏缺血-再灌注损伤对大鼠肠黏膜屏障功能及肠道菌群易位的影响.中华器官移植杂志,2007,28(3):150-153.
    [2]Palmes D,Skawran S,Stratmann U,et al.Amelioration of microcirculatory damage by an endothelin A receptor antagonist in a rat model of reversible acute liver failure.J Hepatol,2005,42(3):350-357.
    [3]Yuan RH,Chen HL,Chen HL,et al.Attenuation of Kupffer cell function in acute on chronic liver injury enhanced engraftment of transplanted hepatocytes.World J Surg.2007,31(6):1270-1277.
    [4]Lee CW,Chuang JH,Wang PW,et al.Effect of glucocorticoid pretreatment on oxidative liver injury and survival in jaundiced rats with endotoxin cholangitis.World J Surg.2006,30(12):2217-2226.
    [5]Mole DJ,Taylor MA,McFerran NV,et al.The isolated perfused liver response to a 'second hit'of portal endotoxin during severe acute pancreatitis.Pancreatology.2005,5(4-5):475-85.
    [6]De Maio A,Gingalewski C,Theodorakis NG,et al.Interruption of hepatic gap junctional communication in the rat during inflammation induced by bacterial lipopolysaccharide.Shock,2000,14(1):53-59.
    [7]Leicester KL,Olynyk JK,Brunt EM,et al.Differential findings for CD14-positive hepatic monocytes/macrophages in primary biliary cirrhosis,chronic hepatitis C and nonalcoholic steatohepatitis.Liver Int,2006,26(5):559-565.
    [8]Shaked A,Nunes FA,Olthof KM,et al.Assessment of liver runetion:pre-and peritransplant evaluation.Clin Chem,1997,43(8Pt2):1539-1545.
    [9]George J,Stern R.Serum hyaluronan and hyaluronidase:very early markers of toxic liver injury.Clin Chim Acta,2004,348:189-197.
    [10]Rivera CA,Adegboyega P,van Rooijen N,et al.Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis.J Hepatol,2007,47(4):571-579.
    [11]Ito Y,Abril ER,Bethea NW,et al.Mechanisms and pathophysiological implications of sinusoidal endothelial cell gap formation following treatment with galactosamine/endotoxin in mice.Am J Physiol Gastrointest Liver Physiol,2006,291(2):211-218.
    [12]Tukov FF,Luyendyk JP,Ganey PE,et al.The role of tumor necrosis factor alpha in lipopolysaccharide/ranitidine-induced inflammatory liver injury.Toxicol Sci,2007,100(1):267-280.
    [13]Ito Y,Abril ER,Bethea NW,et al.Mechanisms and pathophysiological implications of sinusoidal endothelial cell gap formation following treatment with galactosamine/endotoxin in mice.Am J Physiol Gastrointest Liver Physiol,2006,291(2):211-218.
    [14]Bernardes-Silva CF,Damiao AO,Sipahi AM,et al.Ursodeoxycholic acid ameliorates experimental ileitis counteracting intestinal barrier dysfunction and oxidative stress.Dig Dis Sci.2004,49(10):1569-1574.
    [15]Neuhaus H,van der Marel M,Caspari N,et al.Biochemical and histochemical effects of perorally applied endotoxin on intestinal mucin glycoproteins of the common carp Cyprinus carpio.Dis Aquat Organ.2007,77(1):17-27.
    [16]Ota S,Suzuki S,Sakaguchi T,et al.Significance of morphological alteration by portal vein branch ligation in endotoxin-induced liver injury after partial hepatectomy.Liver Int,2007,27(8):1076-1085.
    [17]George J,Stern R.Serum hyaluronan and hyaluronidase:very early markers of toxic liver injury.Clin Chim Acta,2004,348:189-197.
    [18]周建大,罗成群.NF-κB在SIRS中的枢纽作用.中国烧伤创疡杂志,2001,13(4):267-269.
    [19]Kuboki S,Okaya T,Schuster R,et al.Hepatocyte NF-kappaB activation is hepatoprotective during ischemia-reperfusion injury and is augmented by ischemic hypothermia.Am J Physiol Gastrointest Liver Physiol,2007,292(1):201-207.
    [20]Laukoetter MG,Bruewer M,Nusrat A.Regulation of the intestinal epithelial barrier by the apical junctional complex.Curr Opin Gastroenterol.2006,22(2):85-89.
    [21]Taut FJ,Breitkreutz R,Zapletal CM,et al.Influence of N-acetylcysteine on hepatic amino acid metabolism in patients undergoing orthotopic liver transplantation.Transpl Int.2001,14(5):329-333.
    [1]赵建勇,董家鸿,杨占宇,等.猪门静脉血流阻断后细菌及内毒素移位的研究.肝胆外科杂志,2001,9:64-65.
    [2]Takayashiki T,Yoshidome H,Kimura F,et al.Increased expression of toll-like receptor 4enhances endotoxin-induced hepatic failure in partially hepatectomized mice.J Hepatol,2004,41:621-628.
    [3]吴平,高东宸,刘建,等.实验性猪原位肝移植术中内毒素血症的观测及血液灌流治疗.中华普通外科杂志,2001,16:554-555.
    [4]Bernardes-Silva CF,Damiao AO,Sipahi AM,et al.Ursodeoxycholic acid ameliorates experimental ileitis counteracting intestinal barrier dysfunction and oxidative stress.Dig Dis Sci.2004,49(10):1569-1574.
    [5]陈笑,毛羽,王植平.肝门阻断对大鼠小肠形态学的影响.中华实验外科杂志,2004,21(2):229.
    [6]Inoue K,Takano H,Shimada A,et al.Urinary trypsin inhibitor protects against systemic inflammation induced by lipopolysaccharide.Mol Pharmacol,2005,67(3):673-680.
    [7]Urata K,Brault A,Rocheleau B,et al.Role of Kupffer cells in the survival after rat liver transplantation with long portal vein clamping times.Transpl Int,2000,13(6):420-427.
    [8]Yamaguchi M,Matsuura M,Kobayashi K,et al.Lactoferrin protects against development of hepatitis caused by sensitization of Kupffer cells by lipopolysaccharide.Clin Diagn Lab Immunol,2001,8:1234-1239.
    [9]Matsumoto H,Tamura S,Kamada Y,et al.Adiponectin deficiency exacerbates lipopolysaccharide/D-galactosamine-induced liver injury in mice.World J Gastroenterol.2006,12(21):3352-3358.
    [10]Zhang YS,Tu ZG.Regulation of alpha 1-adrenoceptor on rat hepatocyte apoptosis induced by D-galactosamine and lipopolysaccharide.Acta Pharmacol Sin,2000,21(7):627-632.
    [11]Lee CH,Loureiro-Silva MR,Abraldes JG,et al.Decreased intrahepatic response to alpha-adrenergic agonists in lipopolysaccharide-treated rats is located in the sinusoidal area and depends on Kupffer cell function.J Gastroenterol Hepatol.2007,22(6):893-900.
    [12]Lalor PF,Faint J,Aarbodem Y,et al.The role of cytokines and chemokines in the development of steatohepatitis.Semin Liver Dis,2007,27(2):173-193.
    [13]Puel A,Picard Capucine,Ku CL,et al.Inherited disorders of NF-κB-mediated immunity in man.Curr Opin Immunol,2004,16(1):34-41.
    [14]Tergaonkar V.NFκB pathway:A good signaling paradigm and therapeutic target.Int J Biochem Cell Biol.2006,38(10):1647-1653.
    [15]周建大,罗成群.NF-κB在SIRS中的枢纽作用.中国烧伤创疡杂志,2001,13(4):267-269.
    [16]Kuboki S,Okaya T,Schuster R,et al.Hepatocyte NF-kappaB activation is hepatoprotective during ischemia-reperfusion injury and is augmented by ischemic hypothermia.Am J Physiol Gastrointest Liver Physiol,2007,292(1):201-207.
    [17]Kearns JD,Basak S,Wemer SL,et al.IkappaBepsilon provides negative feedback to control NF-kappaB oscillations,signaling dynamics,and inflammatory gene expression.J Cell Biol,2006,173(5):659-664.
    [18]Totzke G,Essmann F,Pohlmann S,et al.A novel member of the IkappaB family,human IkappaB-zeta,inhibits transactivation of p65 and its DNA binding.J Biol Chem,2006,281(18):12645-12654.
    [19]Gomez G,Gonzalez-Espinosa C,Odom S,et al.Impaired FcepsilonRI-dependent gene expression and defective eicosanoid and cytokine production as a consequence of Fyn deficiency in mast cells.J Immunol,2005,175(11):7602-7610.
    [20]Albanesi C,Fairchild HR,Madonna S,et al.IL-4 and IL-13 negatively regulate TNF-alpha-and IFN-gamma-induced beta-defensin expression through STAT-6,suppressor of cytokine signaling (SOCS)-1,and SOCS-3.J Immunol,2007,179(2):984-992.
    [21]Puel A,Picard Capucine,Ku CL,et al.Inherited disorders of NF-κB-mediated immunity in man.Curr Opin Immunol,2004,16(1):34-41.
    [22]Wyllie S,Seu P,Gao FQ,et al.Disruption of the Nrampl gene in Kupffer cells attenuates early-phase, warm ischemia-reperfusion injury in the mouse liver. J Leukoc Biol, 2002, 72(5): 885-897.
    [23] Gray KD, Simovic MO, Blackwell TS, et al. Activation of nuclear factor kappa B and severe hepatic necrosis may mediate systemic inflammation in choline-deficient /ethionine-supplemented diet-induced pancreatitis.Pancreas, 2006, 33(3): 260-267.
    [24] Sun BW, Chen ZY, Chen X, et al. Attenuation of leukocytes sequestration by carbon monoxide-releasing molecules: liberated carbon monoxide in the liver of thermally injured mice. J Burn Care Res, 2007, 28(1): 173-181.
    [25] George J, Stern R. Serum hyaluronan and hyaluronidase: very early markers of toxic liver injury. ClinChimActa, 2004, 348: 189-197.
    [26] Chow CC, Clermont G. Kumar R, et al. The acute inflammatory response in diverse shock states. Shock, 2005, 24(1): 74-84.
    [27] Heyninck K, Wullaert A, Beyaert R. Nuclear factor-kappa B plays a central role in tumour necrosis factor-mediated liver disease. Biochem Pharmacol, 2003, 66(8): 1409-1415.
    [28] ShawcrossDL, DaviesNA, Williams R , et al. Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J Hepatol, 2004, 40(2): 247-254.
    [1]李洋,刘作金,龚建平.肝脏缺血-再灌注损伤对大鼠肠黏膜屏障功能及肠道菌群易位的影响.中国器官移植杂志,2007,28(3):150-153.
    [2]Jiang H,Meng F,Li W,et al.Splenectomy ameliorates acute multiple organ damage induced by liver warm ischemia reperfusion in rats.Surgery,2007,141(1):32-40.
    [3]伊力亚尔.夏合丁,罗洞波,刘春生,等.非创伤性双下肢缺血预处理对兔肺缺血/再灌注损伤的保护作用.中华实验外科杂志,2005,22(12):1507-1509.
    [4]Taut FJ,Breitkreutz R,Zapletal CM,et al.Influence of N-acetylcysteine on hepatic amino acid metabolism in patients undergoing orthotopic liver transplantation.Transpl Int.2001,14(5):329-333.
    [5]Choda Y,Morimoto Y,Miyaso H,et al.Failure of the gut barrier system enhances liver injury in rats:protection of hepatocytes by gut-derived hepatocyte growth factor.Eur J Gastroenterol Hepatol,2004,16(10):1017-1025.
    [6]Inoue K,Takano H,Shimada A,et al.Urinary trypsin inhibitor protects against systemic inflammation induced by lipopolysaccharide.Mol Pharmacol,2005,67(3):673-680.
    [7]Urata K,Brault A,Rocheleau B,et al.Role of Kupffer cells in the survival after rat liver transplantation with long portal vein clamping times.Transpl Int,2000,13(6):420-427.
    [8]Yohe HC,O'Hara KA,Hunt JA,et al.Involvement of Toll-like receptor 4 in acetaminophen hepatotoxicity.Am J Physiol Gastrointest Liver Physiol,2006,290(6):1269-1279.
    [9]Velayudham A,Hritz I,Dolganiuc A,et al.Critical role of toll-like receptors and the common TLR adaptor,MyD88,in induction of granulomas and liver injury.J Hepatol,2006,45(6):813-824.
    [10]Rivera CA,Adegboyega P,van Rooijen N,et al.Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis.J Hepatol,2007,47(4):571-579.
    [11]Lin HI,Chou SJ,Wang D,et al.Reperfusion liver injury induces down-regulation of eNOS and up-regulation of iNOS in lung tissues up-regulation of iNOS in lung tissues.Transplant Proc,2006,38(7):2203-2206.
    [12]Chow CC,Clermont G,Kumar R,et al.The acute inflammatory response in diverse shock states.Shock,2005,24(1):74-84.
    [13]Standiford TJ,Keshamouni VG,Reddy RC.Peroxisome proliferator activated receptor-gamma as a regulator of lung inflammation and repair.Proe Am Thorac Soe,2005,2(3):226-231.
    [14] Kaplan JM, Cook JA, Hake PW, et al. 15-Deoxy-delta(12,14)-prostaglandin J(2) (15D-PGJ(2)), a peroxisome proliferator activated receptor gamma ligand, reduces tissue leukosequestration and mortality in endotoxic shock. Shock, 2005,24(1): 59-65.
    
    [15] Ota S, Nakamura K, Yazawa T, et al. High tidal volume ventilation induces lung injury after hepatic ischemia-reperfiision. Am J Physiol Lung Cell Mol Physiol, 2007, 292(3): 625-631.
    [16] Van Ye TM, Roza AM, Pieper GM, et al. Inhibition of intestinal lipid peroxidation does not minimize morphologic damage. J Surg Res, 1993, 55(5): 553-558.
    [17] Gupta A, Rhodes GJ, Berg DT, et al. Activated protein C ameliorates LPS-induced acute kidney injury and downregulates renal INOS and angiotensin 2. Am J Physiol Renal Physiol, 2007, 293(1): 245-254.
    
    [18] Gaspari R, Avolio AW, Zileri Dal Verme L, et al. Molecular adsorbent recirculating system in liver transplantation: Safety and efficacy. Transplant Proc, 2006, 38(10): 3544-3551.
    [1]Choda Y,Morimoto Y,Miyaso H,et al.Failure of the gut barrier system enhances liver injury in rats:protection of hepatocytes by gut-derived hepatocyte growth factor.Eur J Gastroenterol Hepatol,2004,16(10):1017-1025.
    [2]华赞鹏,梁力建,黄洁夫.门静脉淤血对硬化肝脏缺血再灌注的损伤作用.中国现代医学杂志,2001,11(2):20-22.
    [3]Taut FJ,Breitkreutz R,Zapletal CM,et al.Influence of N-acetylcysteine on hepatic amino acid metabolism in patients undergoing orthotopic liver transplantation.Transpl Int.2001,14(5):329-333.
    [4]赵建勇,董家鸿,杨占宇,等.猪门静脉血流阻断后细菌及内毒素移位的研究.肝胆外科杂志,2001,9(1):64-65.
    [5]肖玮,王天龙,姚兰,等.肝移植术中门静脉阻断前后血液成分变化的研究.中华普通外科杂志,2007,22(9):650-653.
    [6]Lee CH,Loureiro-Silva MR,Abraldes JG,et al.Decreased intrahepatic response to alpha-adrenergic agonists in lipopolysaccharide-treated rats is located in the sinusoidal area and depends on Kupffer cell function.J Gastroenterol Hepatol.2007,22(6):893-900.
    [7]Lalor PF,Faint J,Aarbodem Y,et al.The role of cytokines and chemokines in the development of steatohepatitis.Semin Liver Dis,2007,27(2):173-193.
    [8]李洋,刘作金,龚建平.肝脏缺血-再灌注损伤对大鼠肠黏膜屏障功能及肠道菌群易位的影响.中华器官移植杂志,2007,28(3):150-153.
    [9]Shawcross DL,Davies NA,Williams R,et al.Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis.J Hepatol,2004,40(2):247-254.
    [10]Gupta A,Rhodes GJ,Berg DT,et al.Activated protein C ameliorates LPS-induced acute kidney injury and downregulates renal INOS and angiotensin 2.Am J Physiol Renal Physiol,2007,293(1):245-254.
    [11]Zager RA,Johnson AC,Lund S,et al.Acute renal failure:determinants and characteristics of the injury-induced hyperinflammatory response.Am J Physiol Renal Physiol,2006,291(3):546-556.
    [12]Lighthouse J,Naito Y,Helmy A,et al.Endotoxinemia and benzodiazepine-like substances in compensated cirrhotic patients:a randomized study comparing the effect of rifaximine alone and in association with a symbiotic preparation.Hepatol Res,2004,28(3):155-160.
    [13]Shaked A,Nunes FA,Olthof KM,et al.Assessment of liver runetion:pre-and peritransplant evaluation.Clin Chem,1997,43(2):1539-1545.
    [14]高丽娟,林秋菊,杨生.血清前白蛋白检测对肝病诊断的意义.中国热带医学,2003,3(3):764-765.
    [15]唐映梅,何晓顺,陈规划,等.肝移植术后早期肝功能的动态变化及其对预后的价值.中华内科杂志,2005,44(4):268-271.
    [16]Filos KS,Kirkilesis I,Spiliopoulou I,et al.Bacterial translocation,endotoxaemia and apoptosis following Pringle manoeuvre in rats.Injury,2004,35(1):35-43.
    [17]Chow CC,Clermont G,Kumar R,et al.The acute inflammatory response in diverse shock states.Shock,2005,24(1):74-84.
    [18]De Maio A,Gingalewski C,Theodorakis NG,et al.Interruption of hepatic gap junctional communication in the rat during inflammation induced by bacterial lipopolysaccharide.Shock,2000,14(1):53-59.
    [19]赵允召,李维勤,王新波,等.不同的营养支持及手术应激对肠道粘膜功能的影响.肠外与肠内营养,2003,10(3):131-136.
    [20]赵东,王天龙,潘芳,等.不同肝功能分级患者非转流下原位肝移植术中血流动力学及氧代谢的变化.北京医科大学学报,2006,38(4):397-401.
    [1]Unno N,Uchiyama T,Yamamoto N,et al.Portal triad occlusion induces endotoxin tolerance:role of portal congestion.J Surg Res,2006,135(2):213-217.
    [2]Palmes D,Skawran S,Stratmann U,et al.Amelioration of microcirculatory damage by an endothelin A receptor antagonist in a rat model of reversible acute liver failure.J Hepatol,2005,42(3):350-357.
    [3]Filos KS,Kirkilesis M,Spiliopoulou I,et al.Bacterial translocation,endotoxinemia and apoptosis following Pringle manoeuvre in rats.Injury,2004,35(1):35-43.
    [4]李洋,刘作金,龚建平.肝脏缺血-再灌注损伤对大鼠肠黏膜屏障功能及肠道菌群易位的影响.中国器官移植杂志,2007,28(3):150-153.
    [5]Bernardes-Silva CF,Damiao AO,Sipahi AM,et al.Ursodeoxycholic acid ameliorates experimental ileitis counteracting intestinal barrier dysfunction and oxidative stress.Dig Dis Sci.2004,49(10):1569-1574.
    [6]陈笑,毛羽,王植平.肝门阻断对大鼠小肠形态学的影响.中华实验外科杂志,2004,21(2):229.
    [7]Lawrence DW,Comerford KM,Colgan SP.Role of VASP in reestablishment of epithelial tight junction assembly after Ca~(2+) switch.Am J Physiol Cell Physiol.2002 Jun,282(6):1235-1245.
    [8]Yuksek YN,Kologlu M,Daglar G,et al.Intestinal ischemia-reperfusion injury augments intestinal mucosal injury and bacterial translocation in jaundiced rats.Hepatogastroenterology.2004,51(55):171-175.
    [9]Hokari R,Tsuzuki Y,Miura S.The role of TNF-alpha in ischemic disease of mesenteric venous systems.J Gastroenterol.2004,39(11):1120-1122.
    [10]Chen X,MaoY,Yu ZY,et al.Effects of portal triad clamping on histology and microcirculation in rat small intestine under normal temperature.Abdominal Surgery,2003,16(1):55-58.
    [11]Laukoetter MG,Bruewer M,Nusrat A.Regulation of the intestinal epithelial barrier by the apical junctional complex.Curr Opin Gastroenterol.2006,22(2):85-89.
    [12]Karaman A,Fadillioglu E,Turkmen E,et al.Protective effects of leflunomide against ischemia-reperfusion injury of the rat liver.Pediatr Surg Int.2006,22(5):428-434.
    [13]Mole DJ,Taylor MA,McFerran NV,et al.The isolated perfused liver response to a 'second hit'of portal endotoxin during severe acute pancreatitis.Pancreatology.2005,5(4-5):475-85.
    [14]Gonzalez EA,Kozar RA,Suliburk JW,et al.Conventional dose hypertonic saline provides optimal gut protection and limits remote organ injury after gut ischemia reperfusion.J Trauma.2006,61(1):66-73.
    [15]Neuhaus H,van der Marel M,Caspari N,et al.Biochemical and histochemical effects of perorally applied endotoxin on intestinal mucin glycoproteins of the common carp Cyprinus carpio.Dis Aquat Organ.2007,77(1):17-27.
    [16]Yuan RH,Chen HL,Chen HL,et al.Attenuation of Kupffer cell function in acute on chronic liver injury enhanced engraftment of transplanted hepatocytes.World J Surg.2007,31(6): 1270-1277.
    [17]Lee CW,Chuang JH,Wang PW,et al.Effect ofglucocorticoid pretreatmenton oxidative liver injury and survival in jaundiced rats with endotoxin cholangitis.World J Surg.2006,30(12):2217-2226.
    [18]张效杰,曹晖,凌伟,等.缺血预处理对肝脏缺血再灌注损伤中内毒素血症的影响.中华普通外科杂志,2000,15(1):50-53.
    [19]Matsumoto H,Tamura S,Kamada Y,et al.Adiponectin deficiency exacerbates lipopolysaccharide/D-galactosamine-induced liver injury in mice.World J Gastroenterol.2006,12(21):3352-3358.
    [20]Zhang YS,Tu ZG.Regulation of alpha 1-adrenoceptor on rat hepatocyte apoptosis induced by D-galactosamine and lipopolysaccharide.Acta Pharmacol Sin,2000,21(7):627-632.
    [21]De Maio A,Gingalewski C,Theodorakis NG,et al.Interruption of hepatic gap junctional communication in the rat during inflammation induced by bacterial lipopolysaccharide.Shock,2000,14(1):53-59.
    [22]Latta M,Kunstle G,Lucas R,et al.ATP-depleting carbohydrates prevent tumor necrosis factor receptor 1-dependent apoptotic and necrotic liver injury in mice.J Pharmacol Exp Ther.2007,321(3):875-883.
    [23]Secchi A,Ortanderl JM,Schmidt W,et al.Effect of endotoxemia on hepatic portal and sinusoidal blood flow in rats.J Surg Res.2000,89(1):26-29.
    [24]Jung KJ,Ishigami A,Maruyama N,et al.Modulation of gene expression of SMP-30 by LPS and calorie restriction during aging process.Exp Gerontol,2004,39(8):1169-1177.
    [25]Schafer T,Scheuer C,Roemer K,et al.Inhibition of p53 protects liver tissue against endotoxin-induced apoptotic and necrotic cell death.FASEB J,2003,17(6):660-667.
    [26]Liu D,Li C,Chen Y,et al.Nuclear import of proinflammatory transcription factors is required for massive liver apoptosis induced by bacterial lipopolysaccharide.J Biol Chem,2004,279(46):48434-48442.
    [27]Ota S,Suzuki S,Sakaguchi T,et al.Significance of morphological alteration by portal vein branch ligation in endotoxin-induced liver injury after partial hepatectomy.Liver Int,2007,27(8):1076-1085.
    [28]Lee CH,Loureiro-Silva MR,Abraldes JG,et al.Decreased intrahepatic response to alpha-adrenergic agonists in lipopolysaccharide-treated rats is located in the sinusoidal area and depends on Kupffer cell function.J Gastroenterol Hepatol.2007,22(6):893-900.
    [29]Leicester KL,Olynyk JK,Brunt EM,et al.Differential findings for CD14-positive hepatic monocytes/macrophages in primary biliary cirrhosis,chronic hepatitis C and nonalcoholic steatohepatitis.Liver Int,2006,26(5):559-565.
    [30]Miller AM,Masrorpour M,Klaus C,et al.LPS exacerbates endothelin-1 induced activation of cytosolic phospholipase A_2 and thromboxane A_2 production from Kupffer cells of the prefibrotic rat liver.J Hepatol,2007,46(2):276-285.
    [31]Abdallah BM,Boissy P,Tan Q,et al.D1k1/FA1 regulates the function of human bone marrow mesenchymal stem cells by modulating gene expression of pro-inflammatory cytokines and immune response-related factors.J Biol Chem,2007,282(10):7339-7351.
    [32]任大宾,韩德五,赵元昌.急性肝衰竭时肠源性内毒素血症对肝脏能量代谢的影响.中国病理生理杂志,2001,17(9):890-892.
    [33]Tukov FF,Luyendyk JP,Ganey PE,et al.The role of tumor necrosis factor alpha in lipopolysaccharide/ranitidine-induced inflammatory liver injury.Toxicol Sci,2007,100(1):267-280.
    [34]Lee HJ,Oh YK,Rhee M,et al.The role of STAT1/IRF-1 on synergistic ROS production and loss of mitochondrial transmembrane potential during hepatic cell death induced by LPS/d-GalN.J Mol Biol,2007,369(4):967-984.
    [35]Cuzzocrea S,Mazzon E,Di Paola R,et al.A role for nitric oxide-mediated peroxynitrite formation in a model of endotoxin-induced shock.J Pharmacol Exp Ther,2006,319(1):73-81.
    [36]Thirunavukkarasu C,Uemura T,Wang LF,et al.Normal rat hepatic stellate cells respond to endotoxin in LBP-independent manner to produce inhibitor(s) of DNA synthesis in hepatocytes.J Cell Physiol,2005,204(2):654-665.
    [37]Horie Y,Yamagishi Y,Kato S,et al.Role of ICAM-1 in chronic ethanol consumption-enhanced liver injury after gut ischemia-reperfusion in rats.Am J Physiol Gastrointest Liver Physiol,2002,283(3):537-543.
    [38]Kostopanagiotou G,Routsi C,Smyrniotis V,et al.Alterations in bronchoalveolar lavage fluid during ischemia-induced acute hepatic failure in the pig.Hepatology,2003,37(5):1130-1138.
    [39]Kwon AH,Qiu Z,Tsuji K,et al.Fibronectin prevents endotoxin shock after partial hepatectomy in rats via inhibition of nuclear factor-kappaB and apoptosis.Exp Biol Med,2007,232(7):895-903.
    [40]Kwon AH,Qiu Z.Neutrophil elastase inhibitor prevents endotoxin-induced liver injury following experimental partial hepatectomy.Br J Surg,2007,94(5):609-619.
    [41]周建大,罗成群.NF-κB在SIRS中的枢纽作用.中国烧伤创疡杂志,2001,13(4):267-269.
    [42]Kuboki S,Okaya T,Schuster R,et al.Hepatocyte NF-kappaB activation is hepatoprotective during ischemia-reperfusion injury and is augmented by ischemic hypothermia. Am J Physiol Gastrointest Liver Physiol, 2007, 292(1): 201-207.
    [43] Li YQ, Zhang ZX, Xu YJ, et al. N-Acetyl-L-cysteine and pyrrolidine dithiocar bamate inhibited nuclear factor-kappaB activation in alveolar macrophages by different mechanisms. Acta Pharmacol Sin, 2006,27(3): 339-346.
    [44] Kearns JD, Basak S, Werner SL, et al. IkappaBepsilon provides negative feedback to control NF-kappaB oscillations, signaling dynamics, and inflammatory gene expression. J Cell Biol, 2006,173(5): 659-664.
    [45] Totzke G, Essmann F, Pohlmann S, et al. A novel member of the IkappaB family, human IkappaB-zeta, inhibits transactivation of p65 and its DNA binding. J Biol Chem, 2006, 281(18): 12645-12654.
    [46] Gomez G, Gonzalez-Espinosa C, Odom S, et al. Impaired FcepsilonRI-dependent gene expression and defective eicosanoid and cytokine production as a consequence of Fyn deficiency in mast cells. J Immunol, 2005, 175(11): 7602-7610.
    [47] Albanesi C, Fairchild HR, Madonna S, et al. IL-4 and IL-13 negatively regulate TNF-alpha- and IFN-gamma-induced beta-defensin expression through STAT-6, suppressor of cytokine signaling (SOCS)-1, and SOCS-3. J Immunol, 2007,179(2): 984-992.
    [48] Puel A,Picard Capucine,Ku CL,et al. Inherited disorders of NF-KB-mediated immunity in man. Curr Opin Immunol, 2004,16(1): 34-41.
    [49] Wyllie S, Seu P, Gao FQ, et al. Disruption of the Nramp1 gene in Kupffer cells attenuates early-phase, warm ischemia-reperfusion injury in the mouse liver. J Leukoc Biol, 2002, 72(5): 885-897.
    [50] Gray KD, Simovic MO, Blackwell TS, et al. Activation of nuclear factor kappa B and severe hepatic necrosis may mediate systemic inflammation in choline-deficient /ethionine-supplemented diet-induced pancreatitis.Pancreas, 2006,33(3): 260-267.
    [51] Sun BW, Chen ZY, Chen X, et al. Attenuation of leukocytes sequestration by carbon monoxide-releasing molecules: liberated carbon monoxide in the liver of thermally injured mice. J Burn Care Res, 2007,28(1): 173-181.
    [52] Murphy TJ, Paterson HM, Kriynovich S, et al. Linking the "two-hit" response following injury to enhanced TLR4 reactivity. J Leukoc Biol, 2005, 77(1): 16-23.
    [53] Lalor PF, Faint J, Aarbodem Y, et al. The role of cytokines and chemokines in the development of steatohepatitis. Semin Liver Dis, 2007,27(2):173-193.
    [54] Inoue K, Takano H, Shimada A, et al. Urinary trypsin inhibitor protects against systemic inflammation induced by lipopolysaccharide. Mol Pharmacol, 2005, 67(3): 673-680.
    [55] Urata K, Brault A, Rocheleau B, et al. Role of Kupffer cells in the survival after rat liver transplantation with long portal vein clamping times. Transpl Int, 2000,13(6): 420-427.
    [56] Yohe HC, O'Hara KA, Hunt JA, et al. Involvement of Toll-like receptor 4 in acetaminophen hepatotoxicity. Am J Physiol Gastrointest Liver Physiol, 2006,290(6): 1269-1279.
    [57] Velayudham A, Hritz I, Dolganiuc A, et al. Critical role of toll-like receptors and the common TLR adaptor, MyD88, in induction of granulomas and liver injury. J Hepatol, 2006, 45(6): 813-824.
    [58] Rivera CA, Adegboyega P, van Rooijen N, et al. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol, 2007, 47(4): 571-579.
    [59] Ito Y, Abril ER, Bethea NW, et al. Mechanisms and pathophysiological implications of sinusoidal endothelial cell gap formation following treatment with galactosamine /endotoxin in mice. Am J Physiol Gastrointest Liver Physiol, 2006,291(2): 211-218.
    [60] Ito Y, Machen NW, Urbaschek R, et al. Biliary obstruction exacerbates the hepatic microvascular inflammatory response to endotoxin. Shock, 2000, 14(6): 599-604.
    [61] Tukov FF, Luyendyk JP, Ganey PE, et al. The role of tumor necrosis factor alpha in lipopolysaccharide/ranitidine-induced inflammatory liver injury. Toxicol Sci, 2007, 100(1): 267-280.
    [62] Kitoh Y, Ohmpri M, Araki N, et al. Dosing-time-dependent differences in lipopolysaccharide-induced liver injury in rats. Chronobiol Int, 2005, 22(6): 987-996.
    [63] Cuzzocrea S, Mazzon E, Di Paola R, et al. A role for nitric oxide-mediated peroxynitrite formation in a model of endotoxin-induced shock. J Pharmacol Exp Ther, 2006, 319(1): 73-81.
    [64] Yee SB, Harkema JR, Ganey PE, et al. The coagulation system contributes to synergistic liver injury from exposure to monocrotaline and bacterial lipopolysaccharide. Toxicol Sci, 2003, 74(2): 457-469.
    [65] Dhainaut JF, Marin N, Mignon A, et al. Hepatic response to sepsis: interaction between coagulation and inflammatory processe. Crit Care Med, 2001, 29(7): 42-47.
    [66] Fukui H. Relation of endotoxin, endotoxin binding proteins and macrophages to severe alcoholic liver injury and multiple organ failure. Alcohol Clin Exp Res, 2005, 29(11): 172-179.
    [67] Kukan M, Szatmary Z, Lutterova M, et al. Effects of sizofiran on endotoxin- enhanced cold ischemia-reperfusion injury of the rat liver. Physiol Res, 2004, 53(4): 431-437.
    [68] Yee SB, Harkema JR, Ganey PE, et al. The coagulation system contributes to synergistic liver injury from exposure to monocrotaline and bacterial lipopolysaccharide.Toxicol Sci,2003,74(2):457-469.
    [69]Gupta A,Rhodes GJ,Berg DT,et al.Activated protein C ameliorates LPS-induced acute kidney injury and downregulates renal INOS and angiotensin 2.Am J Physiol Renal Physiol,2007,293(1):245-254.
    [70]Zager RA,Johnson AC,Lund S,et al.Acute renal failure:determinants and characteristics of the injury-induced hyperinflammatory response.Am J Physiol Renal Physiol,2006,291(3):546-556.
    [71]Lighthouse J,Naito Y,Helmy A,et al.Endotoxinemia and benzodiazepine-like substances in compensated cirrhotic patients:a randomized study comparing the effect of rifaximine alone and in association with a symbiotic preparation.Hepatol Res,2004,28(3):155-160.
    [72]Medeiros AC,Chacon DA,Sales VS,et al.Glucan and glutamine reduce bacterial translocation in rats subjected to intestinal ischemia-reperfusion.J Invest Surg,2006,19(1):39-46.
    [73]华静,李继强,曾民德,等.双歧三联活菌对肝硬化患者肠道菌群的调节作用及其对内毒素血症的影响.中华消化杂志,2000,20(4):136-138.
    [74]Ruberto F,Pugliese F,D'Alio A,et al.Clinical effects of use polymyxin B fixed on fibers in liver transplant patients with severe sepsis or septic shock.Transplant Proc,2007,39(6):1953-1955.
    [75]Hatao F,Hiki N,Mimura Y,et al.The induction of super-resistance using synthetic lipopolysaccharide receptor agonist rescues fatal endotoxemia in rats without excessive immunosuppression.Shock,2005,23(4):365-370.
    [76]Opal SM,Palardy JE,Parejo N,et al.Effect of anti-CD14 monoclonal antibody on clearance of Escherichia coli bacteremia and endotoxemia.Crit Care Med,2003,31(3):929-932.
    [77]胡咏武,王胜春,李哲.丹参酮ⅡA对LPS等诱导的肝细胞损伤及枯否细胞释放细胞因子的作用.中国药理学通报,2005,20(12):56-58.
    [78]Yee SB,Ganey PE,Roth RA.The role of Kupffer cells and TNF-alpha in monocrotaline and bacterial lipopolysaccharide-induced liver injury.Toxicol Sci,2003,71(1):124-132.
    [79]Ishii N,Tsuzuki Y,Matsuzaki K,et al.Endotoxin stimulates monocyte-endothelial cell interactions in mouse intestinal Peyer's patches and villus mucosa.Clin Exp Immunol,2004,135(2):226-232.
    [80]喻文立.谷氨酰胺的肠屏障保护功能研究进展.中国医药,2007,2(5):316-318.
    [81]Dominguez FE,Siemers F,Flohe S,et al.Effects of endotoxin tolerance on liver function after hepatic ischemia/reperfusion injury in the rat.Crit Care Med,2002,30(1):165-170.
    [82]Erikstrup C,Ullum H,Pedersen BK.Short-term simvastatin treatment has no effect on plasma cytokine response in a human in vivo model of low-grade inflammation.Clin Exp Immunol, 2006, 144(1): 94-100.
    [83] Sharma R, Tepas JJ 3rd, Hudak ML, et al. Neonatal gut barrier and multiple organ failure: role of endotoxin and proinflammatory cytokines in sepsis and necrotizing enterocolitis. J Pediatr Surg, 2007,42(3): 454-461.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700