用户名: 密码: 验证码:
甲壳素衍生物对绝经后骨质疏松症预防作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨质疏松是由于人体代谢异常所致的骨矿含量(bone mineral content)减少、骨骼微细结构破坏、骨折危险率明显增加的一种临床现象,当骨质疏松发展到一定程度,在临床上表现出相应的症状,如腰背疼痛、全身骨关节痛。脆性骨折是骨质疏松症的最终结果,也是骨质疏松症最严重的临床表现。骨质疏松症对人类健康的危害越来越引起社会的广泛关注。
     甲壳素是自然界除了蛋白质外数量最大的含氮天然有机高分子,每年生物合成量约在100亿吨,产量仅次于纤维素,是地球上第二大再生资源。自从1881年法国植物学家布拉可诺从蘑菇中分离出甲壳素以来,随着对其不断的研究和认识,对这种资源丰富、天然无毒、可生物降解具有特殊的生物活性多糖在性质、功能的研究与开发应用方面得到广泛的重视。随着科技的飞速发展,其应用范围已涉及到工业、农业、畜牧水产、化学化工、生物工程、医药卫生、食品工业、生物医用材料等各个领域。其低分子量的衍生物由于具有更好的水溶性和某些特殊的生理活性,近几年已成为糖类研究的一个热点。
     本实验制备出低分子量的甲壳素的衍生物-氨基葡萄糖(Glucosamine GLC)、壳寡糖(Chitooligosaccharide COS)、羧甲基壳寡糖(CM-chitooligosaccharide CM-COS)、N-乙酰氨基葡萄糖(N-acetyl-D-glucosamine NAG),对其物理性质进行测定,并按细胞培养要求进行了纯化。
     首先,以体外培养的鼠成骨细胞株MC3T3-E1为研究对象,在细胞水平上探讨了四种甲壳素衍生物对其体外生长增殖的作用。分别将四种甲壳素衍生物以10mg/L、100mg/L、500mg/L、1000mg/L、2000mg/L的浓度加入培养基中,通过MTT测定法观察其对体外培养的成骨细胞的作用。结果表明:四种糖均能促进体外培养的成骨细胞增殖,其中浓度之间存在差异:氨基葡萄糖、N-乙酰氨基葡萄糖、壳寡糖、羧甲基壳寡糖分别在100、100、500、500μg/ml浓度时促进细胞增殖效果最为显著其增殖率分别为265.39%、196.95%、162.73%、162.65%,其中以氨基葡萄糖和壳寡糖效果最好。
     通过切除三月龄的雌性大鼠两侧的卵巢来复制绝经后骨质疏松动物模型,通过灌胃法阴性对照组每日按1ml/200gBW灌服生理盐水,GLC、COS均设高、中、低剂量组按1ml/200gBW的灌胃体积灌胃,根据每周称量的体重调整灌胃量,连续灌服90天。GLC和COS高、中、低剂量分别为0.125g/kg;0.25g/kg;0.75g/kg。分别于实验第6周和13周心脏取血进行生化指标的测定;13周末心脏取血处死后,分离左右股骨、胫骨、肝脏、脾脏、肾脏,进行脏器系数、骨矿含量、骨密度、骨组织形态计量学、生物力学等的测定。结果显示:GLC、COS中剂量组能抑制因去势造成的“代偿性肥胖”,明显降低血清中碱性磷酸酶(ALP)、抗酒石酸酸性磷酸酶(TRAP)、甘油三酯(TG)、胆固醇(CHO)、低密度脂蛋白(LDL)、肌酐(Cr)的水平;GLC中剂量、COS中、低剂量组能显著提高股骨和胫骨的骨Ca、Mg含量,COS中、低剂量还能提高胫骨中Fe含量,GLC中剂量、COS中、低剂量还能提高股骨结构力学和材料力学性能,提高股骨的骨强度;通过骨组织形态计量学研究表明,COS中、低剂量能显著提高模型大鼠骨小梁面积(Tb. Ar)百分数、骨小梁宽度(Tb.Wi)和骨小梁数目(Tb.N),减小骨小梁分离度(Tb.Sp)。
     结果:甲壳素衍生物-GLC、COS、NAG、CM-COS能有效的促进成骨细胞株MC3T3-E1的体外增殖;通过对绝经后骨质疏松动物模型作用的筛选GLC和COS中剂量对生化指标具有较好的改善作用,并提高骨组织的生物力学性能,保护骨组织的微观结构预防骨组织的微损伤。对于预防绝经后骨质疏松症的带来的危害具有有益的提示作用。
Osteoporosis is a condition characterized by low bone mass;decreasing of the bone mineral content; microarchitectural deterioration of bone tissue, leading to bone fragility; and a consequent susceptibility to fracture.Some symptom such as pain in the back and all the arthrosis will come forth when developed to some extent.Brittle fracture is the ultimate result of osteoporosis, also the severest clinical symptom. So,the osteoporotic fracture and syndrome is the severest influence to the human and the society.
     Chitin, the second most abundant biopolymer on earth after cellulose, is recognized as a natural, biocompatible, biodegradable, non-toxic, adsorbable and multifunctional resource. Chitin and its derivatives have already been widely applied in many fields such as agriculture, light industry, medicine, biomedicial materials, environmental protection. Recently, much attention has been paid to chitin derivatives with low molecular weight because of their more soluble and special bioactive properties.
     In the present paper, the low molecular weight deriviatives of chitin such as the glucosamine、chitooligosaccharide、CM-chitooligosaccharide、N-acetyl-D- glucosamine were prepared. According to the regulation of the cell culture, all the samples were purified and their physical properties were tested.
     Fist, in cell level the effects of the four samples on the proliferation of MC3T3-E1 in vitro. Four samples was dissolved in DMEM with 10% FBS and then diluted with medium in the end the ultimate constration was 10mg/L、100mg/L、500mg/L、1000mg/L、2000mg/L respectively.And then the studies of their effects on osteoblast were researched using MTT assay.The results showed that the four samples can promoted the proliferation of osteoblast, while various concentration has different effects: the proliferation was remarkable when the concentration of GLC, NAG, COS, CM-COS was 100μg/ml, 100μg/ml, 500μg/ml, 500μg/ml respectively. In conclusion, GLC, NAG, COS, CM-COS all have remarkable effect on osteoblast proliferation in vitro, but the effect of GLC and COS are the most among these samples.
     Three-months-old female Sprague-Dawley rats with the body weight 230±5g (obtained from Qingdao Medical Institute) housed in cages in a temperature and humidity-controlled room (22±2℃and 60±5% relative humidity) with a 12h light-dark cycle and fed a commercial diet containing low calcium. All the animals were randomly divided into 5 different groups: sham group, negative control group, experimental group (high、middle、low does of COS). Each group has eight rats. Negative control group and experimental groups underwent a ovariectomized operation and sham group received a sham operation. After operation, 20000u/time penicilline was injected subcutaneously in every group for three days. After ovariectomy, all rats were fed with the low calcium diets. At the same time rats in negative control groups were fed with 0.9﹪NaCl solution ,the other were fed with different concentration COS solution for 90 days. Body weight was recorded once a week, and the amount of each animal’s intake was adjusted every week. The high、middle and low concentration of COS was 0.75g/kg、0.25g/kg and 0.125g/kg respectively. At the end of 8th and 13th week, blood was samplinged to observe the change of indexes. After executing, femur, tibaiae, liver spleen and kidney were carefully removed, and then the study of the index of viscera, the bone mineral density, the bone mineral content, biomechanics and histomorphometry were observed. The results demonstrated that the middle does of GLC and COS can inhibit the increase of body weight resulted from the loss of estrogen after the operation of ovariectomy contrasted to the negative groups. GLCand the middle does of COS can significantly decrease the ALP, TRAP, TG, CHO, LDL, Cr in the serum. The middle does of GLC、the middle and low does of COS can significantly increase the content of Ca、Mg in femur and tibiae. Furthermore, the middle and low does of COS can also increase the content of Fe in tibiae. The bone strength and the biomechanics of ovariectomized rats were increased when fed with the middle does of GLC and the middle、low does of COS. In the study of histomorphometry, the middle and low does of COS can improve Tb.Ar, Tb.Wi, Tb.N of tibiae, at the same time, decrease Tb.Sp. Results: The deriviatives of chitin- GLC, NAG, CM-COS, COS can effectively improve the proliferation of MC3T3-E1 in vitro. After feeding with GLC and COS, the biochemistry indexes were changed, and the biomechanics of bone tissue were also improved. In the micro-architecture, the GLC and COS can better changed it. So GLC and COS can change the high rate of turnover of bone which was the main symptom of postmenopausal osteoporosis. The results of this present paper can hold new proves for the research of new、safe and effective drugs to treat postmenopausal osteoporosis.
引文
1 Albright F. Postmenopausal osteoporosis. JAMA,1941,116:2465-2474
    2 Consensus development conference: Prophylaxis and treatment of osteoporosis Int. 1991,1:114-117
    3 Consensus development conference: Prophylaxis and treatment of osteoporosis.Am J Med. 1993,94:646-650
    4骨质疏松现代诊疗。江苏科学技术出版社
    5赵燕玲,朱传荣,丁桂芝等。原发性骨质疏松症的发病机理。中国骨质疏松杂志。1998;4(4):73-77
    6郭世级,罗先正,邱贵兴主编。骨质疏松一基础与临床.2001天津科学技术出版社,2001年第一版,7-32
    7 Morel G, Boivin G, David L, et al. Immunocytochemical evidence for endogenouscalcitonin and parathyroid hormone in osteoblasts from the calvaria of neonatal mice. Absence of endogenous estradiol and estradiol receptors. Cell Tissue Res. 1985,(1):89-93
    8 Pensler JM, Radosevich JA. HigbeeR, et al. Osteoclasts isolated from membranous bone in children exhibit nuclear estrogen and progesterone receptors. J Bone Miner Res.1990 Aug;5(8):797-802
    9 Colvard DS, Eriksen EF, Keeting PE, et al. Identification of androgen receptors in normal human osteoblast-like cells. Proc Natl Acad Sci USA. 1989;86(3):854-857
    10 Ernst M, Heath JK, Rodan GA et al. Estradiol effects on proliferation, messenger ribonucleic acid for collagen and insulin-like growth factor-I, and parathyroid hormone-stimulated adenylate cyclase activity in osteoblastic cells from calvariae and long bones. Endocrinology. 1989;125(2):825-833 l1 Komm BS, Terpening CM, Benz DJ. et al. Estrogen binding, receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells. Science. 1988;241(486):81-84 l2 Schmid C, Ernst M, Zapf J. Froesch ER. et al. Release of insulin-like growth factor carrier proteins by osteoblasts: stimulation by estradiol and growth hormone. Biochem Biophys Res Commun. 1989;160(2):788-794
    13 Heino TJ, Hentunen TA, Vaananen HK. et al. Osteocytes inhibit osteoclastic bone resorption through transforming growth factor-beta: Enhancement by estrogen. J Cell Biochem.2002;85(1):185-197
    14 Riggs BL. The mechanisms of estrogen regulation of bone resorption. J Clin Invest 2000;106(10):1229-1237
    15 Parikka V, Lehenkari P, Sassi ML. et al. Estrogen reduces the depth of resorption pits by disturbing the organic bone matrix degradation activity of mature osteoclasts.Endocrinology. 2001;142(12):5371-5378
    16郑高利。葛根异黄酮对骨质疏松症的防治作用及其机理研究。(2002)10-13
    17 Elacna Quattrocchi, PhjarmD, and Helen Kourlas, PharmD. Teriparatide:A Review. Clinical therapeutics 2004;26(6):2-14
    18 National Institutes of Health, Osteoporosis and Related Bone Diseases--National Resource Center. Osteoporosis. Available at: www.nof.orglosteoporosislindex.htm. Accessed August 13,2003
    19 Rymer J, Robinson J, Fogelman I. Effects of 8years of treatment with tibolone 2.5 mg daily on postmenopausal bone loss. Osteoporos Int. 2001;12(6):478-83
    20 Editorial. Potential benefits of intermittent bisphosphonate therapy in osteoporosis. Joint Bone Spine, 2004;:712-713
    21 Greenspan SL, Bone HG, Schnitzer TJ, Watts NB, Adami S, Foldes AJ, et al. Two-year results of once-weekly administration of alendronate 70 mg for the treatment of postmenopausal osteoporosis. J Bone Miner Res 2002;17:1988-1996
    22 Brown JP, Kendler DL, McKlung MR, Emkey RD, Adachi JD, Bolognese MA, et al. The efficacy and tolerability of risedronate once a week for the treatment of postmenopausal osteoporosis. Calcif Tissue Int 2002;71:103-11
    23 De Groen PC, Lubbe DF, Hirsch LJ, Daifotis A, StepensonW, Freedholm D, et al. Esophagitis associated with use of alendronate. N Engl J Med 1996;335:1016–21
    24 Onyia, J.E. et al. Gene array analysis of the bone effects of raloxifene and alendronate show that alendronate strongly inhibits the expression of bone formation marker genes. J Bone Miner.Res, 2002;17(Suppl.1):S157
    25 Clifford J. Rosen.What’s new with PTH in osteoporosis:where are we and where are we headed? TRENDS in Endocrinology and Metabolism, 2004;15(5):
    26 Hodsman, A.B. et al. Histomorphometric evidence for increased bone turnover without changein cortical thickness or porosity after 2 years of cyclical h-PTH(1-34) therapy in women with severe osteoporosis. Bone,2000;27: 311-318
    27 Finkelstein, J.S. et al. Prevention of estrogen deficiency-related bone loss with human parathyroid hormone-(1-34):a randomized controlled trial. J.A.M.A. 1998;280:1067-1073
    28 Dempster, D.W. et al. Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J. Bone Miner. Res. 2001;16:1846–1853
    29 Okimoto, N. et al. Effects of a weekly injection of human parathyroid hormone (1-34) and withdrawal on bone mass, strength, and turnover in mature ovariectomized rats. Bone, 1998;22:523-531
    30 Demiralp, B. et al. (2002) Anabolic actions of parathyroid hormone during bone growth are dependent on c-fos. Endocrinology, 2002;143:4038-4047
    31 Editorial.Strontium: a new treatment for osteoporosisJoint .Bone Spine 2004;71:261-263
    32 Martine Cohen-Solal. Strontium overload and toxicity: impact on renal osteodystroph. Nephrol Dial Transplant,2002;17(Suppl 2):24-30
    33 Akesson K, Lau KHW, Baylink DJ. et al. Rational for active vitamin D analog therapy in senile osteoporosis. Calcif. Tissue Int. 1997, 60:100-105
    34李铁军,于世风,王晓敏等。1,25一二羟基维生素D3对小鼠骨髓细胞形成破骨样细胞及其骨吸收效应的影响.中国骨质疏松症杂志。2000, 6(3):12-14
    35 Gray TY, Cohen MS. Vitamin D, phagocyte differentiation and immune function. SuzyImmunol Res. 1985, 4:200
    36 Roodman GD. Ibboson KJ, Macdonald BR Et al. 1,25-dohydroxyvitaminh D cause formation of multinucleated cells witn several osteoclast characteristics in cultures of primate marrow. Proc Natl Acad Sci,1985, 82:82-83
    37 Orimo H, Shiraki M, Hayashi et al. Effects of 1 alpha-hydroxyvitamin D3 on lumbar bone mineral density and vertebral fractures in patients with postmenopausal osteoporosis. Calcif Tissue InL 1994;54:374-376
    38 Yang NN, Venagopalan M, Hardikars S.et a1. Identification of an estrogen response element activated by metabolities of 17β-estradiol and raloxifene. Sciences 1996, 273:1222-1225
    39 Frolik Ca, Bryant HU, Black EC. et al. Time dependent changes in biochemical bone markersand serum cholestrol in ovariectomized rats: effects of raloxifene, tamoxifene, estrogen and alendronate. Bone, 1996;18:621-624
    40 Editorial.Combination therapy for osteoporosis. Joint Bone Spine, 2004,71: 363-364
    41 Wimalawansa SJ. Combined therapy with estrogen and etidronate has an additive effect on bone mineral density in the hip and vertebrae: four-year randomized study. Am J Med, 1995,99:36-42
    42 Lindsay R, Cosman F, Lobo RA, Walsh BW, Harris ST, Reagan JE, et al. Addition of alendronate to ongoing hormone replacement therapy in the treatment of osteoporosis: a randomized, controlled clinical trial. J Clin Endocrinol Metab 1999,84:3076-81
    43 Bone HG, Greenpan SL, McKeever C, Bell N, Davidson M, Downs RW, et al. Alendronate and estrogen effects in postmenopausal women with low bone mineral density. J Clin Endocrinol Metab, 2000,85:720–726
    44 Johnell O, Scheele W, Lu Y, Lakshmanan M. Effects of raloxifene(RLX) alendronate (ALN) and RLX + ALN on bone mineral density(BMD) and biochemical markers of bone turnover in postmenopausal women with osteoporosis. J Bone Miner Res, 1999, 14(Suppl 1):S157
    45 Cosman F, Nieves J,Woelfert L, Formica C, Gordon S, Shen V, et al Parathyroid hormone added to established hormone therapy: effects on vertebral fracture and maintenance of bone mass after parathyroid hormone withdrawal. J Bone Miner Res 2001,16:925-931
    46 Black DM, Greespan SL, Ensrud KE, Palermo L, Mcgowan JA, Lang TF, et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med 2003; 349:1207–1215
    47王陶,王辉.植物雌激素及其对人类的作用[J].湖南中医药导报,1999, 5 (2):14-16.
    48彭向雷,王蕊,王悦等.大豆异黄酮研究进展[J].中国食品卫生杂志, 1998,10(3):38-41.
    49朱俊东.大豆异黄酮抗癌作用的研究进展[J].国外医学卫生学分册,1998, 25 (5):257-259.
    50 Arjmandi BH, Birnbaum K, Goyal NV, et al. Bone-sparing effect of soy protein in ovarian-hormone-deficien rats is relat to its isoflavone content . Am J Clin Nutr, 1998, 68 (supple):1364s-1368s
    51 Arjmandi BH, Alekel L, Hollis BW, et al. Dietary soybean protein prevent bone loss in an ovariectomized rat model of osteoprosis . J Nutr.1996, 126:161-167
    52刘群,冉忠梅,张庆哲。中药防治骨质疏松症的研究进展。云南中医中药杂志,2003,24(3):49-50
    53杜志谦,徐根旺,许保军等.骨碎补的药理研究概况.中草药,1993,24(7):379-380
    54马中书,王蕊,张鑫等.单剂补肾中药防治去卵巢大鼠骨质疏松的骨形态计量学研究.天津医药,1999,27(3):131-134
    55 Wan AVA, Khor E,Wong JM,et al. Promotion of calcification on carboxymethylchitin discs. Biomaterials,1996,17(15):1529-1534
    56 Won-Kyo Jung, Sung-Hoon Moon, Se-Kwon Kim. Effect of chitooligosaccharides on calcium bioavailability and bone strength in ovariectomized rats . Life Sciences, 2006, 78: 970-976
    57 Majeti NV, Kumar R. A review of chitin and chitosan applications. Reactive & Functional Polymers,2000,(46):1-27
    58 Friedmann T. Human gene therapy--an immature genie, but certainly out of the bottle. Nat Med,1996,2(2):144~147
    59盛志坚,侯春林。几丁糖抑制细菌生长的实验研究。中国修复重建外科杂志,l994,8:81-84
    60 Mori T, Okumura M, Matsuura M,et al.Effects of Chitosan and its derivatives on proliferation and cytokine production of fibroblasts in vitro. Biomaterials, 1997,18(13):947-951
    61 Mori T, Irie Y, Nishimura SI,et al.Endothelial cell responses to chitin and its derivatives. J Biomed Mater Res, 1998,43(4):469-472
    62蒋挺大。甲壳素。第一版。北京:化学工业出版社,2003:128-142
    63 Suzuki S. et al,Chitin in Nature &Technology. Plenum Press,New York,1986,485-492
    64 Li Q, Dunn E T, Goosen M F. Applications properties of chitosan. Bioact Compat Polym, 1992,7(10):370
    65柴平海,张文清等。甲壳素/壳聚糖开发和研究的新动向。化学通报,1999,7:8-11
    66 Nishi N. Polym J,1982,14:11
    67许时婴,沈欣,蒋雄图。羧甲基壳聚糖结构与性质研究。无锡轻工业学院学报,1993,12(2):92-100
    68李南,李继衍。D-氨基葡萄糖盐酸盐的制备研究。中国药科大学学报,1997,28(1):56-58
    69 Araki Y, Ito E. Eur.J.Biochem,1975,55:71
    70 Yamasaki N, Tsujita T, Takakuna M et al. Agr Biol Chem,1973,37:1507
    71黄光佛,卿胜波等。多糖类生物医用材料——甲壳素和壳聚糖的研究及应用。高分子通报,2001,(2):43-49
    72倪红,杨艳燕,陈怀新。甲壳素/壳聚糖及其衍生物在生物领域中的应用。湖北大学学报(自然科学版),2001,23(1):77-81
    73徐鑫,王静。甲壳素和壳聚糖的开发及应用。哈尔滨工业大学学报,2002,34(1) 95~101
    74 Kurita K . Chemistry and application of chitin and chitosan . Polymer Degradation and Stability, 1998,59(1-3):117-120
    75 Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials, 2003,24 (13):2339-2349
    76杜予民。甲壳素化学与应用的新进展。武汉大学学报(自然科学版),2000,46(2):181~186
    77潘磊。浅谈骨关节炎及其药物治疗。中国医学研究与临床,2003,1(3):53-54
    78 Talent JM,Gray RW.Pilot study of oral polymeric N-acetyl-d-glucosamine as a potential treatment for patients with osteoarthritis. Clinical Therapeutics, 1996,18 (6):1184-1190
    79梁馨元,天水。挑战骨关节炎。医药世界,2002,10:6-9
    80 Lindow TE. Osteoarthritis: new insights. Ann Intern Med, 2002,136(1):86-87
    81 Thumb N. Drug therapy of arthritis. Wien Med Wochenschr, 1995,145(5):112-117
    82 Hochberg MC, Dougados M. Pharmacological therapy of osteoarthritis. Best Pract Res Clin Rheumatol,2001,15:583-593
    83 Reginster JY, Deroisy R, Rovati LC,et al. Long-term effects of glucosamine sulphate on osteoarthritis progression: a randomized, placebo-controlled clinical trial. The Lancet,2001,357:251-256
    84叶根茂,侯春林。几丁糖预防兔膝关节粘连的实验研究。第二军医大学学报,1994,15(3):241-244
    85 Klokkevold PR, Fukayama H, Sung EC, et al. The effect of chitosan (poly-N-acetyl glucosamine) on lingual hemostasis in heparinized rabbits. J Oral Maxillofac Surg,1999,57(1):49-52
    86 Lu JX,Prudhommeaux F,Meunier A,et al.Effect of chitosan on rat knee cartilages. Biomaterials,1999,20(20):1937-1944
    87吴海山,侯春林。关节腔内注射几丁糖预防创伤性关节软骨退变的实验研究。解放军医学杂志,1995,20(4):254-256
    88侯春林,顾其胜主编。几丁质与医学。上海:上海科学技术出版社,2001:130-135
    89吴海山,钱其荣,侯春林。空气暴露、生理盐水和壳多糖溶液对兔关节软骨超微结构的影响。解放军医学杂志,1995,20(6):405-407
    90刘彦春,王炜,曹谊林等。包埋后的几丁质与软骨细胞体外培养的实验研究。中华外科杂志,1998,36(8):495-496
    91 Risbud M, Endres M,Ringe J, et al. Biocompatible hydrogel supports the growth of the respiratory epithelial cells: possibilities in tracheal tissue engineering. J Biomed Mater Res,2001,56(1): 120-127
    92 Sechriest VF, Miao YJ, Niyibizi C,et al. GAG-augmented polysaccharide hydrogel: a novel biocompatible material to support chondrogenesis. J Biomed Mater Res,2000,49(4): 534-541
    93夏万尧,曹谊林,商庆新等。壳聚糖作为组织工程软骨支架的实验研究。中华显微外科杂志,2002,25(1):34-37
    94 Mattioh BM, Gigente A, Mozzarell RA, et al. N,N-dicarboxymethyl chitosan as delivery agent for bone morphogenetic protein in the repair of articular cartilage. Med Biol Eng Comput,1999,37(1):130-134
    95侯春林,叶根茂。几丁糖对兔膝关节创伤后制动软骨退变的保护作用。南京大学学报,1995.31:29-32
    96张建湘,汤健,徐斌等。壳聚糖棒材的组织相容性和安全性评价。生物医学工程学杂志,1996,13(4):293-297
    97 Buma P,Schreurs W,Verdonschot N,et al. Skeletal tissue engineering-from in vitro studies to large animal models. Biomaterials,2004,25:1487-1495
    98 Lahiji A, Sohrabi A, Hungerford DS, et al. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res,2000,51(4):586-595
    99 Hidaka Y,Ito M,Mori K,et al. Histopathological and immunohistochemical studies of membranes of deacetylated chitin derivatives implanted over rat calvaria. J Biomed Master Res,1999,46(3):418-423
    100倪斌,侯春林,贾连顺等。几丁质膜引导兔桡骨缺损骨再生的实验研究。中华骨科杂志,1995,15(9):607-609
    101陈锦平,张帆,赵仲生等。几丁质-硅胶复合膜引导性骨再生的实验研究。中国骨伤,2001,14(7):405-407
    102 To M, Hidaka Y, Nakajima M ,et al. Effect of hydroxyapatite content on physical properties and connective tissue reactions to a chitosan-hydroxyapatite composite membrane.J Bioed Mater Res,1999,45(3):204-208
    103陈富林,毛天球。几丁质作为植骨材料生物相容性的实验研究。实用口腔医学杂志,1999,15(4):246-248
    104陈富林,赵明。几丁质/rhBMP2/胶原复合植骨材料的制备有其异位诱骨活性。口腔医学,1999,19(1):4-6
    105刘春丽,刘新,徐勇忠。骨基质明胶和壳聚糖复合修复下颌骨缺损的实验研究。口腔医学纵横,2001,17(2):119-121
    106 Pal AK, Pal TK, Mukherjee K, et al. Animal experimentation with tooth derived calcium hydroxyapatite based composites as bone-graft substitute biomaterials. Biomedical Scien Instrum.1997,33:561-566
    107 Leroux L, Hatim Z, Freche M,et al. Effects of various adjuvants (lactic acid, glycerol, and chitosan) on the injectability of a calcium phosphate cement. Bone, 1999,25(2):31s-34s
    108 Ge Z, Baguenard S, Lim LY,et al. Hydroxyapatite-chitin materials as potential tissue engineered bone substitutes. Biomaterials, 2004,25(6):1049-1058
    109 Im SY, Cho SH, Hwang JH, et al. Growth factor releasing porous poly (epsilon- caprolactone)-chitosan matrixes for enhanced bone regenerative therapy. Arch Pharm Res,2003,26(1):76-82
    110王俊得,商振华,郁蕴璐等。高效液相色谱法。北京:中国石化出版社,1992
    111陈凌云,杜予民,肖玲等。羧甲基壳聚糖的取代度与保湿性。应用化学,2001,18(1):5-8
    112魏远安,方积年。高效凝胶渗透色谱法测定多糖纯度及分子量。药学学报,1989,24(7):532
    113盛以虞,仲惠娟。高效凝胶渗透色谱法测定壳聚糖的分子量。中国药科大学学报,1994,25(4):242-244
    114 Grubisic Z,Rempp P,Benoit GJ,et al. Polymer Sci,1967,B5(9):753
    115 Anumula KR. Quantitative determination of monosaccharides in glycoproteins by high-performance liquid chromatography with highly sensitive fluorescence detection. Anal Biochem, 1994,220(2):275-283
    116 Bigge JC, Patel TP, Bruce JA, et al. Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal Biochem, 1995,230(2): 229-238
    117 Guile GR, Rudd PM, Wing DR, et al. A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. Anal Biochem, 1996,240(2): 210-226
    118 Kuster B, Wheeler SF, Hunter AP, et al. Sequencing of N-linked oligosaccharides directly from protein gels: in-gel deglycosylation followed by matrix-assisted laser desorption/ionization mass spectrometry and normal-phase high- performance liquid chromatography. Anal Biochem,1997,250(1): 82-101
    119 Takao T, Tambara Y, Nakamura A, et al. Rapid Commun Mass Spectrom, 1996,10: 637-640
    120 Nashabeh W, el Rassi Z. Capillary zone electrophoresis of linear and branched oligosaccharides. J Chromatogr,1992,600(2):279-287
    121 Stefansson M, Novotny M,et al. J Am Chem Soc,1993,115:11573-11580
    122 Chiesa C, O'Neill RA. Capillary zone electrophoresis of oligosaccharides derivatized with various aminonaphthalene sulfonic acids. Electrophoresis, 1994,15(8~9):1132-1140
    123 Harland GB, Okafo G, Matejtschuk P, et al. Fingerprinting of glycans as their 2-aminoacridone derivatives by capillary electrophoresis and laser-induced fluorescence. Electrophoresis,1996,17(2): 406-411
    124 Chen FT, Dobashi TS, Evangelista RA. Quantitative analysis of sugar constituents of glycoproteins by capillary electrophoresis. Glycobiology,1998,8(11): 1045-1052
    125 Jackson P. The use of polyacrylamide-gel electrophoresis for the high-resolution separation of reducing saccharides labelled with the fluorophore 8-aminonaphthalene-1,3,6-trisulphonic acid. Detection of picomolar quantities by an imaging system based on a cooled charge-coupled device. J Biochem, 1990,270(3):705-713
    126 Starr CM, Masada RI, Hague C, et al. Fluorophore-assisted carbohydrate electrophoresis in the separation, analysis, and sequencing of carbohydrates. Chromatogr,1996,720: 295-321
    127 Hardy MR,Townsend RR, Hotchkiss AT,et al. Techniques in Glycobiology, Marcel Dekker,New York,1997,359-375
    128孟显丽,陈国华,孙明昆等。薄层色谱法分析壳寡糖。青岛海洋大学学报,2002, 32(4): 641-644
    129 Suzuki K, Mikami T, Okawa Y, et al.Antitumor effect of hexa-N-acetyl chitohexaose and chiohexaose. Carbohydrate Research,1986,151:403-408
    130 Nishimura SI, Kai H, Shinada K, et al. Regio selective syntheses of sulfated polysaccharides: specific anti-HIV-1 activity of novel chitin sulfates. Carbohydr Res,1998,306(3):427-433
    131 Mori T, Okumura M, Matsuura M,et al.Effects of Chitosan and its derivatives on proliferation and cytokine production of fibroblasts in vitro. Biomaterials, 1997,18(13):947-951
    132 Matsuda N, Horikawa M, Yoshida M,et al. Enhanced DNA synthesis accompanied by constitutive phosphorylation of the ERK pathway in human fibroblasts cultured on a polyelectrolyte complex. Biomaterials,2003,24(26): 4771-4776
    133 Howling GI, Dettmar PW, Goddard PA, et al. The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomaterials,2001,22:2959-2966
    134刘万顺,贺君,韩宝芹。6-O-CM-Chitosan、bFGF、EGF促进人胚胃成纤维细胞生长的比较研究。第二届甲壳素化学与应用研讨会论文集1。武汉。1999,11:325
    135金黎明,刘万顺,韩宝芹。N-乙酰氨基葡萄糖促进骨缺损愈合作用的研究。高技术通讯,2004,11:87-92
    136 Wei changzheng, Liu wanshun, Han baoqin, et al. Activities of the deriviatives of chitin on the osteoblast proliferation and the effect on bone strength in ovariectomized rats. Wuhan University Journal of Natural Sciences,2006,11(3):715-719
    137王大新,吴宗贵,周斌等。壳多糖对兔主动脉平滑肌细胞和内皮细胞增殖的影响。第二军医大学学报,1999,20(12):962-964
    138乔新惠,宋岚,李邦良等。甲壳低聚糖对非肥胖性糖尿病小鼠胰岛细胞生长及胰岛素分泌量的影响。医学临床研究,2003,20(4):259-261
    139 Hoffman J, Johanson A, Steiro K, et al. Chitooligosaccharides stimulate Atlantic Salmon, Salmo salar L., head kidney leukocytes to enhanced superoxide anion production in vitro. Comp Biochem Physiol B Biochem Mol Biol,1997,118 (1): 105-115
    140 Usami Y, Okamoto Y, Takayama T,et al.Chitin and Chitosan stimulate caninepolymorphonuclear cell to release Leuko trine B4 and prestaglandin E2. J Biomed Mater Res,1998,42(4):517-522
    141 Hwang SM , Chen CY, Chen SS, et al. Chitinous materials inhibit Nitric Oxide production by activated RAW 264.7 macrophages. Biochem Biophys Res Commun, 2000,271(1):229-233
    142 Klokkevold PR, Vandemark L, Kenney EB,et al. Osteogenesis enhances by chitoson (poly-N-acetyl glucosaminoglycan) in vitro. J Periodotol,1996,67(11):117-124
    143 Ciapetti G, Cenni E, Stea S, Pizzoferrato A. In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials 1993; 14: 359-364
    144司徒镇强,吴军正主编。细胞培养。西安:世界图书出版西安公司,1996,186-187
    145扬晓光,李国华。骨代谢与细胞因子。中国中医骨伤科杂志,2000年6月第8卷第3期
    146许碧连,吴铁。大鼠糖皮质激素性骨质疏松模型的研究现状。Animal Science and Veterinary Medicine,2002,19(12):14-16
    147李卫平,张艳,明亮等。糖皮质激素诱导骨质疏松大鼠模型研究。中国药理学通报,1998,14(5):475-476
    148戚孟春,周秀青,杜兆军。骨灰质疏松动物模型的研究进展。现代口腔医学杂志,2002,16(2):185-187
    149汪青,孙兰,龚海洋等。骨质疏松动物模型建立与评价。中国药理学通报,1999,15(5):391-395
    150吴波。骨质疏松动物模型研究的现状与展望。药学学报,1996,31(4):316-320
    151廖二元。骨质疏松研究的现状与展望。中华内分泌代谢杂志,2002,18(2):87-89
    152乔伟伟,许兰文。骨质疏松大鼠模型。上海实验动物科学,1997,17(3):174-176
    153宁可永,张绍霞。骨质疏松症的实验研究进展,2002,9(5):81-83
    154韦永中,陶松年,杨国平等。依普拉芬和雌激素对实验性骨质疏松作用的初步观察。中国骨质疏松杂志,2001,7(1):76-81
    155王建智,冯坤,刘月桂等。坚骨颗粒对实验性骨质疏松症大鼠代谢和骨强度的影响。山东中医杂志,2001,20(3):164-168
    156 Kula DN, Hardin RH Cockrham R et al. Endocriology, 1984,115:1239
    157 Kula DN, Liu CC, Hardin RR et al. Endocriology 1989,124:7
    158 Gilles JA, Cames DJ, Dallas MR, et al. Oral bone loss is increased in ovariectomized rats.J Endodon,1997,2397:419-422.
    159 Yamazaki M, Shirota T, Tokugawa Y, et al. Bone reactions to ticantiom screw implants in ovariectomized animals. Oral Surg Oral Med Oral Pathot Oral Radiol Endod. 1999,87(4):411-418.
    160 Dempaster DW, Birchrnan R, Xu R, et al. Tempral changes incancellous bone structure of rats immediately after ovariectomy. Bone,1995,16(1):157-161
    161李万根,武兆忠,宫雅南等。绝经后妇女血脂水平与骨密度的关系。中国骨质疏松杂志2004年5月第10卷第2期。
    162孙颖,孙凌飞。骨质疏松模型大鼠骨量及血脂的变化。中国临床康复2003年第7卷第18期
    163 Shi Linna, Su Yixiang, Yang Chunli. Effects of soybean isoflavones on blood lipids and bone mass of ovariectomized rats. Food Science. 116 2002,vol。23,No。2
    164陈彩霞,田玉慧,李万里等。大豆异黄酮和钙对去卵巢大鼠血脂和碱性磷酸酶的作用。中国乡村医药杂志2004年7月第11卷第7期。
    165 Pal AK, Pal TK, Mukherjee K, et al. Biomedical Scien Instrum,1997;33:561
    166 Mar A. Moyad,M.P.H. Osteoporosis: a rapid review of risk factors and screening methods. UrologicOncology:Seminars and Original Investigations, 2003,21: 375-379
    167 M.P. Akhter, U.T. Iwaniec, G.R. Haynatzki. Effects of nicotine on bone mass and strength in aged female rats. Journal of Orthopaedic Research,2003,21:14~19
    168 Editorial.Parathyroid hormone therapy for osteoporosis. Joint Bone Spine,2003, 70:315-317
    169 J.S.Day,M.Ding,P.Bednarz ,J.C.van der Linden, T.Mashiba ,T.Hirano ,C.C.Johnston,D.B.B urr,I.Hvid, D.R.Sumner, H.Weinane. Bisphosphonate treatment affects trabecular bone apparent modulus through micro-architecture rather than matrix prooeries. Journal of Orthopaedic Research,2004,22:465-471
    170 Eunice Y, Pyon, Pharm D. Once-Monthly Ibandronate for Postmenopausal Osteoporosis: Review of a New Dosing Regimen. Clinical Therapeutics,2006,28(4):475-490
    171 Faustino R, Pérez-López. Postmenopausal osteoporosis and alendronate. Maturitas,2004,48:179-192
    172 Editorial. Potential benefits of intermittent bisphosphonate therapy in osteoporosis. Joint BoneSpine,2004,71:2-3
    173 Clifford J, Rosen. What’s new with PTH in osteoporosis: where are we and where are we headed? Trends in Endocrinology and Metabolism,2004,15(5):229-223
    174 Martine, Cohen-Solal, Strontium overload and toxidity: impact on renal osteodystroph. Nephrol Dial Transplant,2002,17(suppl2):30-34
    175刘月桂,张灵菊,陈宝龙等。对中药治疗骨质疏松模型大鼠骨组织中相关元素分析。微量元素与健康研究,2000,17(1):9-13
    176 Wallach S. Effect of magnesium on skeleton metabolism. Mag Trace Elements, 1990,9:1-12
    177 Sojka JE, Weaver CM Magnesium supplementation and osteoporosis. Nutr Rev, 1995,53:71-80
    178 Thompson D D, Simmons H A, C.M Pirie et al. FDA guidelines and animal models for osteoporosis. Bone,1995,4(17):S125-S136
    179李晓佳,李双庆,魏松全。骨质量为骨质疏松症诊治的新动向。国外医学内分泌学分册2001,21(3):158-160
    178曹立,雍宜民,沈惠良。骨质量在骨质疏松诊断中的意义。中国骨质疏松学杂志2000,6(3):84-87
    180金鸿宾。骨质量对骨折及其治疗的影响。中国骨伤2001,14(2):67-70
    181孟志斌,姜国祥,黎坚。骨代谢与骨质疏松的发病机理。海南医学院报,1996,2(4):188-192
    182 Dieter Felsenberg, MD, Steven Boonen, et al. The Bone Quality Framework: Determinants of Bone Strength and Their Interrelationships, and Implications for osteoporosis management. Clinical Therapeutics, 2005,27(1):1-11
    183 Stefan Hengsberger, Patrick Ammann, Brian Legros, et al. Intrinsic bone tissue properties in adult rat vertebrae:modulation by dietary protein. Bone,2005,36: 134-141
    184 Dieter Felsenberg, MD, Steven Boonen, et al. The Bone Quality Framework: Determinants of Bone Strength and Their Interrelationships, and Implications for osteoporosis management. Clinical Therapeutics, 2005,27(1):1-11
    185 Bernard Cortet, Xavier Marchandise. Bone microarchitecture and mechanical resistance. Joint Bone Spine 2001,68:297-305
    186 Virginia L. Ferguson, Reed A. Ayers, Ted A. Bateman, et al. Bone development andage-related bone loss in male C57BL/6J mice. Bone,2003,33:387-398
    187 Iegrand E,Chappard D,Pascaretti C, et al.Trabecular bone microarchitecture,bone mineral density,and vertebral fractures in male osteoporosis. Bone Miner Res, 2000,15:13-20
    188林华。骨质疏松的评估-骨量与骨质量。中国医刊,2004,39(6):2-4
    189 Cummings SR,Karpf DB,Harris F,et a1.Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs.Am J Med,2002,112:281—289
    190 Alejandro A. Gorustovich, Tammy Steimetz, Maximo J, et al. A histomorphometric study of alveolar bone modeling and remodeling under experimental anaemia and polycythaemia in rats. Archivers of Oral Biology,2006,51:246-251
    191 Mitsuhiko Takahashi, Kiminori Yukata, Yoshito Matsui, et al. Bisphosphonate modulates morphological and mechanical properties in distraction osteogenesis through inhibition of bone resorption. Bone,2006,39:573-581
    192 Manuel Cira-Recasens, Lluis Perez-Edo, Josep Blanch-Rubio, et al. Bone histomorphometry in 22 male patients with normocalciuric idiopathic osteoporosis. Bone,2005,36:926-930
    193 Heather Macdonald, Saija Kontulainen, Moira Petit, et al. Bone strength and its determinants in pre-and early pubertal boys and girls. Bone,2006,39:598-608
    194 Einhorn TA. The mineral and mechanical properties of bone in chronic experimental diabetes. J Orthop Res,1988,6:317-321
    195 Nakamura T. The quality of bone Sangyo Ika Daigaku Zasshi, 1997;19(2):157-165
    196 Sherm S, Hadley EC. Aging and bone quality:an under-explored frontier. Calcif Tissue Int, 1993,53(supp11):S1-S12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700