用户名: 密码: 验证码:
电针和奥卡西平干预对实验性癫癎大鼠海马炎症损伤的影响及相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
癫癎是神经系统一种常见的疾病,其在人群中的患病率为0.5%-2%。目前,虽然对于癫癎的研究取得了一定进展,但是对于癫癎的成因及发病机制目前仍不是完全清楚。大量的资料显示,癫癎与中枢神经系统(CNS)的炎症反应关系密切,炎症反应在一定程度上决定了癫癎的发生、发展。有效的阻断脑内炎症反应,可改变神经元的兴奋性,达到抗癫癎的目的。而在CNS炎症反应中,小胶质细胞(Microglia,MG)的激活起着重要作用,激活的MG分泌大量的炎性因子。而在MG表达的诸多炎性细胞因子中,CD40的表达是炎症反应的一个关键。CD40分子是属于TNF受体超家族成员,它通过和其受体CD40L的相互作用,导致激活的MG分泌炎性因子及炎性介质,介导炎症反应。但是CD40介导的炎症反应是否也存在于癫癎后炎症病理损伤中?目前,暂无这方面的相关研究。
     针刺疗法是祖国医学中重要的非药物疗法,其在国内外已产生重大影响。研究显示,针刺可通过不同的机制影响炎症反应,调控炎性因子及炎症介质的释放。同时,本课题组在前期的研究显示,在锂-匹罗卡品癫癎模型中,通过电针刺激“大椎”和“百会”二穴位可有效地抑制自发性再发作(SRS)。但是,电针的这一作用,是否和针刺调节癫癎发作后的炎症反应有关?这需要进一步探讨。另外,资料显示,抗癫癎药(AEDs)-卡马西平(Carbamazepine,CBZ)具有抑制炎症反应和神经保护的作用。其不但能够抑制癫癎发作,而且可通过不同机制影响炎症反应过程,缓解炎症反应引起的临床症状。但是,奥卡西平(Oxcarbazepine,OXC)作为CBZ的衍生物,是否也同样具有抗炎作用?是否可通过减轻癫癎发作后的炎症反应而起到脑保护作用?目前,国内外还没有此方面的相关研究。
     针对上述问题,本课题选用锂-匹罗卡品癫癎模型,通过免疫组化、Western blot、ELISA等实验方法。首先观察了实验性癫癎大鼠在癫癎持续状态(status epilepticus,SE)后MG,CD40的表达及变化。随后我们通过对癫癎大鼠给予电针刺激“大椎”和“百会”二穴位和OXC的干预,来观察电针或OXC对SE后CD40介导的炎症反应的影响,并且对二者进行对比研究。其次,我们通过Nissl染色等方法观察了电针或OXC干预对SE后大鼠海马神经元损伤的影响。最后,我们进一步观察了电针或OXC干预对SE、SRS的影响。
     主要研究结果如下:
     (1)SE后大鼠海马不同区域MG增殖、激活,CD40表达增加,并且在激活的MG上CD40表达明显增加,而CD40在星型胶质细胞上未表达。
     (2)电针或OXC干预不同程度抑制了SE后大鼠海马MG的增殖、激活及CD40的表达,以OXC最为明显。
     (3)电针或OXC干预抑制了SE后大鼠海马TNF-α的表达,并且OXC的抑制作用强于电针刺激。
     (4)电针或OXC干预改善了SE后海马神经元的缺失,以CA1区最为显著,OXC的保护作用强于电针刺激。
     (5)电针或OXC干预对SE的发生、发展没有影响,但是二者不同程度延长了SRS的潜伏期、减少SRS的发作频率。
     综上所述,本课题首次研究了CD40在实验性癫癎大鼠海马的表达,提示CD40介导的炎症反应存在于癫癎的炎症病理损伤机制中;同时,对癫癎大鼠进行电针或OXC干预可不同程度的抑制CD40介导的炎症反应,随后的实验也证实二者具有脑保护和抑制SRS的作用,提示电针或OXC可通过抑制CD40介导的炎症反应而改善海马神经元的损伤,最终影响SRS的发生、发展。因此,本研究不仅为电针治疗癫癎提供了理论基础和实验资料,而且为研究AEDs在“癫癎损伤”中的神经保护作用及“针药结合”治疗癫癎提供了有效依据。
Epilepasy are a kind of common diseases in the nervous system, it is incidence rate for 0.5-2% in the crowd. Currently, although research of epilepsy obtain certain make progress, for etiopathogenisis and pathogenesis of epilepsy currently still is not complete clear. A great deal of of the data manifestation, epilepsy and infalammatory reaction of central nervous system (CNS) relation close, inflammatory reaction come to a decision epilepsy to some extent of occurrence, development. Valid of inhibit inflammatory reaction in brain, result in changing the excitability of the neuron, attain the purpose of the anti-epileptic. But microglia play a critical role in the inflammatory reaction of CNS, activated microglia may secrete a number inflammatory factors, and the expression of CD40 be a key that inflammatory reaction. CD40 is a member of the tumor necrosis factor (TNF) receptor family. It interaction with CD40L which is the cognate ligand of CD40 leads to microglia secretion of cytokine and mediators of inflammation, and mediated inflammatory reaction. However, the CD40 mediated inflammatoory reaction whether also occurenc in epilepticus inflammatory pathology change? Currently, the related research temporary having no this aspect.
     The acupuncture is an importance in the motherland medical science of non- medicine therapy, it at domestic and international already creation graveness influence. Study displayied, the acupuncture may influence inflammatory reaction by different mechanism, and adjust to release of cytokine and mediators of inflammation. Meanwhile, our study groups previously reported that electric acupuncture (EA) may available inhibited spontaneous recurrent seizure(SRS) through stimulus“baihui”and“dazhui”in the lithium pilocarpine-induced epileptic model. However, this function of EA, whether relation it regulate inflammatory reaction after seizure? This the demand be further study. Moreover, data have displaied that carbamazepine (CBZ) as the anti-epileptic drug (AEDs) have to inhibit inflammatory reaction and neuroprotective function. It not only can inhibit epileptic seizure, but also can influence inflammatory reaction process through different mechanism, alleviate clinical symptom that inflammatory reaction's cause. However, oxcarbazepine as be derivative of carbamazepine, it whether also same have the anti- inflammation function? Whether it possess brain protection function through amelioration inflammatory reaction after seizure? Currently, domestic and international didn't yet the related research of this aspect.
     Aim at the above-mentioned problem, this topic choose to use the lithium pilocarpine-induced epileptic model, then through immunohistochemistry, Western blot, and ELISA etc, respectively. Firstly, observation microglia change and CD40 expression after status epilepticus (SE) in the experimental epileptic rat. Then, we carry on an intervention to the the epileptic rat through stimulating“bai hui”and“da zhui”two acupuncture points and administration OXC, and observation EA or OXC influence on CD40 mediated inflammation after SE, and two carry on contrast research. Secondly, we have observated EA or OXC intervention to influence of hippocampal neuronal injury after SE in the rat by Nissl staining. End, we further observation EA or OXC intervention to influence of SE and SRS in the rat.
     Main research's result is as follows:
     (1) Microglia propagating and activating,and CD40 expression increasing in the different areas of hippocampus after SE. And CD40 expression increase on the activated microglia, but no observation CD40 expression on the astroglia.
     (2) EA or OXC intervention dissimilarity degree inhibited proliferation and activating of microglia and CD40 expression in the hippocampus of rat, with OXC most is obvious.
     (3) EA or OXC intervention inhibited TNF-αexpression in the hippocampus of rat, and inhibiting of OXC the function is strong at the EA stimulate.
     (4) EA or OXC intervention improved neuronal loss of hippocampus after SE, with CA1 area most is obivous, and neuroprotective of OXC is strong at the EA stimulate.
     (5) EA or OXC intervention not influence development of SE, but they dissimilarity degree extended latency of SRS, and decreased frequency of SRS. In summary, this study demonstrats for the first time that CD40 expression hippocampus in the experimental epileptic rat.This results have showed that CD40-mediated inflammatory reaction occurs in epileptic pathology change. Meanwhile, carrying on EA or OXC intervention may inhibited CD40 mediated inflammatory reaction after SE. Whereafter, our experiment also confirmed EA and OXC possess effects which may protect brain and inhibit SRS.This results showed that EA and OXC may improve neuronal loss of hippocampus through inhibiting CD40 mediated inflammatory reaction, and influence development of SRS, eventually. Therefore, this study not only provided theories foundation and experiment data for EA treatment of epilepsy,but also provided valid basis for studying neuroprotecive effects of AEDs in the“epileptic brain”.Our data also provied evidence that“synchondrosis of EA and medicine”for treatment of epilepsy.
引文
[1] Allan, S. M., Rothwell, N. J. Cytokines and acute neurodegeneration. Nat. Rev. Neurosci. 2001; 2, 734 – 744.
    [2] Ravizza, T., Rizzi, M., Perego, C., Richichi, C., Veliskova, J., De, Simoni, M. G., Vezzani. A.Inflammatory response and glia activation in developing rat hippocampus after status epilepticus. Epilepsa. 2005; 46,113- 117.
    [3] Tekgul, H., Polat, M., Tosun, A.Cerebrospinal fluid interleukin-6 levels in patients with West syndrome. Brain. Dev. 2006; 28, 19 – 23.
    [4] Vezzani, A., Granata, T. Brain inflammation in Epilepsy: Experimental and Clinical Evidence. Epilepsia. 2006; 46,1724 – 1743.
    [5] Elzey BD., Sprague DL., Ratliff TL. The emerging role of platelets in adaptive immunity. Cell Immunol. 2005;238(1):1-9.
    [6] Turrin NP., Rivest S. Innate immune reaction in response to seizures: implications for the neuropathology associated with epilepsy. Neurobiol Dis , 2004;16 (2):321-334.
    [7] Tracey, K. J.; Cerami, A. Tumor necrosis factor, other cytokines and disease. Ann Rev. Cell Biol. 1993; 9:317–3432.
    [8] Sriram K., O,Callaghan JP. Divergent roles for tumor necrosis factor-alpha in the brain. J Neuroimmune Pharmacol. 2007;2(2):140-153.
    [9] Allen JN., Herzyk DJ., Allen ED., Wewers MD. Human whole blood interleukin-1-beta production: kinetics, cell source, and comparison with TNF-alpha. J Lab Clin Med. 1992;119(5):538-546.
    [10] MacEwan DJ. TNF ligands and receptors: a matter of life and death. Br JPharmacol 2002;135:855–875.
    [11] Shinoda S, Skradski SL, Araki T. Formation of a tumour necrosis factor receptor 1 molecular scaffolding complex and activation of apoptosis signal-regulating kinase 1 during seizureinduced neuronal death. Eur J Neurosci. 2003;17: 2065–2076.
    [12] Akassoglou K, Douni E, Bauer J, Lassmann H, Kollias G and Probert L. Exclusive tumor necrosis factor (TNF) signaling by the p75TNF receptor triggers inflammatory ischemia in the CNS of transgenic mice. Proc Natl Acad Sci USA 2003;100: 709-714.
    [13] Tweedie, D., Sambamurti, K., Greig, N. H., 2007. TNF-alpha inhibition as a treatment strategy for neurodegenerative disorders: new drug candidates and targets. Curr Alzheimer Res. 4, 378-385.
    [14] Takeuchi H., Jin S., Wang J., Zhang G., Kawanokuchi J., Kuno R., Sonobe Y., Mizuno T.Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem. 2006;281(30):21362-21368.
    [15] Zou JY., Crews FT. TNF alpha potentiates glutamate neurotoxicity by inhi- biting glutamate uptake in organotypic brain slice cultures: neuroprotection by NF kappa B inhibition. Brain Res. 2005;1034(1-2):11-24.
    [16] Shandra AA., Codllevsky LS., Vastyanov RS. The role of TNF-alpha in amygdala kindled rats. Neurosci Res. 2002;42(2):147-153.
    [17] Furukawa K, Mattson MP. 1998. The transcription factor NF-kappaB mediates increases in calcium currents and decreases in NMDA and AMPA/kainate-induced currents induced by tumor necrosis factor-alpha in hippocampal neurons. J Neurochem 70:1876 –1886.
    [18] Beattie EC , Stellwagen Dd , Morishita R. Control of synaptic strength byglia TNF-α Science.2002;295 (5563) : 2282-2285.
    [19] Balosso S, Ravizza T, Perego C, et al. Tumor necrosis factor - α inhibits seizures in mice via p75 recep tors. Ann N eurol, 2005;57 (6) : 804 - 812
    [20] Stoll G., Jander S., Schroeter M. Detrimental and beneficial effects of injury-induced inflammation and cytokine expression in the nervous system. Adv Exp Med Biol. 2002;513:87-113.
    [21] Straussberg R., Amir J., Harel L., Punsky I., Bessler H. Pro-and anti-inflammatory cytokines in children with febrile convulsions. Pediatr Neurol. 2001;24(1):49-53.
    [22] Vezzani A., Conti M., De Luigi A., Ravizza T., Marchesi F., De Simoni MG. Interleukin-1beta immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: functional evidence for enhancement of electrographic seizures.J Neurosci. 1999;19(12):5054-65.
    [23] Kanemoto K, Kawasaki J , Yuasa S. Increased frequency of interleukin-1 beta 25-11T allele in patients with temporal lobe epilepsy, hippocampal sclerosis, and prolonged febrile convulsion. Epilepsia.2003;44(6): 796-799.
    [24] Cunningham AJ., Murray CA., O,Neill LA.Interleukin-1β and tumor necrosis factor inhibit long-term potentiation in the rat dentate gyrus in vitro. Neurosci Len. 1996; 203(1):17-20.
    [25] Barres BA.New roles for glia. J Neurosci. 1991;11(12):3685-3694.
    [26] Vivani B., Bartesaghi S., Gardoni F., Vezzani A., Behrens MM., Bartfai T., Binaglia M., Corsini E., Galli CL., Marinovich M. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases.J Neurosci. 2003;23(25):8692-8700.
    [27] Hung TL., O,Banion MK.Interleukin-1 beta and tumor necrosis factor-alpha suppress dexamethasone induction of glutamine synthetase in primarymouse astrocytes. J Neurochem. 1998;71(4):1436-1442.
    [28] Hewett SJ.,Csernansky CA.,Choi DW. Selective potentiation of NMDA-induced neuronal injury following induction of astrocytic iNOS. Neuron. 1994; 13(2): 487-494.
    [29] Kilpatrick TJ., Butzkueven H., Emery B., Marriott M., Taylor BV., Tubridy N. Neuroglial responses to CNS injury: prospects for novel therapeutics. Expert Rev Neurother. 2004;4(5):869-78.
    [30] Peltola J., Palmio J., Korhonen L. Interleukin-6 and interleukin-1 receptor antagonist in cerebrospinal fluid from patients with recent tonic-clonic seizures. Epilepsy Res.2000;41(3):205-211.
    [31] Penkowa M., Molinero A., Carrasco J. Interleukin-6 deficiency reduces the brain inflammatory response and increases oxidative stress and neurodegenration after kainic acid-induced seizures. Neuoscience.2001; 102(4):805-818.
    [32] Kalueff AV., Lehtimaki KA., Ylinen A., Honkaniemi J., Peltola J. Intranasal administration of human IL-6 increases the severity of chemically induced seizures in rats. Neurosci Lett. 2004; 365(2):106-110.
    [33] Bernardino L., Ferreira R., Cristovao AJ., Malva JO.Inflammation and neurogenesis in temporal lobe epilepsy.Curr Drug Targets CNS Neurol Disord. 2005;4(4):349-360.
    [34] Conroy SM., Nguyen V., Quina LA., Blakely-Gonzales P., Netzeband JG., Gruol DL. Interleukin-6 produces neuronal loss in developing cerebellar granule neuron cultures. J Neuroimmunol. 2004;155(1-2):43-54.
    [35] Qiu Z., Parsons KL., Gruol DL. Interleukin-6 selectively enhances the intracellular calcium response to NMDA in developing CNS neurons. J Neurosci. 1995;15(10):6688-6699.
    [36] Campbell IL., Abraham CR., Masliah E., Mucke L.Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6.Proc Natl Acad Sci USA. 1993;90(21): 10061-10065.
    [37] Steffsen SC., Campbell IL., Henriksen SJ.Site-specific hippocampal patho- physiology due to cerebral overexpression of interleukin-6 in transgenic mice.Brain Res. 1994;652(1):149-153.
    [38] Samland H.,Huitron-Resendiz S., Masliah E., Criado J., Henriksen SJ., Campbell IL.Profound increase in sensitivity to glutamatergic but not cholinergic agonist-induced seizures in transgenic mice with astrocyte production of IL-6. J Neurosci Res.2003;73(2):176-187.
    [39] Lehtimaki KA., Peltola J., Koskikallio E., Honkaniemi J.Expression of cytokines and cytokine receptors in the rat brain after kainic acid-induced seizures.Brain Res Mol Brain Res. 2003;110(2):253-260.
    [40] Aarli, JA. Epilepsy and the immune system. Arch. Neurol. 2000;57, 1689-1692.
    [41] Hulkkonen J, Koskikallio E, Rainesalo S. The balance of inhibitory and excitatory cytokines is differently regulated in vivo and in vitro among therapy resistant epilepsy patients. Epilepsy Res 2004;59:199–205.
    [42] Rider LG., Thapa PB., Del Beccaro MA., Gale JL., Foy HM., Farwell JR. Cerebrospinal fluid analysis in children with seizures. Pediatr Emerg Care. 1995; 11:226-229.
    [43] Kang TC., Kim DS., Kwak SE., Kim JE., Won MH., Choi SY., Kwon OS. Epileptogenic roles of astroglial death and regeneration in the dentate gyrus of experimental temporal lobe epilepsy.Glia. 2006;54(4):258-271.
    [44] Sheng JG, Boop FA, Mrak RE.Increased neuronal beta amyloid precursor protein expression in human temporal lobe epilepsy: association with interle-ukin-1 alpha immunoreactivity. J Neurochem 1994;63:1872-1879.
    [45] Crespel A, Coubes P, Rousset MC. Inflammatory reactions in human med- ial temporal lobe epilepsy with hippocampal sclerosis.Brain Res.2002; 952: 159–169.
    [46] Choi J., Koh S. Role of brain inflammation in epileptogenesis.Yonsei Med J. 2008;49(1):1-18.
    [47] Liu ZS, Wang QW, Wang FL. Serum cytokine levels are altered in patients with West syndrome. Brain Dev 2001; 23:548–551.
    [48] Heiskala H. Community-based study of Lennox-Gastaut syndrome. Epilepsia 1997;38:526-531.
    [49] Prasad AN, Stafstrom CF, Holmes GL. Alternative epilepsy therapies: the ketogenic diet, immunoglobulins, and steroids. Epilepsia 1996;37 Suppl 1:S81-95.
    [50] Sinclair DB. Prednisone therapy in pediatric epilepsy. Pediatr Neurol 2003;28:194-8.
    [51] MaldonadoM,BaybisM,NewmanD. Expression of ICAM-1, TNF-alpha, NF kappa B, and MAP kinase in tubers of the tuberous sclerosis complex. Neurobiol Dis 2003;14:279–290.
    [52] Baranzini SE, Laxer K, Bollen A. Gene expression analysis reveals altered brain transcription of glutamate receptors and inflammatory genes in a patient with chronic focal (Rasmussen’s) encephalitis. J Neuroimmunol 2002;128:9–15.
    [53] Streit WJ. Microglial cells. In: Kettenmann H, Ransom BR. Neuroglia, New York: Oxford University Press, 2005; 60–71.
    [54] Streit WJ., Conde JR., Mariani CI. Role of microglia in the central nervous system's immune response.Neurol Res.2005;27(7):685-691.
    [55] Chew LJ., Takanohashi A.,Bell M. Microglia and inflammation: impact on developmental brain injuries.Ment Rerard Dev Disabil Res Rev. 2006;12(2):105-12.
    [56] Ahmad I,. Das AV,. J ames J. Neural stem cells in the mammalian eye: types and regulation. Semin Cell Dev Biol, 2004;(15):53- 62.
    [57] Yokoymaa A,Yang L,Itoh S,Mori K,Thnkaa J. Mieorglia,a Potnetial souere of neurons,asorteytes,and oligodendroeytes.Glia. 2004;45(l):96-104.
    [58] Anderson WR , Martella A , Drake ZM. Correlative transmission and scanning electron microscopy study of microglia activated by interferonr and tumor necrosis factoralpha in vitro. Path Res Pract. 1995; 191:134-141.
    [59] Sudo S , Tanaka J , Toku K. Neurons induce the activation of microglial cells in vitro. Exp Neurol.1998; 154: 499-510.
    [60] Dyer MA,. Livesey FJ,. oliver G. Proxl function cont rol s progenitor cell proliferation and horizontal cell genesis in t he mammalian retina. Nat Genet. 2003; 34:53-58.
    [61] Schwartz M., Butovsky O., Bruck W., Hanisch UK. Microglial phenotype: is the commitment reversible? Trends Neurosci. 2006;29(2):68-74.
    [62] Raivieh G Bohatsehek M,Kloss CU,Wemer A,Jnoes LL,Kreutzberg GW. Neuorglial aetivation repertoire in the injured brain:graded response,molecula rmechanisms and cues to Physiological function .Brain Res Brain Res Rev 1999; 30(l):77-105.
    [63] Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996;19(8):312-318.
    [64] Aloisi F., Ria F., Adorini L.Regulation of T-cell responses by CNSantigen-presenting cells: different roles for microglia and astrocytes. Immunol Today. 2000;21(3):141-147.
    [65] Dobrenis K. Microglia in cell culture and in transplantation therapy for central nervous system disease.Methods. 1998;16(3):320-344.
    [66] Nelson TS., Som., Lvai E. Mieorglia in diseases of the central nevrous system.Ann Med.2002:34(7-8):491-450.
    [67] Stolzing A , Wengner A , Grune T. Degradation of oxidized extracellular proteins by microglia . Arch Biochem Biophys. 2002;400 (2): 171–179.
    [68] Badan I, Buchhold B, Hamm A. Accelerated glial reactivity to s troke in aged rats correlates with reduced functional recovery.J Cereb Blood Flow Metab 2003;23(7):845-854.
    [69] Vezzani A., Ravizza T., Balosso S., Aronica E. Glia as a source of cytokines: implications for neuronal excitability and survival. Epilepsia. 2008;49 Suppl 2:24-32.
    [70] Van Noort JM. Human glial cell culture models of inflammation in the central nervous system. Drug Discov Today. 2006;11(1-2):74-80.
    [71] Becher B., Prat A., Antel JP. Brain-immune connection: immuno-regulatory properties of CNS-resident cells. Glia. 2000; 29(4):293-304.
    [72] Kalla R., Liu Z., Xu S., Kloss CU., Kohsaka S., Raivich G. Microglia and the early phase of immune surveillance in the axotomized facial motor nucleus: impaired microglial activation and lymphocyte recruitment but no effect on neuronal survival or axonal regeneration in macrophage-colony stimulating factor-deficient mice. J Comp Neurol. 2001;436(2):182-201.
    [73] Rezaie P,. Trillo-Pazos G,. Everall IP. Expression of beta-chemokines and chemokine receptors in human fetal astrocyte and microglial co-cultures: potential role of chemokines in the developing CNS. Glia. 2002; 37(1):64-75.
    [74] Flynn G,. Maru S,. Loughlin J. Regulation of chemokine receptor expression in human microglia and astrocytes. J Neuroimmunol, 2003; 136 (122):84-93.
    [75] Tan, J., Town, T., Paris, D., Mori, T., Suo, Z., Crawford, F., Mattson, M. P., Flavell, R. A., Mullan, M. Microglial activation resulting from CD40-CD40 interaction after beta-amyloid stimulation. Science. 1999; 286, 2352-2355.
    [76] Lutgens E., Lievens D., Beckers L., Donners M., Daemen M. CD40 and its ligand in atherosclerosis. Trends Cardiovasc Med. 2007;17(4):118-123.
    [77] Ferroni P., Santilli F., Guadagni F., Basili S., Davi G. Contribution of platelet-derived CD40 ligand to inflammation, thrombosis and neoangiogenesis. Curr Med Chem. 2007;14(20):2170-2180.
    [78] Benveniste, E. N., Nguyen, V. T., Wesemann, D. R. Molecular regulation of CD40 gene expression in macrophages and microglia. Brain. Behav. Immun. 2004; 18, 7-12.
    [79] Becker, A., Grecksch, G., Hoellt, V. Pentylentetrazol-kindling modulates stimulated dopamine release in the nucleus accumbens. Pharmacol. Biochem. Behav. 2000;66, 425 – 428.
    [80] Tan, J., Town, T., Crawford, F., Mori, T., DelleDonne, A., Crescentini, R., Obregon, D., Mullan, M. J. Role of CD40 ligand in amyloidosis in transgenic Alzheimer’s mice. Nat. Neurosci. 2002; 5, 1288-1293.
    [81] Grammer AC., Lipsky PE.CD40-mediated regulation of immune responses by TRAF-dependent and TRAF-independent signaling mechanisms.Adv Immunol 2000; 76:61-178.
    [82] Chen K., Huang J., Gong W., Zhang L., Yu P., Wang JM. CD40/CD40L dyad in the inflammatory and immune responses in the central nervous system. Cell Mol Immunol. 2006 Jun;3(3):163-169.
    [83] Harnett MM. CD40: a growing cytoplasmic tale. Sci Stke. 2004;2004: 25.
    [84] Geldart T, Illidge T. Anti-CD40 monoclonal antibody. Leuk Lymphoma. 2005; 46:1105-1113.
    [85] Wischhusen J, Schneider D, Mittelbronn M. Death receptor-mediated apoptosis in human malignant glioma cells: modulation by the CD40/CD40L system. J Neuroimmunol. 2005;162:28-42.
    [86] Zhao L., Stordeur P., De Lavareille A. CD40 engagement on endothelial cells promotes tissue factor-dependent procoagulant activity. Thromb Haemost. 1998;79:1025-1028.
    [87] Mach F., Schonbeck U., Sukhova GK.Reduction of athersclerosis in mice by inhibition of CD40 signalling. Nature. 1998;394:200-203.
    [88] Nguyen VT, Benveniste EN. Involvement of STAT-1 and its family members in interferon-γ induction of CD40 transcription in microglia/macrophages. J Biol Chem. 2000;275:23674-23684.
    [89] Okuno T., Nakatsuji Y., Sakoda S. Loss of dopaminergic neurons by the induction of inducible nitric oxide synthase and cyclooxygenase-2 via CD 40: relevance to Parkinson's disease. J Neurosci Res. 2005;81(6):874-882.
    [90] Ruan, Y., Rabizadeh, S., Camerini, D., Bredesen, D. E. Expression of CD40 induces neural apoptosis. J. Neurosci. Res. 1997; 50, 383-390.
    [91] Sergio R. Biology of human Th1 and Th2 cells. J Clin Immunol.1995; 15: 121-129.
    [92] Karman K, Hughes CC, Schechner J. CD40 on human endothelia cells: inducibility by cytokines and functional regulation of adhesion molecule expression. Proc Natl Acad Sci USA , 1995 , 92 :4342-4346.
    [93] Masumoto T., Yokoi K., Mukaida N.Pivotal role of interleukin-8 in the acute respiratory distress syndrome and cerebral reperfusion injury. JLeukoc Biol. 1997;62:581-587.
    [94] Tan J, Town T, Mullan M. CD40-CD40L interaction in Alzheimer's disease. Curr Opin Pharmacol. 2002;2:445-451.
    [95] Qin H, Wilson CA, Lee SJ, Zhao X, Benveniste EN. LPS induces CD40 gene expression through the activation of NF-κB and STAT-1α in macrophages and microglia. Blood. 2005;106: 3114-3122.
    [96] Tan, J., Town, T., Mullan, M. Ligation of microglial CD40 results in p44/42 mitogen-activated protein kinase-dependent TNF-αlpha production that is opposed by TGF-beta 1 and IL-10. J. Immunol. 1999; 163, 6614 – 6621.
    [97] Schaffer A., Cerutti A., Casali P. The evolutionarily conserved sequence upstream of the human Ig heavy chain S gamma 3 region is an inducible promoter: synergistic activation by CD40 ligand and IL-4 via cooperative NF-kappa B and STAT-6 binding sites. J Immunol. 1999;162(9):5327-5336.
    [98] Siebenlist U , Franzoso G, Brown K. St ructure ,regulation and function of NF -kB . Annu Rev Cell Biol ,1994; 10 (3) :405- 455.
    [99] Townsend KP., Town T., Lue LF., Shytle D., Sanberg PR., Morgan D., Fernandez F., Flavell RA., Tan J.CD40 signaling regulates innate and adaptive activation of microglia in response to amyloid beta-peptide. Eur J Immunol. 2005;35(3):901-910.
    [100] Ponomarev, E. D., Shriver, L. P., Dittel, B. N., 2006. CD40 expression by microglial cells is required for their completion of a two-step activation process during central nervous system autoimmune inflammation. J. Immunol. 176, 1402 – 1410.
    [101] D,Alimonte I., Flati V., D,Auro M., Toniato E., Martinotti S.Guanosine inhibits CD40 receptor expression and function induced by cytokines and beta amyloid in mouse microglia cells. J Immunol. 2007;178(2):720-731.
    [102] Calingasan NY, Erdely HA, Altar CA. Identification of CD40 ligand in Alzheimer's disease and in animal models of Alzheimer's disease and brain injury. Neurobiol Aging. 2002;23: 31-39.
    [103] Ait-Ghezala G, Mathura VS, Laporte V. Genomic regulation after CD40 stimulation in microglia: relevance to Alzheimer's disease. Brain Res Mol Brain Res. 2005;140:73-85.
    [104] Togo T, Akiyama H, Kondo H. Expression of CD40 in the brain of Alzheimer's disease and other neurological diseases. Brain Res. 2000;885:117-121.
    [105] Mocali A, Cedrola S, Della Malva N. Increased plasma levels of soluble CD40, together with the decrease of TGFβ1, as possible differential markers of Alzheimer disease. Exp Gerontol. 2004;39:1555-1561.
    [106] Brok HP., van Meurs M., Blezer E. Prevention of experimental autoimmune encephalomyelitis in the common marmoset (Callithrix jacchus) using a chimeric antagonist monoclonal antibody against human CD40 is associated with altered B cell responses. J Immunol.2001;167 (5): 2942-2949.
    [107] Filion LG., Matusevlcius D., Graziani-Bowering GM., Kumar A., Freedman MS. Monocyte-derived IL12, CD86 (B7-2) and CD40L expression in relapsing and progressive multiple sclerosis.Clin Immunol. 2003 Feb;106(2):127-138.
    [108] Ponomarev ED., Shriver LP., Dittel BN. CD4o expresion by microglial cells is required for their completion of a two-step activation process during centrat nervous system autoitmnune intlammation. J Immunol.2006;176(3):1402- 1410.
    [109] t Hart BA., Blezer EL., Brok HP., Boon L., de Boer M., Bauer J., LamanJD. Treatment with chimeric anti-human CD40 antibody suppresses MRI-detectable inflammation and enlargement of pre-existing brain lesions in common marmosets affected by MOG-induced EAE.J Neuroimmunol. 2005; 163(1-2): 31-39.
    [110] Lundeberg T, Eriksson SV , Theodorsson E. Neuroimmunomodularory effects of acupuncture in mice. Neurosc letters ,1991; 128 :161-164.
    [111] Akimto T., Nakahori C., Aizawa K., Kimura F., Fukubavashi T., Kono I. Acupuncture and responses of immunologic and endocrine markers during competition. Med Sci Sports Exerc. 2003; 35(8):1296-302.
    [112] 程晓东,姜建伟,吴根诚,等; 针刺调节创伤大鼠脾淋巴细胞诱生 IL-2活性水平的动态观察. 针刺研究; 1997,22(1-2): 95-96.
    [113] Kavoussi B., Ross B E. The neuroimmune basis of anti-inflammatory acupuncture. Integr Cancer Ther. 2007; 6(3):251-257.
    [114] 贺建业, 林建华, 范建中. 现代康复治疗与物理治疗对强直性脊柱炎的疗效观察. 现代康复, 2000; 4(11):697
    [115] 黄诚, 陈汉平, 秦秀娣, 等. 针刺抑制老年大鼠脑与垂体细胞因子基因表达. 针刺研究, 1998;23 (1):24
    [116] 谌剑飞, 梁浩荣, 马雅玲, 等. 针刺对糖尿病并发急性脑梗死血浆白介素-6 及肿瘤坏死因子-α 水平的影响. 中国中西医结合急救杂志,2001 ;8 (2) :92
    [117] 吴焕淦, 陈汉平, 周丽斌. 针灸治疗大鼠溃疡性结肠炎的分子机制. 上海针灸杂志,1998;17(6): 30
    [118] Moon PD., Jeong HJ., Kim SJ., Kim HM., Um JY. Use of electroacupuncture at ST36 to inhibit anaphylactic and inflammatory reaction in mice. Neuroimmunomdulation. 2007;14(1):24-31.
    [119] Lee JH., Jang KJ., Lee YJ., Choi YH., Choi BT. Electroacupunctureinhibits inflammatory edema and hyperalgesia through regulation of cyclooxygenase synthesis in both peripheral and central nociceptive sites. Am J Chin Med. 2006;34(6):981-988.
    [120] Sekido R., Ishimaru K., Sakita M. Corticotropin-Releasing Factor and Interleukin-1β are Involved in the Electroacupuncture-Induced Analgesic Effect on Inflammatory Pain Elicited by Carrageenan. Am J Chin Med. 2004;32(2):269-279.
    [121] Zhang SP., Zhang JS., Yung KK., Zhang HQ. Non-opioid-dependent anti-inflammatory effects of low frequency electroacupuncture. Brain Res Bull. 2004; 62(4):327-334.
    [122] 吴焕淦, 潘英英. 针灸治疗溃疡性结肠炎研究进展.针灸杂志, 1998;17 (5) :44.
    [123] 王光义, 蒋乃昌, 贺志光. 头针对脑梗塞患者血浆 ET-1、MDA、NO 的影响. 中国针灸, 2001;21 (4) :241.
    [124] 赵仓焕, 王虹英, 杨介宾. 电针对佐剂性关节炎大鼠脾细胞 IL-1 和IL-2 活性的影响. 上海针灸杂志, 2001; 20 (2):34.
    [125] 曹东元,牛汉璋,赵曼.穴位刺激初级传入反射引起 SP 释放.中国针灸,2001; 21(10):623.
    [126] 赵仓焕, 杨介宾, 宋开源. 电针对佐剂性关节炎大鼠炎症局部 β-EP 和 LEK 含量的影响. 中国中医基础医学杂志,1999;5 (8):58.
    [127] 陈永红,吕琳,陈红. 穴位刺血对实验性变应性鼻炎鼻粘膜组胺激发阈值的影响. 中国针灸,2000; 20 (2):115.
    [128] 董晓彤, 王双昆, 任小群. 针刺治疗震颤麻痹对患者血中 LPO 和SOD 含量的影响. 针刺研究,2001;26 (1):28.
    [129] 姜杰, 常向明, 唐勇. 针刺对颈椎病患者 LPO、SOD 代谢的影响. 上海针灸杂志,2000;19 (5):11.
    [130] 刘一凡, 石学敏, 韩景献. 针刺对快速老化脑萎缩模型小鼠脑抗氧化酶活性的影响. 中国针灸,2002;22 (5):327.
    [131] Kriz J. Inflammation in ischemic brain injury: timing is important. Crit Rev Neurobiol. 2006;18(1-2):145-57.
    [132] Rojo LE., Fernandez JA., Maccioni AA., Jimenez JM., Maccioni RB. Neuroinflammation:implications for the pathogenesis and molecular diagnosis of Alzheimer's disease. Arch Med Res. 2008;39(1):1-16.
    [133] Hohlfeld R., Kerschensteiner M., Meinl E. Dual role of inflammation in CNS disease. Neurology. 2007;68(22 Suppl 3):S58-63; discussion S91-6.
    [134] 霍则军,张莉,钱瑞琴. 针刺对全脑缺血再灌注大鼠外周血 WBC 和细胞因子的影响. 上海针灸杂志, 2003; 21 (20):41 - 43.
    [135] 许贞峰, 吴根诚, 曹晓定. 电针对局灶性脑缺血/再灌注大鼠大脑皮层IL -1Rl mRNA 和蛋白表达的调节.上海针灸杂志, 2001; 20 (5):38- 40.
    [136] Donnellan CP., Shanley J. Comparison of the effect of two types of acupuncture on quality of life in secondary progressive multiple sclerosis: a preliminary single-blind randomized controlled trial.Clin Rehabil. 2008; 22(3):195-205.
    [137] Carter GT., Galer BS. Advances in the management of neuropathic pain. Phys Med Rehabil Clin N Am. 2001;12(2):447-59.
    [138] Bianchi M., Rossoni G., Sacerdote P., Berti F. Carbamazepine exerts anti-inflammatory effects in the rat. Eur J Pharmacol. 1995; 294(1):71-74.
    [139] Chapman V., Dickenson AH. Inflammation reveals inhibition of noxious responses of rat spinal neurones by carbamazepine. Neuroeport. 1997; 8(6):1399-404
    [140] Matoth I., Pinto F., Sicsic C., Brenner T. Inhibitory effect of carbamazepine on inflammatory mediators produced by stimulated glialcells.Neurosci Res. 2000; 38(2):209-212.
    [141] Sawynok J, Liu XJ. Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol. 2003;69:313–340.
    [142] Purdy, R.E., R-M. Julien, A.S. Fairhurst and M.D. Terry. Effect of carbamazepine on the in vitro uptake and release of norepinephrine in adrenergic nerves of rabbit aorta and in whole brain synaptosomes, Epilepsia 1977; 18, 251.
    [143] Olpe, H. and R.S.G. Jones. The action of anticonvulsant drugs on the firing of locus coeruleus neurons: selective, activating efiect of carbamazepine, Eur. J. Pharmacol. 1983; 91, 107.
    [144] Chen PS., Wang CC., Bortner CD., Peng GS., Wu X., Pang H., Lu RB. Valproic acid and other histone deacetylase inhibitors induce microglial apoptosis and attenuate lipopolysaccharide-induced dopaminergic neurotoxicity. Neuroscience. 2007;149(1):203-212.
    [145] Sinn DI., Kim SJ., Chu K., Jung KH., Lee ST., Song EC., Kim JM., Park DK. Valproic acid-mediated neuroprotection in intracerebral hemorrhage via histone deacetylase inhibition and transcriptional activation. Neurobiol Dis. 2007; 26(2):464-472.
    [146] Peng GS., Li G., Tzeng NS., Chen PS., Chuang DM., Hsu YD., Yang S., Hong JS. Valproate pretreatment protects dopaminergic neurons from LPS-induced neurotoxicity in rat primary midbrain cultures: role of microglia. Brain Res Mol Brain Res. 2005;134(1):162-169.
    [147] Kim HJ., Rowe M., Ren M., Hong JS., Chen PS., Chuang DM. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther. 2007;321(3):892-901.
    [148] Glauben R., Batra A., Fedke J., Zeitz M., Lehr HA., Leoni F., Mascagni P. Histone hyperacetylation is associated with amelioration of experimental colitis in mice. J Immunol. 2006; 176(8):5015-22.
    [149] Costa C., Martella G., Picconi B., Prosperetti C., Pisani A., Di Filippo M., Pisani F., Bernardi G., Calabresi P. Multiple mechanisms underlying the neuroprotective effects of antiepileptic drugs against in vitro ischemia. Stroke. 2006;37(5):1319-1326.
    [150] Lagrue E., Chalon S., Bodard S., Saliba E., Gressens P., Castelnau P. Lamotrigine is neuroprotective in the energy deficiency model of MPTP intoxicated mice. Pediatr Res. 2007 ;62(1):14-19.
    [151] Johannessen Landmark C. Antiepileptic drugs in non-epilepsy disorders: relations between mechanisms of action and clinical efficacy. CNS Drugs. 2008;22(1):27-47.
    [152] Minghetti, L., Levi, G. Microglia as effector cells in brain damage and repair:focus on prostanoids and nitric oxide.Prog Neurobiol.1998;54, 99-125.
    [153] Gonzalez-Scarano, F., Baltuch, G. Microglia as mediators of inflammatory and degenerative diseases. Annu. Rev. Neurosci. 1999; 22, 219-240.
    [154] Aloisi F. Immune function of microglia. Glia ,2001 ,36(2) :165-179.
    [155] Hanisch UK. Microglia as a source and target of cytokines. Glia, 2002,40 (2):140-155.
    [156] Racine, R. J. Modification of seizure activity by electrical stimulation: IIR Motor seizure. Electroencephalogr. Clin. Neurophysiol. 1972; 32, 281- 94.
    [157] Georg W. Kreutzberg. Microglia: a sensor for pathological events in the CNS. Glia. 1996; 19(8): 312-318.
    [158] Stence N, Waite M, Dailey ME. Dynamics of microglial activation: a confocal time-lapse analys is in hippocampal s lices .Glia 2001;33 (3):256-266
    [159] Li WW, Setzu A, Zhao C. Minocycline-mediated inhibition of microglia activation impairs oligodendrocyte progenitor cell responsesand remyelination in a non-immune model of demyelination. J Neuroimmunol 2005; 158(1): 58-66
    [160] Tawfik VL, Nutile-McMenemy N, Lacroix-Fralish ML, et al. Efficacy of propentofylline, a glial modulating agent, on exis ting mechanical allodynia following peripheral nerve injury.Brain Behav Immun 2007;21(2):238-246
    [161] Ju KR, Kim HS, Kim JH,et al. Retinal glial cell responses and Fas /FasL activation in rats with chronic ocular hypertens ion. Brain Res 2006; 1122 (1): 209-221
    [162] Vezzani, A., Conti, M., De Luigi, A., Ravizza, T., Marchesi, F., De Simoni, M.G. Interleukin-1beta immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: functional evidence for enhancement of electrographic seizures. 1999; 19(12): 5054-5065.
    [163] Ravizza, T., Gagliardi, B., Noe, F., Boer, K., Aronica, E., Vezzani, A. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis. 2008; 29(1): 142-160.
    [164] Wang MJ , Kuo JS, Lee WW. Trans lational event mediates differential production of tumor necros is factor-alpha in hyaluronan-s timulated microglia and macrophages . J Neurochem 2006; 97(3): 857-871.
    [165] Casal C, Serratosa J , Tusell JM. Relationship between beta-AP peptide aggregation and microglial activation.Brain Res 2002;928(1-2):76-84.
    [166] Kim YS, Joh TH. Microglia, major player in the brain inflammation: their roles in the pathogenes is of Parkinson's disease.Exp Mol Med 2006;38-(4):333-347.
    [167] Tikka, T.M.Koistinaho, J. E Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia.. J Immunol. 2001;166(12):7527-7533.
    [168] Jung, K. H., Chu, K., Lee, S. T., Kim, J. Y., M., Lee, S. K., Roha, J. K. Cyclooxygenase-2 inhibitor, celecoxib, inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neurobiol. Dis. 2006; 23, 237 – 246.
    [169] Ishikawa, M., Vowinkel, T., Stokes, K. Y., Nanda, A., Granger, DN. CD40/CD40 ligand signaling in mouse cerebral microvasculature after focal ischemia/reperfusion.Circulation.2005;111, 1690 – 1696.
    [170] Cha JK, Jeong MH, Jang JY, Bae HR, Lim YJ, Kim JS, Kim SH, Kim JW. Serial measurement of surface expressions of CD63, P-selectin and CD40 ligand on platelets in atherosclerotic ischemic stroke: a possible role of CD40 ligand on platelets in atherosclerotic ischemic stroke. Cerebrovasc Dis. 2003;16:376 –382.
    [171] Garlichs CD, Kozina S, Fateh-Moghadam S, Handschu R, Tomandl B, Stumpf C, Eskafi S, Raaz D, Schmeisser A, Yilmaz A, Ludwig J, Neundorfer B, Daniel WG. Upregulation of CD40-CD40 ligand (CD154) in patients with acute cerebral ischemia. Stroke. 2003;34:1412–1418.
    [172] ,t Hart BA., Hintzen RQ., Laman JD. Preclinical assessment of therapeutic antibodies against human CD40 and human interleukin-12/23p40 in a non- human primate model of multiple sclerosis. Neurodegener Dis. 2008;5(1); 38-52.
    [173] Wu H , Friedman WJ , Dreyfus CF. Differential regulation of neurotrophin expression in basal forebrain ast rocytes by neuronal signals. J Neurosci Res ,2004; 76 (1) :76-85.
    [174] Lin SC , Bergles DE. Synaptic signaling between neurons and glia. Glia , 2004; 47 (3):290-298.
    [175] Komyei Z , Szlavik V , Szabo B. Humoral and contact interactions in ast- roglia/ stem cell co-cultures in t he course of glia-induced neurogenesis. Glia. 2005; 49 (3) :430-444.
    [176] Khanna R., Roy L., Schlichter LC. K+ channels and the microglial respiratory burst. Am J Physicol Cell Phy sicol. 2001; 280(4):C796-806.
    [177] Becher, B., Durell, B. G., Miga, A.V., Hickey, W. F., Noelle, R. J. The clinical course of experimental autoimmune encephalomyelitis and inflammation is controlled by the expression of CD40 within the central nervous system. J. Exp. Med. 2001; 193, 967 – 974.
    [178] Zijlstra FJ., Lange I., Klein J. Antiinflammation actions of acupuncture. Mediators Inflamm 2003; 12:59–69.
    [179] 石德光,杜欣,胡森,针刺对慢性炎症疾病中炎症介质的影响. 中国针灸,2003;23(7): 429-431.
    [180] 王津存, 黄远桂,温晓妮等,电针穴位刺激对致癎大鼠海马齿状回神经发生及行为学变化影响的实验研究. 第四军医大学学报,2006; 27 (5): 441-444.
    [181] Tecoma E S. Oxcarbazepine. Epilepsia, 1999;40 ( Suppl5) :S37-S46.
    [182] Mclean M J , Schmutz M, Wamil AV. Oxcarbazepine :mechanisms of action. Epilepsia,1994;35 ( Suppl 3) : S5-S9.
    [183] 李忠仁主编《实验针灸学》中国中医药出版社,第一版. 2003;329.
    [184] Sato A, Li P, Campbell JL (Eds). Acupuncture: is there a physiological basis? Excerpta Medica International Congress Series 1238. Amsterdam: Elsevier Science, 2002.
    [185] Blom M, Lundeberg T, Dawidson I, Angmar-Mansson B. Effects on local blood flux of acupuncture stimulation used to treat xerostomia in patients suffering from Sjogren’s syndrome. J Oral Rehab 1993; 20: 541-548.
    [186] Jansen G, Lundeberg T, Kjartansson J, Samuelson UE. Acupuncture and sensory neuropetides increase cutaneous blood flow in rats. Neurosci Lett 1989; 97: 305-309.
    [187] Rogers PA, Schoen AM, Limehouse J. Acupuncture for immunemediated disoders. Literature review and clinical applications. Probl Vet Med 1992; 4: 162-193.
    [188] Pitkanen A. Efficacy of current antiepileptics to preventneurodegenerat- ion in epilepsy models. Epilepsy Res. 2002; 50(1-2):141-160.
    [189] Pitkanen A. Drug-mediated neuroprotection and antiepileptogenesis. Neurology. 2002; 59(9 Suppl 5):S27-33.
    [190] Jutila L, Immonen A, Partanen K. Neurobiology of epileptogenesis in the temporal lobe. Adv Tech Stand Neurosurg 2002;27:5–22.
    [191] Acharva MM., Hattiangady B., Shetty AK. Progress in neuroprotective strategies for preventing epilepsy. Prog Neurobiol. 2007;
    [192] Tomic MA., Vuckovic SM., Ugresic N., Prostran MS., Boskovic B. Perip- heral anti-hyperalgesia by oxcarbazepine: involvement of adenosine A1 receptors.Pharmazie.2006; 61(6):566-568.
    [193] Tudur SC., Marson AG., Williamsonl PR. Multiple treatment comparisons in epilepsy monotherapy trials.Trials. 2007 Nov 5;8(1):34.
    [194] Raju GP., Sarco DP., Poduri A., Takeoka M. Oxcarbazepine in children with nocturnal frontal-lobe epilepsy. Pediatr Neurol. 2007;37(5):345-349.
    [195] 骆明军, 程玲, 徐丽等,电针对缺血再灌注大鼠脑内 MG 活化的影响. 中国临床康复. 2005; 9(37): 44-46.
    [196] Kang JM., Park HJ., Choi YG., Choe IH., Park JH., Kim YS., Lim S. Acupuncture inhibits microglial activation and inflammatory events in the MPTP-induced mouse model. Brain Res. 2007; 1131(1): 211-219.
    [197] Guo J., Liu J., Fu W., Ma W., Hu J. The effect of electroacupuncture on spontaneous recurrent seizure and expression of GAD67 mRNA in dentate gyrus in a rat model of epilepsy Brain Res. 2008; 1188: 165-172.
    [198] Yang, R., Huang, Z.N., Cheng, J.S. Anticonvulsion effect of acupuncture might be related to the decrease of neuronal and inducible nitric oxide synthases. Acupunct. Electro-Ther. Res. 2000; 25, 137–143.
    [199] Chao, D.M., Chen, G., Cheng, J.S. Melatonin might be one possible medium of electroacupuncture anti-seizures. Acupunct. Electro-Ther. Res. 2001; 26, 39–48.
    [200] 许能贵,周逸平,许冠荪等,电针大椎、百会穴对局灶性脑缺血大鼠脑血流量和自发脑电的影响. 中国中医药科技,2001; 8(1): 3-4.
    [201] Pitka¨nen A, Sutula T. Is epilepsy a progressive disease? Prospects for new therapeutic approaches in temporal lobe epilepsy. Lancet Neurol 2002;1:173–181.
    [202] Caso JR., Lizasoain I., Lorenzo P., Moro MA., Leza JC. The role of tumor necrosis factor-alpha in stress-induced worsening of cerebral ischemia in rats. Neuroscience. 2006;142(1):59-69.
    [203] McCoy MK., Martinez TN., Ruhn KA., Botterman BR., Tansey MG. Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson's disease. J Neurosci. 2006;26(37):9365-75.
    [204] Bermpohl D., You Z., Lo EH., Kim HH., Whalen MJ. TNF alpha and Fas mediate tissue damage and functional outcome after traumatic brain injury inmice. J Cereb Blood Flow Metab. 2007;27(11):1806-1818.
    [205] Sriram K., Matheson JM., Benkovic SA., Miller DB., Luster MI., O,Callaghan JP. Deficiency of TNF receptors suppresses microglial activation and alters the susceptibility of brain regions to MPTP-induced neurotoxicity: role of TNF-alpha. FASEB J. 2006 Apr;20(6):670-682.
    [206] 戴黎萌,李力仙. TNF 的中枢神经系统来源. 国外医学.免疫学分册. 1999; 22 (4) : 210-212.
    [207] Valesini G., Iannuccelli C., Marocchi E., Pascoli L., Scalzi V., Di Franco M. Biological and clinical effects of anti-TNF-αlpha treatment. Autoimmun Rev. 2007;7(1):35-41.
    [208] Sheskin, J. Thalidomide in the treatment of lepra reaction. Clin Pharmacol Ther. 1965; 6: 303-310.
    [209] Kumar S, Witzig TE and Rajkumar SV. Thalidomide as an anticancer agent. J Cell Mol Med. 2002; 6: 160-174.
    [210] Eger K, Jalalian M, Verspohl EJ, Lupke NP. Synthesis, central nervous system activity and teratogenicity of a homothalidomide. Arzneimittelforschung 1990; 40: 1073-1075.
    [211] Kling J. Redeeming thalidomide. Modern Drug Discovery. 2000; 3: 35-36.
    [212] Clinckers R., Smolders I., Meurs A., Ebinger G., Michotte Y. Quantitative in vivo microdialysis study on the influence of multidrug transporters on the blood-brain barrier passage of oxcarbazepine: concomitant use of hippocampal monoamines as pharmacodynamic markers for the anticonvulsant activity. J Pharmacol Exp Ther. 2005;314(2):725-731.
    [213] Henshall DC., Murphy BM. Modulators of neuronal cell death in epilepsy. Curr Opin Pharmacol. 2008;8(1):75-81.
    [214] Liang LP., Beaudoin ME., Fritz MJ., Fulton R., Patel M. Kainate-inducedseizures, oxidative stress and neuronal loss in aging rats. Neuroscience. 2007;147(4):1114-8.
    [215] Galvis-Alonso OY., Garcia-Cairasco N. Limbic epileptogenicity, cell loss and axonal reorganization induced by audiogenic and amygdala kindling in wistar audiogenic rats (WAR strain).Neuroscience. 2004;125(3):787-802
    [216] De Bock F, Dornand J, Rondouin G. Release of TNF alpha in the rat hippocampus following epileptic seizures and excitotoxic neuronal damage. Neuroreport 1996;7:1125–1129.
    [217] Borges K, GearingM, McdermottD L. Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model? Exp Neurol, 2003, 182 (1) : 21 - 34.
    [218] Brandt C, GlienM, Potschka H. Epileptogenesis and neuropathology after different types of status epilepticus induced by prolonged electrical stimulation of the basolateral amygdala in rats . Epilepsy Res, 2003, 55 (1 - 2) : 83 - 103.
    [219] Droz B. Protein metabolism in nerve cells. Int Rev Cytol. 1969;25:363-90.
    [220] Jung, K. H., Chu, K., Kim, M., Jeong, S. W., Song, Y. M., Lee, S. T., Kim, J. Y., Lee, S. K., Roh, J. K.Continuous cytosine b-D-arabinofuranoside infusion reduces ectopic granule cells in adult rat hippocampus with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Eur. J. Neurosci. 2004;19, 3219 – 3226.
    [221] Kralic JE., Ledergerber DA., Fritschy JM. Disruption of the neurogenic potential of the dentate gyrus in a mouse model of temporal lobe epilepsy with focal seizures. Eur J Neurosci. 2005;22(8):1916-1927.
    [222] Holopainen JE. Seizures in the developing brain: Cellular and molecular mechanisms of neuronal damage, neurogenesis and cellularreorganization.Neurochem Int. 2007.
    [223] Vital A., Rivel J., Loiseau H., Marchal C., Rougier A., Vital C. Histopathology of 110 cortical resections for drug-resistant epilepsy. Rev Neurol (Paris). 1994;150(1):33-8.
    [224] Wolf HK., Campos MG., Zentner J., Hufnagel A., Schramm J., Elger CE., Wiestler OD. Surgical pathology of temporal lobe epilepsy. Experience with 216 cases. J Neuropathol Exp Neurol. 1993;52(5):499-506.
    [225] Johansson S., Bohman S., Radesater AC., Oberg C., Luthman J. Salmonella lipopolysaccharide (LPS) mediated neurodegeneration in hippocampal slice cultures. Neurotox Res. 2005;8(3-4):207-220.
    [226] Bate C., Kempster S., Last V., Williams A. Interferon-gamma increases neuronal death in response to amyloid-beta1-42.J Neuroinflammation. 2006;3:7
    [227] Ali, D.W., Salter, M.W. NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity. Curr. Opin. Neurobiol. 2001; 11, 336–342.
    [228] Chung SY., Han SH. Melatonin attenuates kainic acid-induced hippocampal neurodegeneration and oxidative stress through microglial inhibition.J Pineal Res. 2003;34(2):95-102
    [229] Calabresi P, Cupini LM, Centonze D, Pisani F, Bernardi G. Antiepileptic drugs as a possible neuroprotective strategy in brain ischemia. Ann Neurol 2003;53:693-702.
    [230] Willmore LJ. Antiepileptic drugs and neuroprotection: current status and future roles. Epilepsy Behav. 2005;7 Suppl 3:S25-8.
    [231] Mathern GW, Babb TL, Armstrong DL.Hippocampal sclerosis.In: Engel JJ, Pedley TA, eds. Epilepsy: a comprehensive text book Philadelphia:Lippincott-Raven, 1997:133–155.
    [232] Dam AM. Epilepsy and neuron loss in the hippocampus. Epilepsia.1980; 21:617-629.
    [233] Cendes, F., Andermann, F., Gloor, P., Lopes, C.I., Andermann, E., Melanson, D., Jones, G.M., Robitaille, Y., Evans, A., Peters, T., 1993. Atrophy of mesial structures in patients with temporal lobe epilepsy: cause or consequence of repeated seizures? Ann. Neurol. 34, 795–801.
    [234] Mathern, G.W., Pretorius, J.K., Babb, T.L. Influence of the type of initial precipitating injury and at what age it occurs on course and outcome in patients with temporal lobe seizures. J. Neurosurg. 1995; 82, 220–227.
    [235] Leite JP., Garcia-Cairasco N., Cavalheiro EA. New insights from the use of pilocarpine and kainate models. Epilepsy Res. 2002 Jun;50(1-2):93-103.
    [236] Hort J , Brozek G , Mares P. Cognitive functions after pilocarpine-induced status epilepticus : changes during silent period precede appearance of spontaneous recurrent seizures. Epilepsia.1999; 40 :1177.
    [237] Sarkisian MR. Overview of the Current Animal Models for Human Seizure and Epileptic Disorders. Epilepsy Behav. 2001; 2(3):201-216.
    [238] Suchomelova, L., Baldwin, R. A., Wasterlain, C. G., 2006. Treatment of experimental status epilepticus in immature rats: dissociation between anticonvulsant and antiepileptogenic effects. Pediatr. Res. 59, 237-243.
    [239] Stafstrom, C. E., Holmes, G. L., Thompson, J. L., 1993. MK801 pretreatment reduces kainic acid-induced spontaneous seizures in prepubescent rats. Epilepsy. Res. 14, 41-48.
    [240] Khalilov, I., Holmes, G. L., Ben-Ari, Y., 2003. In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures. Nat. Neurosci. 6, 1079-1085.
    [241] Montero M., Nielsen M., Ronn LC., Moller A., Noraberg J., Zimmer J. Neuroprotective effects of the AMPA antagonist PNQX in oxygen-glucose deprivation in mouse hippocampal slice cultures and global cerebral ischemia in gerbils. Brain Res. 2007;1177:124-35.
    [242] Blandini F., Nappi G., Greenamyre JT. Subthalamic infusion of an NMDA antagonist prevents basal ganglia metabolic changes and nigral degeneration in a rodent model of Parkinson's disease. Ann Neurol. 2001;49(4):525-529.
    [243] Velisek L., Moshe SL. Temporal Lobe Epileptogenesis and Epilepsy in the Developing Brain:Bridging the Gap Between the Laboratory and the Clinic. Progression,But inWhat Direction? Epilepsia. 2003;44 Suppl 12:51-59.
    [244] Rigoulot MA., Koning E., Ferrandon A., Nehlig A. Neuroprotective properties of topiramate in the lithium-pilocarpine model of epilepsy. J Pharmacol Exp Ther. 2004;308(2):787-795.
    [245] Lagace DC., Eisch AJ. Mood-stabilizing drugs: are their neuroprotective aspects clinically relevant? Psychiatr Clin North Am. 2005;28(2):399-414.
    [246] Kim ST.,Jeon S., Chung JH.Acupuncture inhibits kainic Acid-induced hippocampal cell death in mice.J Physiol Sci. 2008;58(1):31-38.
    [247] Li Q., Guo JC., Jin HB., Cheng JS., Yang R. Involvement of taurine in penicillin-induced epilepsy and anti-convulsion of acupuncture: a preliminary report. Acupunct Electrother Res. 2005;30(1-2):1-14.
    [248] Cakmak YO. Epilepsy, electroacupuncture and the nucleus of the solitary tract.Acupunct Med. 2006 ;24(4):164-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700