用户名: 密码: 验证码:
Axin在全反式维甲酸抗胶质瘤细胞增殖及促凋亡作用中的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:维甲酸类化合物(retinoids)是一类维生素A衍生物,包括维甲酸(retinoic?acid?RA)、维胺酸(retinamide)、维胺酯(retimid?ester)和天然维生素A(retinol)等。维生酸A对生命活动必不可少,它对胚胎发育、精子发生、视觉和细胞分化都有十分重要的作用。早期研究表明维生素A缺乏的动物易发生肿瘤。在饮食中加入药理学浓度的维生素能减少化学药物诱发肿瘤的发生率。维甲酸类化合物最引人注目的作用是预防及治疗一些恶性肿瘤,包括白血病、乳腺癌、皮肤癌、宫颈癌、中枢神经系统肿瘤等。给予RA或合成维甲酸类似物导致人的多种肿瘤细胞株或肿瘤异种移植物生长停止、凋亡和分化。全反式维甲酸属于第三代维甲酸,该维甲酸类化合物由于多烯肽侧链的改变及羧基方向不同分为两种异构体,即顺式维甲酸(cis-retinoic? acid? cisRA)及全反式维甲酸(all-trans? retinoic? acid?ATRA),其中全反式构型最为稳定和常见。RA及其衍生物主要通过其经典的核受体信号通路(RARs和RXRs)从三个方面发挥抗肿瘤作用:诱导肿瘤细胞分化,生长抑制和诱导肿瘤细胞的凋亡。大量的研究表明,RA介导的核受体信号转导通路与Wnt/beta-canetin等信号转导通路之间存在着的相互作用(talkcross),共同调控细胞的分化、增殖及凋亡。
     Axin(Axis inhibition)是1997年发现的小鼠Fused基因的编码产物,它是Wnt信号通路的重要的构架蛋白,它将进入细胞的信号整合并传给下游的效应分子,从而实现相应的生物学功能。迄今为止,研究发现Axin至少通过Wnt、、JNK、TGF-β及p53等信号通路中发挥重要作用。其生物学功能涉及胚胎发育、糖原代谢、肿瘤形成、细胞分化、细胞凋亡等方面。特别是近年来,Axin作为肿瘤抑制因子,引起人们广泛的兴趣。Axin过表达的转基因小鼠中出现不同组织器官大量细胞死亡,腺病毒转染野生型Axin基因到肿瘤细胞,可导致肿瘤细胞凋亡。我们实验室以往研究证实野生型小鼠Axin基因的过表达可抑制胶质瘤细胞C6的增殖并诱导其凋亡。近期研究表明Axin参与全反式维甲酸(all-trans retinoic acid ATRA)促胚胎癌细胞株分化的调节,提示Axin可能是维甲酸类化合物调控细胞增殖、分化、凋亡的一个重要的调节分子。
     胶质瘤是中枢神经系统最常见的肿瘤(约占原发性中枢神经系统肿瘤的42%),其中四分之三是恶性肿瘤。大量的临床及实验研究表明RA可以有效地降低胶质瘤的复发率,提高患者的生存率。明确Axin在ATRA调控胶质瘤的增殖、凋亡中的作用,将有助于我们进一步探讨胶质瘤的发病机理并为其生物学治疗提供依据。
     目的:探讨Axin基因是否参与ATRA介导的胶质瘤细胞株的增殖、凋亡及其作用机制。
     方法:(1)治疗量的ATRA处理胶质瘤C6、U251细胞株,采用MTT比色法绘制细胞生长曲线、平板克隆形成实验对细胞克隆形成能力进行了检测、BrdUrd掺入实验检测细胞的增殖能力、流式细胞仪测定细胞增殖、凋亡状态的变化。(2)应用免疫荧光检测β-catenin在细胞内的定位、RT-PCR及Western blot方法分别检测Axin、p53、β-catenin的mRNA及其蛋白质的表达的变化。(3)胶质瘤C6细胞用脂质体转染法瞬时转染rAxin,流式细胞仪检测细胞周期及凋亡的变化;采用免疫荧光染色定位β-catenin、RT-PCR及Western blot方法分别检测稳/瞬转C6细胞株细胞中Axin、p53、β-catenin的mRNA及其蛋白质的表达的变化,研究过表达Axin是否类似ATRA对细胞的作用。(4)AxinRNAi片断转染C6细胞,流式细胞仪检测细胞周期及凋亡的变化,RT-PCR及Western blot方法分别检测p53等的mRNA及其蛋白质的表达的变化。探讨AxinRNAi能否逆转ATRA对胶质瘤细胞的调节。
     结果:(1) ATRA抑制胶质瘤细胞的增殖、促进其凋亡; ATRA激活Axin、p53的表达、稳定胞浆内β-catenin蛋白的表达而不影响其总蛋白量。(2)胶质瘤C6细胞过表达Axin与ATRA的作用类似:(i)抑制细胞增殖,促其凋亡;(ii)稳定胞浆β-catenin蛋白的表达;(iii)激活p53的表达。(3)Axin RNAi逆转ATRA对胶质瘤C6细胞的抑制作用:促进细胞增殖,抑制细胞凋亡并抑制p53的表达。
     结论:Axin参与ATRA介导的胶质瘤细胞的增殖抑制及促凋亡作用; ATRA激活的Axin的表达,上调抑癌基因p53的表达,并促进β-catenin的核浆穿梭,增加胞浆内β-catenin蛋白的量。上述调节途径可能是ATRA发挥抗肿瘤作用的普遍存在的一种作用机制。
     创新点:发现Axin是ATRA调控胶质瘤细胞增殖、凋亡的一个重要的分子。
Retinoids, including retinoic acid, retinamide and retimid ester, arederivants of vitamin A (retinol). It is essential for life and has important roles inembryonic development, spermatogenesis, vision and cellular differentiation.Early researches with vitamin A-deficient animals revealed a connectionbetween this vitamin and susceptibility to carcinogenesis. In the diet,pharmacological retinol can reduce the incidence of carcinogen-inducedcarcinoma. Retinoids play an important role in prevention and therapy of sometumors such as leukecythemia, breast cancer, skin cancer, cervix cancer andCNS tumors. Retinoids reduces the growth of certain tumor cells and inducestheir apoptosis and differentiation. All-trans retinoic acid is the third generationof retinoids. There are two isomerides classified as cis-retinoic acid and all-transretinoic acid according to the lateral chain of polyalkene peptide and the locationof carboxy. All-trans isoform is frequent and stable constitution. Retinoic acidand its derivations induce cells apoptosis and differentioation and reduceproliferation by nuclear receptor (NR) signaling pathway (RARs and RXRs).Many studies demonstrated it has a crosstalk between Wnt/beta-canetinsignaling and NR signaling pathway. They synergistically regulate development, proliferation and apoptosis.
     Axin (Axis inhibition), the product of the mouse Fused (Fu) gene found in1997, is an important scaffold protein of the Wnt signaling pathway. It transmitscellular signaling to downstream effective molecule to regulate the signalingtransduction between different signaling pathways. To date, Axin has beenimplicated in at least four different signaling pathways: the Wnt, JNK, p53, andTGF-βsignaling pathways and take part in embryonic development, neurondifferentiation, carcinogenesis, cell apoptosis and glycometabolism. EspeciallyAxin as a tumor suppor has arose more peopleís interest to study the relationshipbetween Axin and human tumor. Over-expression of Axin in transgenic miceleads to massive cell death in different organs. Other studies demonstrated thatectopic expression of Axin induced apoptosis in some tumor cells. Our groupfound that over-expression of Axin by stable transfection induced apoptosis ofglioma C6 cell lines. Recent study reveals that Axin take part in ATRA-induceddifferentiation of embryonic carcinoma cells, suggesting Axin may play animportant role in ATRA-mediated cell fate. The introduction of wild-type Axininto heptocellular and colorectal cancer cells induces apoptosis.
     Gliomas are the most common tumors in central nervous system (CNS)(account for 42% of primary CNS tumors and 3/4 of them are malignant). Theclinical and experimental researches have shown that retinoids cut down therecrudescent rate of glioma and improved its survival rate. It is not clear whetherAxin as a regulator of ATRA-mediated cell growth.
     Objectives:To investigate in glioma cells whether Axin takes part inATRA-induced cell proliferative inhibition and apoptotic cell death.Methods: (1) C6 and U251 cell lines were treated with ATRA. The effect ofATRA on the proliferation of cells was determined by 3-(4, 5-dimethylthiazol-2-yl) -2, 5-diphenyl tetrazolium bromide (MTT) assay. Todetermine the effect of ATRA on clonal proliferation, plate colony formationassays were performed. The ability of ATRA to inhibit DNA synthesis wasdetermined by estimating the amount of BrdUrd incorporation into DNA byimmunocytochemistry staining. The change of cell cycle was analyzed by flowcytometry. (2) The subcellular localization ofβ-catenin was detected byimmunofluorescent staining. The mRNA and protein of Axin, p53,β-cateninwere examined by RT-PCR and Western blot respectively. (3) To investigatewether over-expression of Axin can mimice the role of ATRA, glioma C6 cellline was stably or transiently transfected with rAxin. Cell cycle were examinedby FCM. The subcellular localization ofβ-catenin was detected byimmunofluorescent staining. The mRNA and protein of Axin, p53,β-cateninwere examined by RT-PCR and Western blot respectively. (4) To investigatewhether Axin RNAi attenuate ATRA-induced cell cycle arrest and apoptosis,siRNA oligos of Axin were transfected into C6 cells. FCM, RT-PCR andWestern blot was use to examine the cell cycle and the expression of p53,respectively.
     Results: (1) ATRA inhibited cell proliferation and induced cell apoptosis. ATRAactivated the expression of Axin and p53. ATRA accumulated cytoplasmicbeta-catenin without changing the level of total protein. (2) Over-expression ofAxin could mimice the role of ATRA: (i) inhibited cell proliferation and inducedapoptosis; (ii) accumulated cytoplasmic beta-catenin without altering the levelof protein; (iii) activated the expression of Axin and p53. (3) Axin RNAiattenuated ATRA-induced G1/S arrest and apoptosis and down-regulated theexpression of p53.
     Conclusions: ATRA-activated the expression of Axin result in the accumulation of cytoplasmic beta-catenin and the activation of p53. This activationcontributed to ATRA-induced cell proliferative inhibition and apoptosis.Intereatingly, Axin-RNAi caused only moderate decrease of p53 with the ATRAtreatment, implying that there are other mechanisms to regulate ATRA-activatedp53.
引文
[1] Buletic Z, Soprano KJ, Soprano DR. Retinoid targets for the treatment of cancer.CritRev Eukaryot Gene Expr. 16(2006)193-210.
    [2] Abu J, Batuwangala M, Herbert K, Symonds P. Retinoic acid and retinoid receptors:potential chemopreventive and therapeutic role in cervical cancer.Lancet Oncol.6(2005)712-20
    [3] L.M. DeLuca, Retinoids and their receptors in differentiation, embryogenesis andneoplasia, FASEB J. (1991) 5.
    [4] G. Wald, The molecular basis of visual excitation, Nature (1968) 219.
    [5] J.N. Thompson, J.M. Howell, G.A.J. Pitt, Vitamin A and reproduction in rats, Proc. R. Soc.Lond. B 159 (1964) 510-535.
    [6] I. Lasnitzki, The influence of hypervitaminosis on the effect of 20-methylcholanthrene onmouse prostate glands grown in vitro, Br. J. Cancer 9 (1955) 434-441.
    [7] U. Saffiotti, R. Montessano, A.R. Sellakumar, et al., Experimental cancer of the lung:inhibition by vitaminAof the induction of tracheobronchial squamous metaplasia andsquamous cell tumors, Cancer 20 (1967) 857-864.
    [8] Gregg Duester, Families of retinoid dehydrogenases regulating vitamin A functionProduction of visual pigment and retinoic acid, Eur. J. Biochem. 267(2000) 4315-4324
    [9] E. Li, L.A. Demmer, D.A. Sweetser, D.E. Ong, J.I. Gordon, Rat cellular retinol-bindingprotein, II, Use of a cloned Cdna to define its primary structure, tissue-specificexpression and developmental regulation, Proc. Natl. Acad. Sci. 83 (1986) 5779-5783.
    [10] Noa NOY, Retinoid-binding proteins : mediators of retinoid action, Biochem. J. 348(2000) 481-495
    [11] M.S. Levin, E. Li, D.E. Ong, J.I. Gordon, Comparison of the tissue-specific expressionand developmental regulation of two closely linked rodent genes encoding cytosolicretinolbinding proteins, J. Biol. Chem. 262 (1987) 7118-7124.
    [12] A. Astrom, A. Tavakkol, U. Pattersson, M. Cromie, J.T. Elder, J.J. Voorhees, Molecularcloning of two human cellular retinoic acid-binding proteins (CRABP), J. Biol. Chem.266 (1991) 17662-17666.
    [13] N. Rajan, G.L. Kidd, D.A. Talmage, W.S. Blaner, A. Suhara, D.S. Goodman, Cellularretinoic acid-binding protein messenger RNA levels in rat tissue and localization in rattestis, J. Lipid Res. 32 (1991) 1195-1204.
    [14] M. Kato,W.S. Blaner, J.R. Metz, K. Das, K. Kato, D.S. Goodman, Influence of retinoidnutritional status on cellular retinoland cellular retinoic acid-binding proteinconcentrations in various rat tissues, J. Biol. Chem. 260 (1985) 4832-4838.
    [15] L.N. Wei, C.H. Lee, L. Chang, Retinoic acid induction of mouse cellular retinoicacid-binding protein-I gene expression is enhanced by sphinganine, Mol. Cell.Endocrinol. 111 (1995) 207-211.
    [16] Bowles J, Koopman P. Retinoic acid, meiosis and germ cell fate inmammals.Development. 134(2007)3401-3411.
    [17] Xu XC. Tumor-suppressive activity of retinoic acid receptor-beta in cancer.Cancer Lett.253(2007)14-24.
    [18] E. Ruberti, V. Friedrich, G. Morriss-Kay, P. Chambon, Differential distribution patternsof CRABPI and CRABPII transcripts during mouse embryogenesis, Development 115(1992) 973-987.
    [19] S. Takase, D.E. Ong, F. Chytil, Transfer of retinoic acid from its complex with cellularretinoic acid-binding protein to the nucleus, Arch. Biochem. Biophys. 247 (1986)328-334.
    [20] C. Lampron, C. Rochette-Egly, P. Gorry, P. Dolle, M. Mark,T. Lufkin, M. LeMeur, P.Chambon, Mice deficient in cellular retinoic acid binding protein II (CRABP II) or inboth CRABPI and CRABP II are essentially normal, Development 121 (1995) 539-548.
    [21] M.P. Gaub, Y. Lutz, N.B. Ghyselinck, I. Scheuer, V. Pfoster, P. Chambon, C.Rochette-Egly, Nuclear detection of cellular retinoic acid binding proteins I and II withnew antibodies, J. Histochem. Cytochem. 46 (1998) 1103-1111.
    [22] L. Delva, J. N. Bastie, C. Rochette-Egly, R. Kraiba, N. Balitrand, G. Despouy, P.Chambon, C. Chomienne, Physical and functional interactions between cellular retinoicacid binding protein II and the retinoic acid-dependent nuclear complex, Mol. Cell. Biol.19 (1999) 7158-7167.
    [23] R.E. Gates, R.S. Rees, Altered vitamin A-binding proteins in carcinoma of the head andneck, Cancer (1985) 56.
    [24] V.C. Yu, C. Deisert, B. Anderson, J.M. Holloway, D.V. Devary,A.M. Naar, S.Y. Kim,J.M. Boutin, C.K. Glass, M.G.Rosenfeld, RXR-β,a co-regulator that enhances bindingof retinoic acid, thyroid hormone, and vitamin D receptors to their cognate responseelements, Cell 67 (1991) 1251-1266.
    [25] Y.S. Kuppumbatti, B. Rexer, S. Nakajo, K. Nakaya, R.Mira-y-Lopez, CRBP suppressesbreast cancer cell survival and anchorage-independent growth, Oncogene 20 (2001)7413-7419.
    [26] M. Esteller, M. Guo, V. Moreno, M.A. Peinado, G. Capella,O. Galm, S.B. Baylin, J.G.Herman, Hypermethylationassociated inactivation of the cellular retinol-binding protein1 gene in human cancer, Cancer Res. 62 (2002) 5902-5905.
    [27] V. Giguere, S. Ong, P. Segui, R. Evans, Identification of a receptor for the morphogenretinoic acid, Nature 330 (1987) 624-629.
    [28] M. Petkovich, N.J. Brand, A. Krust, P. Chambon, A human retinoic acid receptor whichbelongs to the family of nuclear receptors, Nature 330 (1987) 444-450.
    [29] R.A. Heyman, D.J. Mangelsdorf, J.A. Dyck, R.B. Stein, G. Eichele, R.M. Evans, C.Thaller, 9-Cis retinoic acid is a high affinity ligand for the retinoid X receptor, Cell 68(1992) 397-406.
    [30] A.A. Levin, L.J. Sturgenbecker, S. Kazmer, T. Bosakowski, C. Huselton, G. Allenby, J.Speck, C. Kratzelsen, M. Rosenberger,A. Lovey, J.F. Grippo, 9-Cis retinoic acidstereoisomer binds and activates the nuclear receptor RXR-α, Nature 355 (1992)359-361.
    [31] N.Yang, R. School, D.J. Mangelsdorf, R.M. Evans, haracterization of DNA binding andretinoic acid binding properties of retinoic acid receptor, Proc. Natl. Acad. Sci. 88 (1991)3559-3563.
    [32] C. Carlsberg, I. Bend, A.Ways, E. Meier, L.J. Sturzenbecker, J.F. Grippo,W. Hunziker,Two nuclear signaling pathways for vitamin D, Nature 361 (1993) 657-660.
    [33] S.A. Kliewer, K. Umensono, D.J. Mangelsdorf, R.M. Evans, Retinoid X receptorinteracts with nuclear receptors in retinoic acid, thyroid hormone, and vitamin D3signaling, Nature 335(1992) 446-449.
    [34] M. Leid, P. Kastner, R. Lyons, H. Nakshari, M. Saunders, T. Zacharewski, J.Y. Chen, A.Staub, J.M. Garnier, S. Mader,P. Chambon, Purification, cloning, and RXR identity ofthe HeLa cell factor with which RAR or TR heterodimerizes to bind target sequencesefficiently, Cell 68 (1992) 377-395.
    [35] T.H. Bugge, J. Pohl, O. Lonnoy, H.G. Stunnenberg, RXRγ, a promiscuous partner ofretinoic acid and thyroid hormone receptors, EMBO J. 11 (1992) 1409-1410.
    [36] H. Keller, C. Dreyer, J. Medin, A. Mahfoudi, K. Ozato, W. Wahli, Fatty acids andretinoids control lipid metabolism through activation of peroxisomeproliferator-activated receptor-retinoid X receptor heterodimers, Proc. Natl. Acad.Sci. 90(1993) 2160-2164.
    [37] S.A. Kliewer, K. Umesono, D.J. Noonan, R.A. Heyman, R.M.Evans, Convergence of9-cis retinoic acid and peroxisome proliferator signaling pathways through heterodimerformation of their receptors, Nature 358 (1992) 771-774.
    [38] S.A. Kliewer, K. Umesono, R.H. Heyman, D.J. Mangelsdorf,J.A. Dyck, R.M. Evans,Retinoid X receptor-COUP-TF interactions modulate retinoic acid signaling, Proc. Natl.Acad. Sci. 89 (1992) 1448-1452.
    [39] R.L. Widom, M. Rhee, S.K. Karathanasis, Repression by ARP-1 sensitizesapolipoprotein A1 gene responsiveness to RXRα and retinoic acid, Mol. Cell. Biol. 12(1992) 3380-3389.
    [40] S.B. Wolbach, P.R. Howe, Tissue changes following deprivation of fat-soluble A vitamin,Proc. Soc. Exp. Biol. Med. 77(1925) 753-777.
    [41] X.k. Zhang, B. Hoffmann, P.B.V. Tran, G. Graupner, M.Pfahl, Retinoid X receptor is anauxiliary protein for thyroid hormone and retinoic acid receptors, Nature 335(1992)441-446.
    [42] P. Tontonoz, S. Singer, B.M. Forman, P. Sarraf, J.A. Fletcher,C.D.M. Fletcher, R.P. Brun,E. Mueller, S. Altiok, H. Oppenheim,R.M. Evans, B.M. Spiegelman, Terminaldifferentiation of human liposarcoma cells induced by ligands for the peroxisomeproliferator-activated receptor γ and the retinoid X receptor, Proc. Natl. Acad. Sci. 94(1997) 237-241.
    [43] V. Vovat, C. Zechel, J.M.Wortz,W. Bourguet, H. Kagechika, H. Umemiya, K. Shudo, D.Moras, H. Gronemeyer, P. Chambon, A mutation mimicking ligand-inducedconformational change yields a constitutive RXR that senses allosteric effects inheterodimers, EMBO J. 16 (1997) 5697-5709.
    [44] M. Shiohara, M.I. Dawson, P.D. Hobbs, N. Sawai, T. Higuchi, K. Koike, A. Komiyama,H.P. Koeffler, Effects of novel RARand RXR-selective retinoids on myeloid leukemicproliferation and differentiation in vitro, Blood 93 (1999) 2057-2066.
    [45] V. Subbarayan, P. Kastner, M. Mark, A. Dierich, P. Gorry, P. Chambon, Limitedspecificity and large overlap of the functions of RARγ1 and RARγ2 isoforms, Mech.Dev. 66 (1997)131-142.
    [46] W. Krezel, M. Mark, A. Dierich, P. Kastner, P. Chambon,RXRγ null mice areapparently normal and compound RXRα+//RXRβ// RXRγ/ mutant mice areviable, Proc.Natl. Acad. Sci. 93 (1996) 9010-9014.
    [47] P. Kastner, M. Mark, P. Chambon, Nonsteroid nuclear receptors: what are genetic studiestelling us about their role in real life, Cell 83 (1995) 859-869.
    [48] R. Taneja, B. Roy, J.L. Plassat, F.C. Zust, J. Ostrowski, P.R.Reczek, P. Chambon,Cell-type and promoter-context dependent retinoic acid receptor (RAR) redundancies forRARβ2 and Hoxa-1 activation in F9 and P19 cells can be artefactually generated bygene knockouts, Proc. Natl. Acad. Sci. 93 (1996) 6197-6202.
    [49] T.N. Faria, C. Mendelsohn, P. Chambon, L.J. Gudas, The targeted disruption of bothalleles of RAR beta(2) in F9 cells results in the loss of retinoic acid-associated growtharrest, J.Biol. Chem. 274 (1999) 26783-26788.
    [50] R. Taneja, P. Bouillet, J.G. Boylan, M.P. Gaub, B. Roy, L.J.Gudas, P. Chambon,Reexpression of retinoic acid receptor (RAR) gamma or overexpression of RAR alpha orRAR beta in RAR gamma-null F9 cells reveals a partial functional redundancy betweenthe three RAR types, Proc. Natl. Acad. Sci. 92 (1995) 7854-7858.
    [51] A. Zelent, C. Mendelsohn, P. Kastner, J.M. Garnier, F. Ruffenach,P. Leroy, P. Chambon,Differentially expressed isoforms of the mouse retinoic acid receptor β are generatedby usage of two promoters and alternative splicing, EMBO J. (1991)10.
    [52] V. Giguere, M. Shago, R. Zirngibi, P. Tate, J. Rossant, S. Varmuza, Identification of anovel isoform of the retinoic acid receptor γ expressed in the mouse embryo, Mol.Cell. Biol.10 (1990) 2335-2340.
    [53] Q. Liu, E. Linney, The mouse X receptor-γ gene: evidence for functional isoforms,Mol. Endocrinol. 7 (1993) 651-658.
    [54] P.P. Pandolfi, Oncogenes and tumor suppressors in the molecular pathogenesis of acutepromyelocytic leukemia, Hum. Mol. Genet. 10 (2001) 769-775.
    [55] E.F. Farias, A. Arapshian, I.J. Bleiweiss, S. Waxman, A. Zelent,R. Mira-y-Lopez,Retinoic acid receptor α2 is a growth suppressor epigenetically silenced in MCF-7human breast cancer cells, Cell Growth Differ. 13 (2002) 335-341.
    [56] X.C. Xu, G. Sozzi, J.S. Lee, J.J. Lee, U. Patorino, S. Pilotti, J.M.Kurie,W.K. Hong, R.Lotan, Suppression of retinoic acid receptor β in none-small-cell lung cancer in vivo:implications for lung cancer development, J Natl. Cancer Inst. 89 (1997)624-629.
    [57] X.C. Xu, G. Sozzi, J.S. Lee, J. Lee, D.M. Shin,W.K. Hong, R.Lotan, Differentialexpression of nuclear retinoid receptors in normal, premalignant, and malignant head andneck tissues,Cancer Res. 54 (1994) 3580-3587.
    [58] X.C. Xu, N. Sneige, X. Liu, R. Nandagiri, J.J. Lee, F. Lukmanji,G. Hortobagyi, S.M.Lippman, K. Dhingra, R. Lotan,Progressive decrease in nuclear retinoic acid receptor βmessenger RNA level during breast carcinogenesis, Cancer Res.57 (1997) 4992-4996.
    [59] H. Qui,W. Zhang, A.K. El-Naggar, S.M. Lippman, P. Lin, R.Lotan, X.C. Xu, Loss ofretinoic acid receptor-β expression is an early event during esophageal carcinogenesis,Am. J. Pathol. 155 (1999) 1519-1523.
    [60] Y. Lotan, X.C. Xu, M. Shalev, R. Lotan, R. Williams, T.M. Wheeler, T.C. Thompson, D.Kadmon, Differential expression of nuclear retinoid receptors in normal and malignantprostates, J. Clin. Oncol. 18 (2000) 116-121.
    [61] Q. Yang, G. Yoshimura, T. Sakurai, M. Nakamura, Y. Nakamura, L. Shan, T. Suzuma, Y.Takashi, T. Umemura, I. Mori,K. Kakudo, Allelic loss of chromosome 3p24 correlateswith tumor progression rather than with retinoic acid receptor β2 expression in breastcarcinoma, Breast Cancer Res. Treat. 70 (2001) 39-45.
    [62] K. Hayashi, Y. Yokozaki, S. Goodison, N. Oue, T. Suzuki,R. Lotan,W. Yasui, E. Tahara,Inactivation of retinoic acid receptor β by promoter CpG hypermethylation in gastriccancer,Differentiation 68 (2001) 13-21.
    [63] S.M. Sirchia, M. Ren, R. Pili, E. Sironi, G. Somenzi, R. Ghidoni,S. Toma, G. Nicolo, N.Sacchi, Endogenous reactivation of the RARβ2 tumor suppressor gene epigeneticallysilenced in breast cancer, Cancer Res. 62 (2002) 2455-2461.
    [64] T. Nakayama, M. Watanabe, M. Yamanaka, Y. Hirokawa, H.Suzuki, H. Ito, R. Yatani, T.Shiraishi, The role of epigenetic modifications in retinoic acid receptor β2 geneexpression in human prostate cancers, Lab. Invest. 81 (2001) 1049-1057.
    [65] I. Klaassen, R.H. Brakenhoff, S.J. Smeets, G.B. Snow, D.J. Braakhuis, Expression ofretinoic acid receptor gamma correlates with retinoic acid sensitivity and metabolism inhead and neck squamous cell carcinoma cell lines, Int. J. Cancer (2001) 92.
    [66] L. Emionite, F. Galmozzi, P. Raffo, L. Vergani, S. Toma, Retinoids and malignantmelanoma: a pathway of proliferation inhibition on SK Mel28 cell line, Anticancer Res.(2003)23.
    [67] K.J. Soprano, D.R. Soprano, Retinoic acid receptors and cancer, J. Nutr. 132 (2002)3809S-3813S.
    [68] M. Li, A.K. Indra, X. Warot, J. Brocard, N. Messaddeq, S.Kato, D. Metzger, P. Chambon,Skin abnormalities generated by temporally controlled RXRα mutations in mouseepidermis,Nature 407 (2000) 633-636.
    [69] J. Brabender, K.D. Danenberg, R. Metzger, P.M. Schneider,R.V. Lord, S. Groshen, D.D.Tsao-Wei, J. Park, D. Sa longa, A.H. Holscher, P.V. Danenberg, The role of retinoid Xreceptor messenger RNA expression in curatively resected non-small cell lung cancer,Clin. Cancer Res. 8 (2002) 438-443.
    [70] B.R. Haugen, L.L. Larson, U. Pugazhenthi, W.R. Hays, J.P. Klopper, C.A. Kramer, V.Sharma, Retinoic acid and retinoid X receptors are differentially expressed in thyroidcancer and thyroid carcinoma cell lines and predict response to treatment with retinoids,J. Clin. Endocrinol. Metab. 89 (2004) 272-280.
    [71] J. Huang, W.C. Powell, A.C. Khodavirdi, J. Wu, T. Makita, R.D. Cardiff, M.B. Cohen,H.M. Sucov, P. Roy-Burman, Prostatic intraepithelial neoplasia in mice with conditionaldisruption of the retinoid X receptor α allele in the prostate epithelium, Cancer Res. 62(2002) 4812-4819.
    [72] J.A. Goodrich, T. Hoey, C.J. Thut, A. Admon, R. Tijian,Drosophila TAF II 40 interactswith both a VP16 activation domain and the basal transcription factor TFIIB, Cell 75(1993)519-530.
    [73] S.K. Yoshinaga, C.L. Peterson, I. Harskowitz, K.R. Yamaoto,Roles of SW11, SW12, andSW13 proteins for transcriptional enhancement of steroid receptors, Science 258(1992)1598-1604.
    [74] S. Halachmi, E. Marden, G. Martin, H. MacKay, C. Abbondanza,M. Brown, M.B.,Estrogen receptor associated protein: possible mediators of hormone-independenttranscription, Science 264 (1994).
    [75] T. Perlmann, B. Vennstrom, The sound of silence, Nature 377(1995) 387-388.
    [76] A.J. Horlein, A.M. Naar, T. Heinzel, J. Torchia, B. Glass, R. Kurokawa, A. Ryan, Y.Kamei, M. Soderstrom, C.K. Glass,M.G. Rosenfeld, Ligand-independent repression bythe thyroid hormone receptor mediated by a nuclear receptor corepressor,Nature 377(1995) 397-404.
    [77] J.D. Chen, R.M. Evans, A transcriptional co-repressor that interacts with nuclearhormone receptors, Nature 377 (1995)454-457.
    [78] D.M. Heery, E. Kalkhoven, S. Hoare, M.G. Parker, A signature motif in transcriptionalcoactivators mediates binding to nuclear receptor, Nature 387 (1997) 733-736.
    [79] C. Leo, J.D. Chen, The STC family of nuclear receptor coactivators, Gene 245 (2000)1-11.
    [80] L. Nagy, H.Y. Kao, D.J. Love, C. Li, E. Banayo, et al., Mechanism of corepressorbinding and release from nuclear hormone receptors, Genes Dev. 13 (1999) 3209-3216.
    [81] V. Perissi, L.M. Staszewski, E.M. McInerney, R. Kurokawa, A. Krones, et al., Moleculardeterminants of nuclear receptor corepressor interaction, Genes Dev. 13(1999)3198-3208.
    [82] Y. Kamei, L. Xu, T. Heinzel, J. Torchia, R. Kourkawa, et al.,A CBP integrator complexmediates transcriptional activation and AP-1 inhibition by nuclear receptors, Cell 85(1996)403-414.
    [83] J.C.G. Blanco, S. Minucci, J. Lu, X.J. Yang, K.K. Walker, et al., The histone acetylasePCAF is a nuclear receptor coactivator,Genes Dev. 12 (1998) 1638-1651.
    [84] L. Alland, R. Muhle, H. Hou, J. Potes, L. Chin, N. Schreiber-Agus, R.A. DePinho, Rolefor N-CoR and histone deacety deacetylase in Sin3-mediated transcriptional repression,Nature 387(1997) 49-55.
    [85] W. Bourguet, V. Vivat, J.M. Wurtz, P. Chambon, H. Gronemeyer, D. Moras, Crystalstructure of a heterodimeric complex of RAR and RXR ligand-binding domains, Mol.Cell 5(2000) 289-298.
    [86] W. Bourguet, P. Germain, H. Gronemeyer, Nuclear receptor ligand binding domains:three-dimensional structures, molecular interactions and pharmacological implications,Trends Pharmacol. Sci. 21 (2000) 381-388.
    [87] C.K. Glass, M.G. Rosenfeld, The coregulator exchange in transcriptional functions ofnuclear receptors, Genes Dev. 14(2000) 121-141.
    [88] B. Comuzzi, L. Lambrinidis, H. Rogatsch, S. Godoy-Tundidor,N. Knezevic, I. Krhen, Z.Marekovic, G. Bartsch, H.Klocker,A. Hobisch, Z. Culig, The transcriptional co-activatorcAMP response element binding protein-binding protein is expressed in prostate cancerand enhances androgen- and antiandrogen-induced androgen receptor function, Am. J.Pathol.162 (2003) 233-241.
    [89] I. Lasnitzki, The influence of hypervitaminosis on the effect of 20-methylcholanthreneon mouse prostate gland growth in vitro, Br. J. Cancer 9 (1955) 434-441.
    [90] T. Moore, Effect of vitamin A deficiency in animals pharmacology and toxicology ofvitamin A, 2nd ed., in: H. Sebrell (Ed.), The Vitamins, 1, Academic Press, New York, NY,1967,pp. 245-258.
    [91] U. Saffiotti, R. Montessano, A.R. Sellakumar, et al., Experimental cancer of the lung:inhibition by vitaminA of the induction of tracheobronchial squamous metaplasia andsquamous cell tumors, Cancer 20 (1967) 857-864.
    [92] W. Bollag, Prophylaxis of chemically induced benign and malignant epithelial tumors byvitamin A acid (retinoic acid), Eur. J. Cancer 8 (1972) 689-693.
    [93] D.P. Chopra, L.J. Wilkoff, Inhibition and reversal by β-retinoic acid of hyperplasiainduced in culture mouse prostate tissue by 3-methyl-cholanthrene orN-methyl-Ní-nitro-N-nitrosoguanidine,J. Natl. Cancer Inst. 56 (1976) 583-589.
    [94] L. Harisiadis, R.C. Miller, E.J. Hall, et al., A vitamin A analogue inhibitsradiation-induced oncogenic transformation, Nature 274 (1978) 486-487.
    [95] E. Sonneveld, P.T. Van der Saag, Metabolism of retinoic acid: implications fordevelopment and cancer, Int. J. Vitamin Nutr.Res. 68 (1998) 404-410.
    [96] R.M. Niles, Vitamin A and cancer, Nutrition 16 (2000)573-576.
    [97] D. Simoni, M.Tolomeo, Retinoids, apoptosis and cancer, Curr. Pharm. Des. 7 (2001)1823-1837.
    [98] N.Wald, M. Idle, J. Boreham, A. Bailey, Lowserum-vitaminA and subsequent risk ofcancer. Preliminary results of a prospective study, Lancet 18 (1980) 813-815.
    [99] C.I. Cann, M.P. Fried, K.J. Rothman, Epidemiology of squamous cell cancer of the headand neck, Otolaryngol. Clin.North Am. 18 (1985) 367-388.
    [100] C. Mettlin, Diet and the epidemiology of human breast cancer, Cancer 53 (1984)605-611.
    [101] W.K. Hong, J. Endicott, L.N. Itri, et al., 13-Cis-retinoic acid in the treatment of oralleukoplakia, N. Engl. J. Med. 315 (1986)1501-1505.
    [102] S.M. Lippman, J.G. Bataakis, B.B. Toth, et al., Comparison of low dose isotretinoinwith β-carotene to prevent oral carcinogenesis,N. Engl. J. Med. 328 (1993) 15-20.
    [103] K.H. Kraemer, J.J. DiGiovanna, A.N. Moshell, et al., Prevention of skin cancer inxeroderma pigmentosum with oral isotretinoin, N. Engl. J. Med. 318 (1988) 1633-1637.
    [104] J.A. Tangrea, B.K. Edward, P.R. Taylor, et al., Long-term therapy with low doseisotretinoin for prevention of basal cell carcinoma: a multi-center clinical trial -isotretinoin-basal carcinoma study group, J. Natl. Cancer Inst. 84 (1992) 328-332.
    [105] F.L. Meyskens, A. Manetta, Prevention of cervical intraepithelial neoplasia and cancer,Am. J. Clin. Nutr. 62 (1995)1417S-1419S.
    [106] M.E. Huang, Y.C. Ye, S.R. Chen, J.R. Chai, J.X. Lu, L. Zhoa,et al., Use of all-transretinoic acid in the treatment of acute promyelocytic leukemia, Blood 72 (1988)567-572.
    [107] S. Castaigne, C. Chomienne, M.R. Daniel, P. Ballerini, P.Berger, P. Fenauz, et al.,All-trans-retinoic acid as a differentiation agent for acute promyelocytic leukaemia, 1,Clinical results, Blood 76 (1990) 1704-1709.
    [108] R.P. Warrell, S.R. Frankel, W.H. Miller, D.A. Scheinberg,L.M. Itri, W.N. Hillelman, etal., Differentiation therapy of acute promyelocytic leukemia with tretinoin(all-trans-retinoic acid), N. Engl. J. Med. 324 (1991) 1385-1393.
    [109] A. Takeshita, Y. Shibita, K. Shinjo, M. Yangi, T. Tobita, K. Ohnishi, et al., Successfultreatment of relapse of acute promyelocytic leukemia with a synthetic retinoid, Am80,Ann. Intern. Med. 124 (1996) 893-896.
    [110] Gupta V, Yi QL, Brandwein J, Lipton JH, Messner HA, Schuh AC, Wells RA, MindenMD.Role of all-trans-retinoic acid (ATRA) in the consolidation therapy of acutepromyelocytic leukaemia (APL),Leuk Res. 29(2005)113-114
    [111] Wolfram Jochum, Emmanuelle Passeguè, Erwin F. AP-1 in mouse development andtumorigenesis,Oncogene 20 (2001) 2401-2412
    [112] T. Hai, M.G. Hartman, The molecular biology and nomenclature of the activatingtranscription factor/cAMP responsive element binding family of transcription factors,Gene 273 (2001)1-11.
    [113] J.P. David, M. Rincon, L. Neff, W.C. Horne, R. Baron, Carbonic anhydrase II is anAP-1 target gene in osteoclasts, J.Cell Physiol. 188 (2001) 89-97.
    [114] E. Shaulian, M. Karin, AP-1 in cell proliferation and survival, Oncogene 20 (2001)2390-2400.
    [115] R. Schule, P. Rangarajan, N.Yang, S. Kliewer, L.J. Ransone, J. Bolado, I.M. Verma,R.M. Evans, Retinoic acid is a negative regulator of AP-1 responsive genes, Proc. Natl.Acad. Sci. 88 (1991) 6092-6096.
    [116] H.F. Yang-Yen, X.K. Zhang, G. Graupner, M. Tzukerman, B. Sakamoto, M. Karin, M.Pfahl, Antagonism between retinoic acid receptors and AP-1: implications for tumorpromotion and inflammation, New Biol. 3 (1991) 1206-1219.
    [117] A. Fanjul, M.I. Dawson, P.D. Hobbs, L. Jong, J.F. Cameron, E. Harlev, G. Graupner,X.P. Lu, M. Pfahl, A new class of retinoids with selective inhibition of AP-1 inhibitsproliferation,Nature 372 (1994) 107-111.
    [118] H.Y. Lee, M.I. Dawson, G.L. Walsh, J.C. Nesbitt, R.L. Eckert,E. Fuchs,W.K. Hong, R.Lotan, J.M. Kurie, Retinoic acid receptor- and retinoid X receptor-selective retinoidsactivate signaling pathways that converge on AP-1 and inhibit squamous differentiationin human bronchial epithelial cells, Cell Growth Differ. 7 (1996) 997-1004.
    [119] F. Lin, D. Xiao, S.K. Kolluri, X. Zhang, Unique anti-activator protein-1 activity ofretinoic acid receptor β, Cancer Res. 60(2000) 3271-3280.
    [120] R.P. de Groot, W. Kruijer, Up-regulation of Jun/AP-1 during differentiation of N1E-115neuroblastoma cells, Cell Growth Differ. 2 (1991) 631-636.
    [121] J.M. Kurie, P. Brown, E. Salk, D. Scheinberg, M. Birrer, P. Deutsch, E. Dmitrovsky,Cooperation between retinoic acid and phorbol esters enhances human teratocarcinomadifferentiation, Differentiation 54 (1993) 115-122.
    [122] H. Kindregan, S. Ohno, S.M. Niles, Characterization of conventional PKC isotypeexpression during F9 teratocarcinoma differentiation: overexpression of PKCα altersthe expression of some differentiation-dependent genes, J. Biol. Chem. 269(1994)27756-27761.
    [123] G. Giannini, M.I. Dawson, X. Zhang, C.J. Thiele, Activation of three distinctRXR/RAR heterodimers induces growth arrest and differentiation of neuroblastoma cells,J. Biol. Chem. 272 (1997) 26693-26701.
    [124] S.H. Desai, R.M. Niles, Characterization of retinoic acidinduced AP-1 activity in B16mouse melanoma cells, J. Biol.Chem. 272 (1997) 12809-12815.
    [125] Y. Huang, G. Boskovic, R.M. Niles, Retinoic acid-induced AP-1 transcriptional activityregulates B16 mouse melanoma growth inhibition and differentiation, J. Cell Physiol.194(2003) 162-170.
    [126] Wei ZHang, Hui Tu Liu,MAPK signal pathways in the regulation of cell proliferationin mammalian cells, Cell Research 12 (2002) 9-18
    [127] G.J. Fisher, H.S. Talwar, J. Lin, P. Lin, F.McPhillips, Z.Wang, X. Li, Y. Wan, S. Kang,J.J. Voorhees, Retinoic acid inhibits induction of c-Jun protein by ultraviolet radiationthat occurs subsequent to activation of mitogen-activated protein kinase pathways inhuman skin in vivo, J. Clin. Invest. 101 (1998)1432-1440.
    [128] J.F. Sah, R.L. Eckert, R.A. Chandraratna, E.A. Rorke,Retinoids suppress epidermalgrowth factor-associated cell proliferation by inhibiting epidermal growth factorreceptor-dependent ERK1/2/activation, J. Biol. Chem. 277 (2002)9728-9735.
    [129] S. Nakagawa, T. Fujii, G. Yokoyama, M.G. Kazanietz, H. Yamana, K. Shirouzu, Cellgrowth inhibition by all-trans retinoic acid in SLBR-3 breast cancer cells: involvementof protein kinase Cα and extracellular signal regulated kinase mitogenactivated proteinkinase, Mol. Carcinog. 38 (2003) 106-116.
    [130] Q. Xu, T. Konta, A. Fursusu, K. Nakayama, J. Lucio-Cazana,L.G. Fine, M.Kitamura,Transcriptional induction of mitogen-activated protein kinase phosphatase 1 byretinoids. Selective roles of nuclear receptors and contribution to the antiapoptotic effect,J. Biol. Chem. 277 (2002) 41693-41700.
    [131] A. Yen, M.S. Roberson, S. Varvayanis, A.T. Lee, Retinoic acid inducedmitogen-activated (MAP)/extracellular signalregulated kinase (ERK) kinase-dependentMAP kinase activation is needed to elicit HL-60 cell differentiation and growth arrest,Cancer Res. 58 (1998) 3163-3172.
    [132] F. Bost, L. Caron, I. Marchetti, C. Dani, Y. Le Marchand-Brustel, B. Binetruy, Retinoicacid activation of the ERK pathway is required for embryonic stem cell commitment intothe adipocyte lineage, Biochem. J. 361 (2002) 621-627.
    [133] U.S. Singh, J. Pan, Y.L. Kao, S. Joshi, K.L. Young, K.M.Baker, Tissuetransglutaminase mediates activation of RhoA and MAP kinase pathways during retinoicacid-induced neuronal differentiation of SH-SY5Y cells, J. Biol. Chem. 278(2003)391-399.
    [134] E.H. Jho, R.J. Davis, C.C. Malbon, c-Jun amino-terminal kinase is regulated by Gα12/Gα13 and obligate for differentiation of P19 embryonal carcinoma cells by retinoicacid, J.Biol. Chem. 272 (1997) 24468-24474.
    [135] H. Wang, S. Ikeda, S. Kanno, L.M. Guang, M. Ohnishi, M.Sasaki, T. Kobayashi, S.Tamura, Activation of c-Jun aminoterminal kinase is required for retinoic acid-inducedneural differentiation of P19 embryonal carcinoma cells, FEBS Lett.503 (2001) 91-96.
    [136] J. Kanungo, I. Potapova, C.C. Malbon, H.Wang, MEKK4 mediates differentiation inresponse to retinoic acid via activation of c-Jun N-terminal kinase in rat embryonalcarcinoma P19 cells, J. Biol. Chem. 275 (2000) 24032-24039.
    [137] Y.M. Yu, P.L. Han, J.K. Lee, JNK pathway is required for retinoic acid-induced neuriteoutgrowth of human neuroblastoma SH-SY5Y, Neuroreport 14 (2003) 941-945.
    [138] Q. Wang, R. Wieder, All-trans-retinoic acid potentiates Taxotere-induced cell deathmediated by Jun N-terminal kinase in breast cancer cells, Oncogene 23 (2004) 426-433.
    [139] H.Y. Lee, G.L. Walsh, M.I. Dawson, W.K. Hong, J.M.Kurie, All-trans-retinoic acidinhibits Jun N-terminal kinasedependent signaling pathways, J. Biol. Chem. 273(1998)7066-7071.
    [140] H.Y. Lee, N. Sueoka, W.K. Hong, D.J. Mangelsdorf, F.X.Claret, J.M. Kurie,All-trans-retinoic acid inhibits Jun Nterminal kinase by increasing dual-specificityphosphatase activity,Mol. Cell. Biol. 19 (1999) 1973-1980.
    [141] Y. Alsayed, S. Uddin, N. Mahmud, F. Lekmine, D.V.Kalvakolanu, S. Minucci, G.Bokoch, L.C. Platanias, Activation of Rac1 and the p38 mitogen-activated protein kinasepathway in response to all-trans-retinoic acid, J. Biol. Chem.276 (2001) 4012-4019.
    [142] M. Gianni, A. Bauer, E. Garattini, P. Chambon, C. Rochette-Egly, Phosphorylation byp38 MAPK and recruitment of SUG-1 are required for RA-induced RARγ degradationand transactivation, EMBO J. 21 (2002) 3760-3769.
    [143] Jiyong Liang,Joyce M.Slingerland, Multiple roles of the PI3K/PKB(Akt) pathway incycle progression,Cell Cycle 2(2003) 339-345
    [144] T.F. Franke, C.P. Hornik, L. Segev, G.A. Shostak, C. Sugimoto, PI3K/Akt andapoptosis: size matters, Oncogene 22 (2003) 8983-8998.
    [145] S.V. del Rincon, C. Rousseau, R. Samanta, R. Miller Jr.,Retinoic acid-induced growtharrest of MCF-7 cells involves the selective regulation of the IRS-1/PI 3-kinase/AKTpathway,Oncogene 22 (2003) 3353-3360.
    [146] D.R. Siwak, E. Mendoza-Gamboa, A.M. Tari, HER2/neu uses Akt to suppress retinoicacid response element binding activity in MDA-MB-453 breast cancer cells, Int. J. Oncol.23 (2003) 1739-1745.
    [147] Y.S. Kuppumbatti, B. Rexer, S. Nakajo, K. Nakaya, R. Mira-y-Lopez, CRBPsuppresses breast cancer cell survival and anchorage-independent growth, Oncogene 20(2001) 7413-7419.
    [148] M. Gianni, E. Kopf, J. Bastien, M. Oulad-Abdelghani, E.Garattini, P. Chambon, C.Rochette-Egly, Down-regulation of the phosphatidylinositol 3-kinase/Akt pathway isinvolved in retinoic acid-induced phosphorylation, degradation and transcriptionalactivity of retinoic acid receptor γ2, J. Biol. Chem.277 (2002) 24859-24862.
    [149] S.G. Ward, P. Finan, Isoform-specific phosphoinositide 3-kinase inhibitors astherapeutic agents, Curr. Opin. Pharmacol.3 (2003) 426-434.
    [150] D. Visnjic, V. Crjen, J. Curic, D. Batinic, S. Volinia, H. Banfic,The activation ofnuclear phosphoinositide 3-kinase C2βin all-trans-retinoic acid-differentiated HL-60cells, FEBS Lett.529 (2002) 268-274.
    [151] R. Baier, T. Bondeva, R. Klinger, A. Bondev, R. Wetzker,Retinoic acid inducesselective expression of phosphoinositide 3-kinase γ in myelomonocytic U937 cells,Cell Growth Differ.10 (1999) 447-456.
    [152] G. Lopez-Carballo, L. Moreno, S. Masia, P. Perez, D. Barettino, Activation of thephosphatidylinositol 3-kinase/Akt signaling pathway by retinoic acid is required forneural differentiation of SH-SY5Y human neuroblastoma cells, J. Biol.Chem. 277 (2002)25297-25304.
    [153] Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature434(2005)843-850.
    [154] Wodarz A, Nusse R, Mechanisms of Wnt signaling in development. Annu Rev CellDev Biol. 14(1998) 59-88.
    [155] Gumbiner BM, McCrea PD, Catenins as mediators of the cytoplasmic functions ofcadherins. J Cell Sci Suppl. 17(1993) 155-158.
    [156] Schneider S, Herrenknecht K, Butz S, Kemler R, Hausen P, Catenins in Xenopusembryogenesis and their relation to the cadherin-mediated cell-cell adhesion system.Development. 118 (1993) 629-640.
    [157] L. Li, H. Yuan, C. D. Weaver, J. Mao, G. H. Farr, 3rd, D. J. Sussman, J. Jonkers, D.Kimelman, D. Wu. Axin and Frat1 interact with dvl and GSK, bridging Dvl to GSK inWnt-mediated regulation of LEF-1. Embo J. 18 (1999) 4233-4240.158] G. H. Farr, 3rd, D. M. Ferkey, C. Yost, S. B. Pierce, C. Weaver, D. Kimelman.Interaction among GSK-3, GBP, axin, and APC in Xenopus axis specification. J CellBiol. 148 (2000) 691-702.
    [159] J. behrens, von Kries JP, Kuhl M, et al. . Functional interaction of beta-catenin withthe transcription factor LEF-1. Nature. 382(1996) 638-642.
    [160] S. A. He TC, Rago C, et al. . Identification of c-MYC as a target of the APCpathway. Science. 281(1998) 1509-1512.
    [161] M. Shtutman, J. Zhurinsky, I. Simcha, C. Albanese, M. D'Amico, R. Pestell, A.Ben-Ze'ev. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc. NatlAca.d. Sci. 96 (1999) 5522-5527.
    [162] Szeto W, Jiang W, Tice DA, Rubinfeld B, Hollingshead PG, Fong SE, Dugger DL,Pham T, Polakis P, Pennica D, et al, overexpression of the retinoic acid-responsive geneStar6 in human cancer and its synergistic induction by wnt-1 and retinoic acid, CancerRes. 61(2001)4197-4205
    [163] Shah S, Pishvaian MJ, Easwaran V, Brown PH, Byers SW, The role of cadherin,beta-catenin, and AP-1 in retinoid-regulated carcinoma cell differentiation andproliferation, J. Biol. Chem. 277(2002)25313-25322.
    [164] Easwaran V, Pishvaian M, Salimuddin , Byers S., Cross-regulation ofbeta-catenin-LEF/TCF and retinoid signaling pathways, Curr Biol. 9(1999) 1415-1418
    [165] Jette C, Peterson PW, Sandoval IT, Manos EJ, Hadley E, Ireland CM, Jones DA,Thetumor suppressor adenomatous polyposis coli and caudal related homeodomain proteinregulate expression of retinol dehydrogenase L. J. Biol. Chem. 279(2004)34397-34405.
    [166] Nadauld LD, Sandoval IT, Chidester S, Yost HJ, Jones DA.,APC control of retinoicacid biosynthesis is critical for Zebrafish intestinal development and differentiation, J.Biol. Chem. 279(2004) 51581-51589.
    [167] Jette C, Peterson PW, Sandoval IT, Manos EJ, Hadley E, Ireland CM, Jones DA, Thetumor suppressor adenomatous polyposis coli and caudal related homeodomain proteinregulate expression of retinol dehydrogenase L,J. Biol. Chem. 279(2004):34397-34405.
    [168] Lyu J, Costantini F, Jho EH, Joo CK.,Ectopic expression of Axin blocks neuronaldifferentiation of embryonic carcinoma P19 cells.J Biol.Chem.278(2003):13487-13495.
    [169] Cox RT, Pai LM, Miller JR ,et al, Membrane-tethered Drosophila Armadillo cannottransduce Wingless signal on its own. Development 126 (1999)1327-1335
    [170] Cong F, Schweizer L et al , Requirement for a nuclear function of β-catenin in Wntsignaling. Mol Cell Biol 23(2003)8462-8470
    [171] Moon RT, Kohn AD, De Ferrari GV et al, Wnt and beta-catenin signalling: diseasesand therapies. Nat. Rev. Genit. 5 (2004)689-699
    [172] Wiechens N, Fagotto F , CRM1- and Ran-independent nuclear export of beta-catenin.Curr. Biol. 11 (2001)18-27
    [173] Karl W. Katherine AJ, Wnt signaling: is the party in the nucleus?, Gene & Dev.20(2006)1394-1404
    [174] L. Nagy, V.A. Thomazy, R.A. Heyman, P.J. Davies, Retinoid induced apoptosis innormal and neoplastic tissues, Cell Death Differ. 5 (1998) 11-19.
    [175] F. Pettersson, A.G. Dalgleish, R.P. Bissonnette, K.W. Colston, Retinoids causeapoptosis in pancreatic cancer cells via activation of RAR-γ and altered expression ofBcl-2/Bax, Br. J.Cancer 87 (2002) 555-561.
    [176] H. Zhang, K. Satyamoorthy, M. Herlyn, I. Rosdahl, Alltrans- retinoic acid (atRA)differentially induces apoptosis in matched primary and metastatic melanoma cells - aspeculation on damage effect of ATRA via mitochondrial dysfunction and cell cycleredistribution, Carcinogenesis 24 (2003)185-191.
    [177] I. Arany, I.A. Ember, S.K. Tyring, All-trans-retinoic acid activates caspase-1 in adose-dependent manner in cervical squamous carcinoma cells, Anticancer Res. 23 (2003)471-473.
    [158] C. Pepper,K. Ali, A. Thoma, T. Hoy, C. Fegan, P. Chowdary, J.Kell, P. Bentley,Retinoid-induced apoptosis in B-cell chronic lymphocytic leukaemia cells is mediatedthrough caspase-3 activation and is independent of p53, the retinoic acid receptor,anddifferentiation, Eur. J. Haematol. 69 (2002) 227-235.
    [179] S. Fujimura, J. Suzumiya, Y. Yamada, M. Kuroki, J. Ono, Down-regulation of Bcl-xLand activation of caspases during retinoic acid-induced apoptosis in an adult T-cellleukemia cell line, Hematol. J. 4 (2003) 328-335.
    [180] Q. Zhou, M. Stetler-Stevenson, P.S. Steeg, Inhibition of cyclin D expression in humanbreast carcinoma cells by retinoids in vitro, Oncogene 15 (1997) 107-115.
    [181] V.L. Seewaldt, J.H. Kim, M.B. Parker, E.C. Dietze, K.V. Srinivasan,L.E. Caldwell,Dysregulated expression of cyclin D1 in normal human mammary epithelial cellsinhibits all-trans retinoic acid-mediated G0G1 phase arrest and differentiation, Exp. CellRes. 249 (1999) 70-85.
    [182] J. Langenfeld, H. Kiyokawa, D. Sekula, J. Boyle, E. Dmitrovsky, Posttranslationalregulation of cyclin D1 by retinoic acid: a chemoprevention mechanism, Proc. Natl.Acad. Sci. 94 (1997) 12070-12074.
    [183] M.J. Spinella, S.J. Freemantle, D. Sekula, J.H. Chang, A.J. Christie, E. Dmitrovsky,Retinoic acid promotes ubiquitination and proteolysis of cyclin D1 during induced tumorcell differentiation, J. Biol. Chem. 274 (1999) 22013-22018.
    [184] T.N. Faria, G.J. LaRoda, E. Wilen, J. Liao, L.J. Gudas, Characterization of genes whichexhibit reduced expression during the retinoic acid-induced differentiation of F9teratocarcinoma cells: involvement of cyclin D3 in RA-mediated growth arrest,Mol. Cell.Endocrinol. 143 (1998) 155-166.
    [185] G. Despouy, J.N. Bastie, S. Deshaies, N. Balitrand, A. Mazharian, C. Rochette-Egly, C.Chomienne, L. Delva, Cyclin D3 is a cofactor of retinoic acid receptors, modulating theiractivity in the presence of cellular retinoic acid-binding protein II, J. Biol. Chem. 278(2003) 6355-6362.
    [186] C. Teixeira, M.A. Pratt, CDK2 is a target for retinoic acidmediated growth inhibition inMCF-7 human breast cancer cells, Mol. Endocrinol. 11 (1997) 1191-1202.
    [187] N. Sueoka, H.Y. Lee, G.L. Walsh, W.K. Hong, J.M. Kurie, Posttranslationalmechanisms contribute to the suppression of specific cyclin:CDK complexes byall-trans-retinoic acid in human bronchial epithelial cells, Cancer Res. 59(1999)3838-3844.
    [188] S.L. Hsu, J.W. Hsu, M.C. Liu, L.Y. Chen, C.D. Chang,Retinoic acid-mediated G1arrest is associated with induction of p27 (Kip1) and inhibition of cyclin-dependentkinase 3 in human lung squamous carcinoma CH27 cells, Exp. Cell Res. 258 (2000)322-331.
    [189] T. Matsuo, C.J. Thiele, p27Kip1: a key mediator of retinoic acid growth arrest in theSMS-KCNR human neuroblastoma cell line, Oncogene 17(1998) 3337-3343.
    [190] E. Weber, R.K. Ravi, E.S. Knudsen, J.R. Williams, L.E.Dillehay, B.D. Nelkin, G.P.Kalemkerian, J.R. Feramisco, M.Mabry, Retinoic acid-mediated growth inhibition ofsmall cell lung cancer cells is associated with reduced myc and increased p27Kip1expression, Int. J. Cancer 80 (1999) 935-943.
    [191] A. Borriello, V.D. Pietra, M. Criscuolo, A. Oliva, G.P. Tonini,A. Iolascon, V. Zappia,F.D. Ragione, p27Kip1 accumulation is associated with retinoid-induced neuroblastomadifferentiation: evidence of a decreased proteasome-dependent degradation, Oncogene19 (2000) 51-60.
    [192] G. Baldassarre, A. Boccia, P. Bruni, C. Sandomenico, M.V.Barone, S. Pepe, T.Angrisano, B. Belletti, M.L. Motti, A.Fusco, G. Viglietto, Retinoic acid induces neuronaldifferentiation of embryonal carcinoma cells by reducing proteasomedependentproteolysis of the cyclin-dependent inhibitor p27,Cell Growth Differ. 11 (2000) 517-526.
    [193] Dirks PB, Patel K, Hubbard SL, Ackerley C, Hamel PA, Rutka JT, Retinoic acid andthe cyclin dependent kinase inhibitors synergistically alter proliferation and morphologyof U343 astrocytoma cells, Oncogene 15(1997) 2037-2048.
    [194] Lytle RA, Jiang Z, Zheng X, Higashikubo R, Rich KM,Richard A.Lytle,et al,retinamide-induced apoptosis in glioblastomas is associated with dowm-regulation ofBcl-2 and Bcl-XL, Neuro-Onco. 74(2005)225-232.
    [195] Karmakar S, Banik NL, Patel SJ, Ray SK, Combination of all-trans retinoic acid andtaxol regressed glioblastoma T98G xenografts in nude mice, Apoptosis12(2007)2077-2087.
    [196] Damodar Reddy C, Guttapalli A, Adamson PC, Vemuri MC, O'Rourke D, Sutton LN,Phillips PC, anticancer effecta of fenretnide in human medulloblastoma, Cancer Lett.231(2006)262-269.
    [197] Zeng L, Fagotto F, Zhang T, Hsu W, Vasicek TJ, Perry WL 3rd, Lee JJ, Tilghman SM,Gumbiner BM, Costantini F. The mouse Fused locus encodes Axin, an inhibitor of theWnt signaling pathway that regulates embryonic axis formation, Cell 90(1997)181-192.
    [198] Kishida S, Yamamoto H, Ikeda S, Kishida M, Sakamoto I, Koyama S, Kikuchi A.Axin, a negative regulator of the wnt signaling pathway, directly interacts withadenomatous polyposis coli and regulates the stabilization of beta-catenin, J. Biol.Chem. 273(1998)10823-10826.
    [199] Kishida S, Yamamoto H, Hino S, Ikeda S, Kishida M, Kikuchi A. DIX domains ofDvl and axin are necessary for protein interactions and their ability to regulatebeta-catenin stability, Mol. Cell Biol. 19(1999)4414-4422.
    [200] Julius MA, Schelbert B, Hsu W, Fitzpatrick E, Jho E, Fagotto F, Costantini F,Kitajewski J. Domains of axin and disheveled required for interaction and function inwnt signaling, Biochem. Biophys. Res. Commun. 276(2000) 1162-1169.
    [201] Hsu W, Zeng L, Costantini F. Identification of a domain of Axin that binds to theserine/threonine protein phosphatase 2A and a self-binding domain, J. Biol. Chem.274(1999) 3439-3445.
    [202] Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A. Axin, a negativeregulator of the Wnt signaling pathway, forms a complex with GSK-3beta andbeta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin,EMBO J. 17(1998)1371-1384.
    [203] Zhang Y, Neo SY, Wang X, Han J, Lin SC. Axin forms a complex with MEKK1 andactivates c-Jun NH(2)-terminal kinase/stress-activated protein kinase through domainsdistinct from Wnt signaling, J. Biol. Chem. 274 (1999)35247-32554.
    [204] Zhang Y, Qiu WJ, Liu DX, Neo SY, He X, Lin SC. Differential molecular assembliesunderlie the dual function of Axin in modulating the WNT and JNK pathways, J. Biol.Chem. 276(2001) 32152-32159.
    [205] Zhang Y, Qiu WJ, Chan SC, Han J, He X, Lin SC. Casein kinase I and casein kinase IIdifferentially regulate axin function in Wnt and JNK pathways, J. Biol. Chem.277(2002)17706-17712.
    [206] Furuhashi M, Yagi K, Yamamoto H, Furukawa Y, Shimada S, Nakamura Y, Kikuchi A,Miyazono K, Kato M. Axin facilitates Smad3 activation in the transforming growthfactor beta signaling pathway, Mol. Cell Biol. 21(2001) 5132-5141.
    [207] Akiyama T. Wnt/beta-catenin signaling, Cytokine Growth Factor Rev. 11(2000)273-282.
    [208] Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W.Functional interaction of beta-catenin with the transcription factor LEF-1, Nature382(1996)638-642.
    [209] He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, VogelsteinB, Kinzler KW. Identification of c-MYC as a target of the APC pathway, Science281(1998)1509-1512.
    [210] Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in coloncarcinoma cells, Nature 398(1999)422-426.
    [211] Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R, Ben-Ze'ev A.T The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway,Proc. Natl. Acad. Sci.96(1999)5522-27.
    [212] Peifer M, Polakis P. Wnt signaling in oncogenesis and embryo genesis a look outsidethe nucleus,Science 287(2000)1606-1609.
    [213] Gao ZH, Seeling JM, Hill V, Yochum A, Virshup DM. Casein kinase I phosphorylatesand destabilizes the beta-catenin degradation complex, Proc. Natl. Acad. Sci.99(2002)1182-1187.
    [214] Hart MJ, de los Santos R, Albert IN, Rubinfeld B, Polakis P. Downregulation ofbeta-catenin by human Axin and its association with the APC tumor suppressor,beta-catenin and GSK3 beta, Curr. Biol. 8(1998)573-581.
    [215] Dajani R, Fraser E, Roe SM, Yeo M, Good VM, Thompson V, Dale TC, Pearl LH.Structural basis for recruitment of glycogen synthase kinase 3beta to the axin-APCscaffold complex, EMBO J. 22(2003) 494-501.
    [216] Hinoi T, Yamamoto H, Kishida M, Takada S, Kishida S, Kikuchi A. Complexformation of adenomatous polyposis coli gene product and axin facilitates glycogensynthase kinase-3 beta-dependent phosphorylation of beta-catenin and down-regulatesbeta-catenin, J. Biol. Chem. 275(2000)34399-34406.
    [217] Salahshor S, Woodgett JR. The links between axin and carcinogenesis. J Clin Pathol.58(2005)225-236.
    [218] Hamada F, Tomoyasu Y, Takatsu Y, Nakamura M, Nagai S, Suzuki A, Fujita F, ShibuyaH, Toyoshima K, Ueno N, Akiyama T. Negative regulation of Wingless signaling byD-axin, a Drosophila homolog of axin, Science 283(1999)1739-1742.
    [219] Yamamoto H, Kishida S, Kishida M, Ikeda S, Takada S, Kikuchi A. Phosphorylation ofaxin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates itsstability, J. Biol. Chem. 274(1999) 10681-10684.
    [220] Cong F, Varmus H. Nuclear-cytoplasmic shuttling of Axin regulates subcellularlocalization of beta-catenin, Proc. Natl. Acad. Sci.101(2004) 2882-2887.
    [221] Wiechens N, Heinle K, Englmeier L, Schohl A, Fagotto F. Nucleo-cytoplasmicshuttling of Axin, a negative regulator of the Wnt-beta-catenin Pathway, J. Biol. Chem.279(2004)5263-5267.
    [222] Levina E, Oren M, Ben-Ze'ev A. Downregulation of beta-catenin by p53 involveschanges in the rate of beta-catenin phosphorylation and Axin dynamics, Oncogene23(2004)4444-4453.
    [223] Neo SY, Zhang Y, Yaw LP, Li P, Lin SC. Axin-induced apoptosis depends on theextent of its JNK activation and its ability to down-regulate beta-catenin levels,Biochem. Biophys. Res. Commun. 272(2000)144-150.
    [224] Hsu W, Shakya R, Costantini F. Impaired mammary gland and lymphoid developmentcaused by inducible expression of Axin in transgenic mice, J. Cell Biol.155(2001)1055-1064.
    [225] Furuhashi M, Yagi K, Yamamoto H, Furukawa Y, Shimada S, Nakamura Y, Kikuchi A,Miyazono K, Kato M. Axin facilitates Smad3 activation in the transforming growthfactor beta signaling pathway, Mol. Cell Biol. 21(2001) 5132-5141.
    [226] Liu W, Rui H, Wang J, Lin S, He Y, Chen M, Li Q, Ye Z, Zhang S, Chan SC, Chen YG,Han J, Lin SC. Axin is a scaffold protein in TGF-beta signaling that promotesdegradation of Smad7 by Arkadia, EMBO J. 25(2006)1646-1658.
    [227] Nishita M, Hashimoto MK, Ogata S, Laurent MN, Ueno N, Shibuya H, Cho KW.Interaction between Wnt and TGF-beta signalling pathways during formation ofSpemann's organizer, Nature 403(2000)781-785.
    [228] Ip YT, Davis RJ. Signal transduction by the c-Jun N-terminal kinase (JNK)--frominflammation to development, Curr. Opin. Cell Biol. 10(1998) 205-219.
    [229] Jin LH, Shao QJ, Luo W, Ye ZY, Li Q, Lin SC. Detection of point mutations of theAxin1 gene in colorectal cancers, Int. J. Cancer 107(2003)696-699.
    [230] Zhang Y, Neo SY, Wang X, Han J, Lin SC. Axin forms a complex with MEKK1 andactivates c-Jun NH(2)-terminal kinase/ tress -activated protein kinase through domainsdistinct from Wnt signaling, J. Biol. Chem. 274(1999) 35247-35254.
    [231] Luo W, Ng WW, Jin LH, Ye Z, Han J, Lin SC. Axin utilizes distinct regions forcompetitive MEKK1 and MEKK4 binding and JNK activation, J. Biol. Chem.278(2003)37451-37458.
    [232] Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR. Requirement forglycogen synthase kinase-3beta in cell survival and NF-kappaB activation, Nature406(2000)86-90.
    [233] Zhang Y, Qiu WJ, Liu DX, Neo SY, He X, Lin SC. Differential molecular assembliesunderlie the dual function of Axin in modulating the WNT and JNK pathways, J. Biol.Chem. 276(2001) 32152-32159.
    [234] Rui Y, Xu Z, Lin S, Li Q, Rui H, Luo W, Zhou HM, Cheung PY, Wu Z, Ye Z, Li P,Han J, Lin SC. Axin stimulates p53 functions by activation of HIPK2 kinase throughmultimeric complex formation, EMBO J. 23(2004)4583-4594.
    [235] Li Q, Wang X, Wu X, Rui Y, Liu W, Wang J, Wang X, Liou YC, Ye Z, Lin SC.Daxxcooperates with the Axin/HIPK2/p53 complex to induce cell death,Cancer Res.67(2007)66-74.
    [236] Lin SC, Li Q.Axin bridges Daxx to p53,Cell Res 17(2007)301-302.
    [237] Fukui A, Kishida S, Kikuchi A, Asashima M. Effects of rat Axin domains on axisformation in Xenopus embryos, Dev. Growth Differ. 42(2000)489-498.
    [238] Kikuchi A. Modulation of Wnt signaling by Axin and Axil, Cytokine Growth FactorRev. 10(1999)255-265.
    [239] Lyu J, Costantini F, Jho EH, Joo CK. Ectopic expression of Axin blocks neuronaldifferentiation of embryonic carcinoma P19 cells, J. Biol. Chem. 278(2003)13487-13495.
    [240] Orme MH, Giannini AL, Vivanco MD, Kypta RM. Glycogen synthase kinase-3 andAxin function in a beta-catenin-independent pathway that regulates neurite outgrowth inneuroblastoma cells, Mol. Cell Neurosci. 24 (2003)673-686.
    [241] Hedgepeth CM, Deardorff MA, Klein PS. Xenopus axin interacts with glycogensynthase kinase-3 beta and is expressed in the anterior midbrain, Mech. Dev.80(1999)147-151.
    [242] Kikuchi A. Roles of Axin in the Wnt signalling pathway, Cell Signal 11(1999)777-788.
    [243] Stevens MC, Cameron AH, Muir KR, Parkes SE, Reid H, Whitwell H. Descriptiveepidemiology of primary central nervous system tumours in children: apopulation-based study, Clin.Oncol. 3(1991)323-329.
    [244] Hamilton SR, Liu B, Parsons RE, Papadopoulos N, Jen J, Powell SM, Krush AJ, BerkT, Cohen Z, Tetu B. The molecular basis of Turcot's syndrome, N. Engl. J. Med.332(1995)839-847.
    [245] Zurawel RH, Chiappa SA, Allen C, Raffel C. Sporadic medulloblastomas containoncogenic beta-catenin mutations, Cancer Res. 58(1998)896-899.
    [246] Kang DE, Soriano S, Xia X, Eberhart CG, De Strooper B, Zheng H, Koo EH.Presenilin couples the paired phosphorylation of beta-catenin independent of axin:implications for beta-catenin activation in tumorigenesis, Cell 110(2002) 751-762.
    [247] Huang H, Mahler-Araujo BM, Sankila A, Chimelli L, Yonekawa Y, Kleihues P,Ohgaki H. APC mutations in sporadic medulloblastomas, Am J. Pathol. 156(2000)433-437.
    [248] Dahmen RP, Koch A, Denkhaus D, Tonn JC, Sorensen N, Berthold F, Behrens J,Birchmeier W, Wiestler OD, Pietsch T. Deletions of AXIN1, a component of theWNT/wingless pathway, in sporadic medulloblastomas, Cancer Res.61(2001)7039-7043.
    [249] Baeza N, Masuoka J, Kleihues P, Ohgaki H. AXIN1 mutations but not deletions incerebellar medulloblastomas,Oncogene 22(2003) 632-636.
    [250] Yokota N, Nishizawa S, Ohta S, Date H, Sugimura H, Namba H, Maekawa M. Roleof Wnt pathway in medulloblastoma oncogenesis, Int. J. Cancer 101(2002)198-201.
    [251] Sakanaka C, Williams LT. Functional domains of axin. Importance of the C terminusas an oligomerization domain,J. Biol. Chem. 274(1999) 14090 -14093.
    [252] Behrens J, Lustig B. The Wnt connection to tumorigenesis, Int. J. Dev. Biol.48(2004)477-487.
    [253] M. A. Julius, B. Schelbert, W. Hsu, E. Fitzpatrick, E. Jho, F. Fagotto, F. Costantini, J.Kitajewski. Domains of axin and disheveled required for interaction and function in wntsignaling, Biochem. Biophys. Res. Commun. 276 (2000) 1162-1169.
    [254] Miyoshi Y, Iwao K, Nagasawa Y, Aihara T, Sasaki Y, Imaoka S, Murata M, Shimano T,Nakamura Y. Activation of the beta-catenin gene in primary hepatocellular carcinomasby somatic alterations involving exon 3, Cancer Res. 58(1998)2524-2527.
    [255] de La Coste A, Romagnolo B, Billuart P, Renard CA, Buendia MA, Soubrane O,Fabre M, Chelly J, Beldjord C, Kahn A, Perret C. Somatic mutations of thebeta-catenin gene are frequent in mouse and human hepatocellular carcinomas, Proc.Natl. Acad. Sci. 95(1998) 8847-8851.
    [256] Kondo Y, Kanai Y, Sakamoto M, Genda T, Mizokami M, Ueda R, Hirohashi S.Beta-catenin accumulation and mutation of exon 3 of the beta-catenin gene inhepatocellular carcinoma, Jpn. J. Cancer Res. 90(1999)1301-1309.
    [257] Ihara A, Koizumi H, Hashizume R, Uchikoshi T. Expression of epithelial cadherinand alpha- and beta-catenins in nontumoral livers and hepatocellular carcinomas,Hepatology 23(1996) 1441-1447.
    [258] Huang H, Fujii H, Sankila A, Mahler-Araujo BM, Matsuda M, Cathomas G, Ohgaki H.Beta-catenin mutations are frequent in human hepatocellular carcinomas associatedwith hepatitis C virus infection, Am J. Pathol. 155 (1999)1795-17801.
    [259] Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N, Nishiwaki T, Kawasoe T, Ishiguro H,Fujita M, Tokino T, Sasaki Y, Imaoka S, Murata M, Shimano T, Yamaoka Y, NakamuraY. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancercells by virus-mediated transfer of AXIN1, Nat. Genet.24(2000)245-250.
    [260] Laurent-Puig P, Legoix P, Bluteau O, Belghiti J, Franco D, Binot F, Monges G,Thomas G, Bioulac-Sage P, Zucman-Rossi J. Genetic alterations associated withhepatocellular carcinomas define distinct pathways of hepatocarcinogenesis,Gastroenterology 120(2001)1763-1773.
    [261] Behrens J, Jerchow BA, Wurtele M, Grimm J, Asbrand C, Wirtz R, Kuhl M, WedlichD, Birchmeier W. Functional interaction of an axin homolog, conductin, withbeta-catenin, APC, and GSK3beta, Science 280(1998) 596-599.
    [262] Park JY, Park WS, Nam SW, Kim SY, Lee SH, Yoo NJ, Lee JY, Park CK. Mutationsof beta-catenin and AXIN I genes are a late event in human hepatocellularcarcinogenesis, Liver Int. 25(2005)70-76.
    [263] Wagata T, Ishizaki K, Imamura M, Shimada Y, Ikenaga M, Tobe T. Deletion of 17pand amplification of the int-2 gene in esophageal carcinomas, Cancer Res.51(1991)2113-2117.
    [264] Nakajima M, Fukuchi M, Miyazaki T, Masuda N, Kato H, Kuwano H. Reducedexpression of Axin correlates with tumour progression of oesophageal squamous cellcarcinoma, Br. J. Cancer 88(2003) 1734-1739.
    [265] de Castro J, Gamallo C, Palacios J, Moreno-Bueno G, Rodriguez N, Feliu J,Gonzalez-Baron M. beta-catenin expression pattern in primary oesophageal squamouscell carcinoma. Relationship with clinicopathologic features and clinical outcome,Virchows Arch. 437(2000)599-604.
    [266] 邵秋杰, 李青, 金利华, 赵一岭, 张英华, 林圣彩. 胶质瘤中Axin 基因点突变检测及表达研究, 中华神经外科研究杂志2(2003) 334-337.
    [267] J. Palacios, C. Gamallo. Mutations in the beta-catenin gene (CTNNB1) inendometrioid ovarian carcinomas, Cancer Res.58 (1998) 1344-1347.
    [268] M. Saegusa, I. Okayasu. Frequent nuclear beta-catenin accumulation and associatedmutations in endometrioid-type endometrial and ovarian carcinomas with squamousdifferentiation, J Pathol. 194 (2001) 59-67.
    [269]K. Wright, P. Wilson, S. Morland, I. Campbell, M. Walsh, T. Hurst, B. Ward, M.Cummings, G. Chenevix-Trench. beta-catenin mutation and expression analysis inovarian cancer: exon 3 mutations and nuclear translocation in 16% of endometrioidtumours, Int. J. Cancer 82 (1999) 625-629.
    [270]R. Wu, Y. Zhai, E. R. Fearon, K. R. Cho. Diverse mechanisms of beta-cateninderegulation in ovarian endometrioid adenocarcinomas, Cancer Res.61(2001)8247-8255.
    [271] T. Daa, K. Kashima, N. Kaku, M. Suzuki, S. Yokoyama. Mutations in components ofthe Wnt signaling pathway in adenoid cystic carcinoma, Mod. Pathol. 17(2004)1475-1482.
    [272] Webster MT, Rozycka M, Sara E, Davis E, Smalley M, Young N, Dale TC, WoosterR.Sequence variants of the axin gene in breast, colon, and other cancers: an analysis ofmutations that interfere with GSK3 binding, Genes Chrom. Cancer 28(2000)443-453.
    [273] Karmakar S, Banik NL, Ray SK, Combination of all-trans retinoic acid andpaclitaxel-induced differentiation and apoptosis in human glioblastoma U87MGxenografts in nude mice. Cancer. 112(2008)596-607
    [274] Papi A, Bartolini G, Ammar K, Guerra F, Ferreri AM, Rocchi P, Orlandi M, Inhibitoryeffects of retinoic acid and IIF on growth, migration and invasiveness in the U87MGhuman glioblastoma cell line. Oncol Rep. 18(2007)1015-1021
    [275] Karmakar S, Banik NL, Patel SJ, Ray SK, Combination of all-trans retinoic acid andtaxol regressed glioblastoma T98G xenografts in nude mice. Apoptosis.12(2007)2077-2087.
    [276] Das A, Banik NL, Ray SK, Differentiation decreased telomerase activity in ratglioblastoma C6 cells and increased sensitivity to IFN-gamma and taxol for apoptosis.Neurochem Res. 32(2007)2167-2183.
    [277] Haque A, Banik NL, Ray SK, Emerging role of combination of all-trans retinoic acidand interferon-gamma as chemoimmunotherapy in the management of humanglioblastoma. Neurochem Res. 32(2007)2203-2209.
    [278] Zhang R, Banik NL, Ray SK, Combination of all-trans retinoic acid andinterferon-gamma suppressed PI3K/Akt survival pathway in glioblastoma T98G cellswhereas NF-kappaB survival signaling in glioblastoma U87MG cells for induction ofapoptosis. Neurochem Res. 32(2007)2194-2202.
    [279] Haque A, Das A, Hajiaghamohseni LM, Younger A, Banik NL, Ray SK, Induction ofapoptosis and immune response by all-trans retinoic acid plus interferon-gamma inhuman malignant glioblastoma T98G and U87MG cells. Cancer Immunol Immunother.56(2007):615-625.
    [280] Chang Q, Chen Z, You J, McNutt MA, Zhang T, Han Z, Zhang X, Gong E, Gu J,All-trans-retinoic acid induces cell growth arrest in a human medulloblastoma cell line.J Neurooncol. 84(2007)263-267
    [281] Knostman KA, McCubrey JA, Morrison CD, Zhang Z, Capen CC, Jhiang SM. PI3Kactivation is associated with intracellular sodium/iodide symporter protein expression inbreast cancer.BMC Cancer. 25(2007)137
    [282] Kogai T, Ohashi E, Jacobs MS, Sajid-Crockett S, Fisher ML, Kanamoto Y, Brent GA.Retinoic Acid Stimulation of the Sodium/Iodide Symporter in MCF-7 Breast CancerCells Is Meditated by the IGF1/PI3 Kinase and p38 MAP Kinase Signaling Pathways.JClin Endocrinol Metab. 2008 Mar 4; [Epub ahead of print]
    [283] Cheepala SB, Syed Z, Trutschl M, Cvek U, Clifford JL. Retinoids and skin:microarrays shed new light on chemopreventive action of all-trans retinoic acid.MolCarcinog. 46(2007)634-639.
    [284] Yokoyama M, Noguchi M, Nakao Y, Ysunaga M, Yamasaki F, Iwasaka T.Antiproliferative effects of the major tea polyphenol, (-)-epigallocatechin gallate andretinoic acid in cervical adenocarcinoma.Gynecol Oncol. 108(2008)326-331
    [285] Borutinskaite VV, Navakauskiene R, Magnusson KE. Retinoic acid and histonedeacetylase inhibitor BML-210 inhibit proliferation of human cervical cancer HeLacells.Ann N Y Acad Sci. 1091(2006)346-355.
    [286] Spitzweg C, Scholz IV, Bergert ER, Tindall DJ, Young CY, G? ke B, Morris JC.Retinoic acid-induced stimulation of sodium iodide symporter expression andcytotoxicity of radioiodine in prostate cancer cells.Endocrinology. 144(2003)3423-3432.
    [287] Nwankwo JO. Anti-metastatic activities of all-trans retinoic acid, indole-3-carbinoland (+)-catechin in Dunning rat invasive prostate adenocarcinoma cells.Anticancer Res.22(2002)4129-4135.
    [288] Fiorentini C, Facchetti M, Finardi A, Sigala S, P· ez-Pereda M, Sher E, Spano P,Missale C. Nerve growth factor and retinoic acid interactions in the control of small celllung cancer proliferation.Eur J Endocrinol. 147(2002)371-379.
    [289] Zhang H, Rosdahl I. Expression profiles of p53, p21, bax and bcl-2 proteins inall-trans-retinoic acid treated primary and metastatic melanoma cells.Int J Oncol.25(2004)303-308.
    [290] Sarkar SA, Sharma RP. Modulation of p53 after maternal exposure toall-trans-retinoic acid in Swiss Webster mouse fetuses.Exp Mol Pathol.74(2003)298-308.
    [291] Koistinen P, Zheng A, S‰ily M, Siitonen T, M‰ntymaa P, Savolainen ER. Superioreffect of 9-cis retinoic acid (RA) compared with all-trans RA and 13-cis RA on theinhibition of clonogenic cell growth and the induction of apoptosis in OCI/AML-2subclones: is the p53 pathway involved?Br J Haematol. 118(2002)401-410.
    [292] Zheng A, M‰ntymaa P, S‰ily M, Savolainen E, V‰h‰kangas K, Koistinen P. p53pathway in apoptosis induced by all-trans-retinoic acid in acute myeloblastic leukaemiacells.Acta Haematol. 103(2000)135-143.
    [293] 张丽英, 李青等. Axin 基因的表达对神经胶质瘤细胞C6 生物学特性的影响.现代肿瘤医学, 14(2006)521-524.
    [294] 李烦繁, 李青, 陈广生,等.突变型Axin 基因在神经胶质瘤细胞系C6 中的功能研究. 临床与实验病理学杂志, 23(2007)72-75.
    [295] Hakamura T, Hamada F, Ishidate T, Axin, an inhibitor of Wnt signaling pathway,interacts with beta-catenin, GSK3beta and APC and reduces the beta-catenin level. GenesCells 3(1998)395-403.
    [296] Hart MJ, Los Santos RD, Albert IN et al. Downregulation of β-catenin by human Axinand its association with the APC tumor suppressor, β-catenin and GSK3β. Curr. Biol. 8(1998)573-58.
    [297]Kyritsis AP, Bondy ML, Xiao M, Berman EL, Cunningham JE, Lee PS, Levin VA,Saya H. Germline p53 gene mutations in subsets of glioma patients. J Natl Cancer Inst.86(1994)344-349.
    [298]Kock H, Harris MP, Anderson SC, Machemer T, Hancock W, Sutjipto S, Wills KN,Gregory RJ, Shepard HM, Westphal M, Maneval DC. Adenovirus-mediated p53 genetransfer suppresses growth of human glioblastoma cells in vitro and in vivo. Int JCancer. 67(1996)808-815.
    [299]Iwadate Y, Fujimoto S, Tagawa M, Namba H, Sueyoshi K, Hirose M, Sakiyama S.Association of p53 gene mutation with decreased chemosensitivity in human malignantgliomas. Int J Cancer. 69(1996)236-240.
    [300] Weinmann L, Wischhusen J, Demma MJ, Naumann U, Roth P, Dasmahapatra B,Weller M. A novel p53 rescue compound induces p53-dependent growth arrest andsensitises glioma cells to Apo2L/TRAIL-induced apoptosis.Cell Death Differ.15(2008)718-729.
    [301] Miyagami M, Katayama Y. Angiogenesis of glioma: evaluation of ultrastructuralcharacteristics of microvessels and tubular bodies (Weibel-Palade) in endothelial cellsand immunohistochemical findings with VEGF and p53 protein.Med Mol Morphol.38(2005)36-42.
    [302] Benjamin CL, Ullrich SE, Kripke ML, Ananthaswamy HN. p53 tumor suppressorgene: a critical molecular target for UV induction and prevention of skincancer.Photochem Photobiol. 84(2008)55-62.
    [303] Wang W, El-Deiry WS. Restoration of p53 to limit tumor growth.Curr. Opin. Oncol.20(2008)90-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700