用户名: 密码: 验证码:
实验性癫痫大鼠认知功能障碍的机制探讨及尼莫地平的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
癫痫是由于脑部兴奋性过高的某些神经元突然异常放电引起的脑功能异常,是一种常见的慢性临床综合征。临床发现30%~40%的癫痫患者除癫痫发作症状外,常伴有记忆力减退、注意力分散等认知功能受损的表现,严重影响了患者的生活质量。癫痫与认知功能损害的关系已被人们广泛重视,并已成为现代癫痫病学研究的热点之一,但癫痫后认知功能损害的机制还不清楚。
     目前认为,突触是神经元之间结构和功能的接触点,是神经信息传递的关键部位,突触结构和功能的完整对于保证神经元获得信息并顺利进行信息传递、加工和贮存是非常重要的。突触可塑性是指突触在一定条件下通过改变形态而调整功能的能力,在神经系统的发育、成熟及学习记忆等生理过程中起重要作用。突触可塑性变化主要表现在突触囊泡数密度(synaptic vesicles density, SVD)、突触间隙的宽度(the width of synaptic cleft, WSC)及突触后膜致密物(postsynaptic density, PSD)的厚度等方面的变化。突触可塑性和海马的长时程增强(long-term potentiation,LTP)密切相关,LTP反映突触水平的信息存储过程,是学习记忆的分子基础。
     突触素(synaptophysin, SYN, P38)作为突触囊泡的特异性标志蛋白,其密度和分布可间接反映体内突触的数量和分布情况,与突触重建及认知过程密切相关。突触后致密物95(postsynaptic density 95, PSD-95)串集N-甲基-D-门冬氨酸(N-methy1 -D-aspartate, NMDA)受体,而此受体是诱发LTP的必要条件。LTP的形成是突触前后机制共同作用的结果。P38反映了突触前膜递质的释放,PSD-95反映了突触后膜受体的有效性。
     钙作为神经信号传递的重要信使,参与了学习记忆的神经机制,神经细胞内钙离子浓度(intracellular concentration of calcium, [Ca2+]i)的微小变化就可以引起一系列生理乃至病理性改变。Ca2+/钙调蛋白依赖性蛋白激酶IIα(calcium/calmodulin-dependent protein kinase IIα, CaMK IIα)是海马内含量最高的一种蛋白,也是PSD的主要成分,其自动磷酸化与LTP的维持(<3小时)密切相关,更长时间的LTP的维持需要一系列基因的表达和新蛋白质的合成,而环磷腺苷反应单元结合蛋白(cAMP response element binding protein, CREB)是细胞内的转录转导因子,调节基因的转录和蛋白质的合成,是短时记忆向长时记忆转化的关键。
     癫痫作为高频刺激(high frequency stimulation, HFS),可以引起谷氨酸大量释放,钙离子内流,诱导兴奋性氨基酸毒性作用及钙超载,频繁HPS是否引起学习记忆能力下降,钙信号如何沿Ca2+-CaMK II-CREB传递,同时,调节谷氨酸释放的突触前膜囊泡(P38)及固定谷氨酸受体的突触后膜成分PSD-95如何变化,突触超微结构发生了什么改变,所有这些我们并不清楚,而这些可能为研究癫痫后认知功能障碍的机制找到一些新的突破点。
     尼莫地平(nimodipine, NMD)是选择性作用于脑血管和神经元的双氢吡啶类钙通道阻滞剂,除具有扩张脑血管,增加脑供血等作用外,还可以阻断钙通道,减轻钙超载,保护神经元。近年的研究表明,尼莫地平可以改善多种原因导致的学习记忆障碍,但该药对癫痫后认知功能障碍的实验研究尚未见相关报道。有鉴于此,本文通过对突触可塑性及钙信号转导的研究,探讨癫痫后认知功能障碍的可能发生机制,并观察尼莫地平的脑保护作用。
     第一部分慢性癫痫大鼠模型的制备、行为学测定及尼莫地平的影响
     目的:建立戊四氮点燃慢性癫痫大鼠模型,观察其学习记忆能力的变化及尼莫地平的影响。
     方法:选用健康雄性SD大鼠,经两次Y-迷宫筛选合格后随机分四组。NC(normal control)组大鼠(35只)每日腹腔注射生理盐水3.5 ml/kg,共44 d。PTZ组(40只)每日腹腔注射1% PTZ 35 mg/kg,连续44 d,自给药第31天起,每日PTZ注射前15 min腹腔注射生理盐水3.5 ml/kg,共14 d。NMD1组(40只)及NMD2组(40只)每日腹腔注射1% PTZ 35 mg/kg,连续44 d,自给药第31天起,每日PTZ注射前15 min分别腹腔注射NMD 1.25 mg/kg、2.5 mg/kg ,共14 d。造模成功后描记脑电图(electroencephalogram, EEG)变化,并采用Morris水迷宫和Y-迷宫实验,进行大鼠学习和记忆成绩的测试。
     结果:大鼠在注射PTZ后第6~10天起开始出现凝视、点头、反复洗脸动作、面部及头部抽搐等,以后发作症状逐日加重,于给药第18~24天出现全身肌阵挛、双前肢抬起,最终发生全身强直-阵挛性发作,达到RacineⅣ~Ⅴ级的点燃标准,以后每天均有Ⅳ~Ⅴ级发作。第30天时PTZ组大鼠35只完全点燃,NMD1组34只完全点燃,NMD2组35只完全点燃。第31~44天,PTZ组大鼠每天仍有Ⅳ~Ⅴ级癫痫发作,NMD1和NMD2组大鼠癫痫发作程度减轻。NC组大鼠自始至终无癫痫发作表现。EEG表现:NC组大鼠EEG以α、β波为主,背景正常,无异常放电现象。PTZ组大鼠EEG表现为在基础波背景下,阵发性出现大量高幅尖波、棘波、棘慢复合波,持续1~2 s。NMD1组和NMD2组大鼠EEG表现为痫性放电受到抑制,在基础波背景下可见散在少量棘波或尖波,波幅降低。Morris水迷宫实验中定位航行实验结果:每日逃避潜伏期取其平均值进行比较。第1天,四组大鼠的逃避潜伏期比较无统计学意义(P>0.05);第2天,与NC组的逃避潜伏期(15.14±4.69)s比较,PTZ组逃避潜伏期(27.36±6.13)s明显延长( P<0.05);NMD1组和NMD2组的逃避潜伏期(21.66±5.21)s及(19.76±5.81)s较PTZ组缩短( P<0.05),但与NC组比较明显延长(P<0.05);NMD1组和NMD2组的逃避潜伏期比较无统计学意义。第3天,PTZ组大鼠的逃避潜伏期(7.71±1.30)s与NC组(4.46±1.11)s比较有显著性差异(P<0.01);NMD1组和NMD2组的逃避潜伏期(5.94±1.19)s及(5.69±1.03)s仍短于PTZ组( P<0.05),但长于NC组( P<0.05);NMD1组和NMD2组的逃避潜伏期比较无统计学意义(P>0.05)。空间探索试验结果:PTZ组大鼠120 s内穿越平台区域的次数(5.73±2.14)明显低于NC组(9.25±2.18)( P<0.01);NMD1、NMD2组大鼠120 s内穿越平台区域的次数(8.58±2.12)及(7.51±2.05)与PTZ组比较明显增多(P<0.01),但与NC组比较无统计学意义(P>0.05);NMD1组和NMD2组大鼠120 s内穿越平台区域的次数二者比较无统计学意义(P>0.05)。在平台象限的游泳时间四组比较无显著性差异(P>0.05)。Y迷宫检测结果:PTZ组大鼠的错误反应次数(error number, EN)(12.75±2.50)与NC组(6.25±3.10)比较明显增多(P<0.05);NMD1组和NMD2组的错误反应次数(8.75±2.22)和(8.00±3.16)与PTZ组比较又明显减少(P<0.05),但NMD1组和NMD2组与NC组比较无显著性差异(P>0.05);NMD1组和NMD2组比较也无显著性差异(P>0.05)。全天总反应时间四组比较无统计学意义(P>0.05)。
     结论:本实验建立的戊四氮点燃癫痫大鼠模型类似人类慢性癫痫发作,且具备学习和记忆能力缺损,是研究癫痫后认知功能障碍比较理想的动物模型,尼莫地平可以部分改善慢性癫痫大鼠的学习记忆功能缺损。
     第二部分慢性癫痫大鼠海马突触后致密物95与突触素表达的变化及尼莫地平的影响
     目的:观察戊四氮点燃慢性癫痫大鼠海马P38及PSD-95表达的变化及尼莫地平的影响,探讨P38及PSD-95在癫痫后认知功能障碍中的作用与意义。
     方法:每组大鼠各取8只,10%水合氯醛麻醉,4%多聚甲醛灌注固定,取含海马脑段,石蜡包埋,冠状切片,采用SP法行PSD-95及P38免疫组化染色,测定免疫反应产物吸光度。每组大鼠各取8只,迅速分离海马,Trizol提取总RNA,应用反转录-聚合酶链反应(RT-PCR)方法检测定大鼠海马PSD-95 mRNA表达的变化。
     结果:PSD-95免疫组化图像分析结果显示:与NC组大鼠海马CA1区PSD-95免疫反应产物吸光度(0.7108±0.0584)比较,PTZ组大鼠海马CA1区PSD-95免疫反应产物吸光度(0.6525±0.0648)明显减少(P<0.05);与PTZ组比较,NMD1组海马CA1区PSD-95免疫反应产物吸光度(0.6921±0.0620)和NMD2组海马CA1区PSD-95免疫反应产物吸光度(0.7033±0.0659)均明显增加(P<0.05);NMD1组、NMD2组及NC组PSD-95免疫反应产物吸光度无明显差异(P>0.05)。P38免疫组化图像分析结果显示:与NC组大鼠海马CA1区P38免疫反应产物吸光度(0.6033±0.0444)比较,PTZ组大鼠P38免疫反应产物吸光度(0.4475±0.0505)明显减少(P<0.05);与PTZ组比较,NMD1组和NMD2组P38免疫反应产物吸光度(0.5819±0.0367)和(0.5723±0.0528)均明显增加(P<0.05)。NMD1、NMD2组及NC组P38免疫反应产物吸光度三组比较无明显统计学差异(P>0.05)。各组大鼠海马PSD-95 mRNA的表达水平以PSD-95 mRNA/β-actin mRNA表示。结果显示:与NC组PSD-95 mRNA表达水平(0.607±0.051)比较,PTZ组PSD-95 mRNA表达水平(0.325±0.030)明显降低(P<0.05);与PTZ组比较,NMD1和NMD2组PSD-95 mRNA表达水平(0.512±0.035)及(0.575±0.041)明显增高(P<0.05);NMD1、NMD2组及NC组PSD-95 mRNA表达水平三组比较无明显统计学差异(P>0.05)。
     结论:PTZ点燃癫痫大鼠海马组织P38、PSD-95及PSD-95 mRNA表达水平均降低,并且与大鼠学习和记忆成绩下降相一致,提示P38及PSD-95可能参与了癫痫后认知功能障碍的发病机制;尼莫地平可以提高癫痫大鼠海马组织P38蛋白、PSD-95蛋白及mRNA表达水平,进而促进癫痫大鼠学习和记忆能力改善。
     第三部分慢性癫痫大鼠海马神经元和突触超微结构的变化及尼莫地平的影响
     目的:观察戊四氮点燃慢性癫痫大鼠海马CA1区神经元形态结构和突触超微结构(SVD、PSD、WSC)的变化及尼莫地平的干预作用,探讨突触可塑性与癫痫后认知功能障碍的关系。
     方法:每组大鼠各取3只,10%水合氯醛麻醉,4 %多聚甲醛(含2.5 %戊二醛)灌注固定,利用透射电子显微镜观察各组大鼠海马CA1区神经元形态结构和突触超微结构(SVD、PSD、WSC)的变化。
     结果:NC组海马神经元形态完整,结构清晰,细胞器丰富,有髓神经髓鞘完整。PTZ组海马神经元减少,细胞核肿胀,核膜模糊不清,核内异染色质减少分散,胞核疏松、透明,出现核固缩现象。细胞器明显减少,线粒体空泡化或均质化。粗面内质网板层离散,核糖体脱颗粒。神经毡水肿变形,有些轴突、树突扩张、融合。可见髓鞘层裂。NMD1组及NMD2组海马神经元和神经毡水肿减轻,核膜尚完整,核形态基本正常,染色质均匀分布,胞质中细胞器尚丰富,形态基本正常。NC组海马CA1区神经毡内Gray I型突触丰富,突触前、后膜清晰,囊泡密集,PSD较厚,均匀致密。PTZ组突触数量减少,突触前、后膜模糊不清,突触间隙增大,PSD变薄,不均匀,突触囊泡减少。NMD1组和NMD2组突触数量较多,突触前后膜结构较清晰,PSD尚均匀,突触囊泡数量较多。PTZ组大鼠海马CA1区PSD为(31.37±1.94)nm,与NC组(49.86±3.38)nm比较有显著性差异(P<0.05);与PTZ组比较,NMD1组大鼠海马CA1区PSD(45.69±2.70)nm和NMD2组(48.20±2.15)nm明显增高(P<0.05);NMD1、NMD2组及NC组大鼠海马CA1区PSD三组比较无明显统计学差异(P>0.05)。与NC组大鼠海马CA1区WSC(14.62±1.19)nm比较,PTZ组WSC(22.34±1.84)nm显著增大(P<0.05);与PTZ组比较,NMD1组大鼠海马CA1区WSC(16.37±1.72)nm和NMD2组WSC(15.02±1.63)nm明显减小(P<0.05);NMD1组、NMD2组及NC组大鼠海马CA1区WSC三组比较无明显统计学差异(P>0.05)。与NC组大鼠海马CA1区SVD(3362.61±102.08)个/um2比较,PTZ组SVD(1078.36±111.03)个/um2明显减少(P<0.05);与PTZ组比较,NMD1组大鼠海马CA1区SVD(2932.01±142.95)个/um2和NMD2组SVD(3155.50±137.49)个/um2明显增高(P<0.05);NMD1、NMD2组及NC组三组大鼠海马CA1区SVD比较无明显统计学差异(P>0.05)。
     结论:癫痫大鼠海马CA1区存在神经元与突触超微结构异常,尼莫地平可以改善神经元及突触超微结构的病理学变化,这些与癫痫大鼠学习和记忆能力的变化相平行,说明突触可塑性与癫痫后认知功能障碍之间存在密切关系。
     第四部分慢性癫痫大鼠海马[Ca2+]i和钙/钙调蛋白依赖性蛋白激酶IIα的变化及尼莫地平的影响
     目的:观察戊四氮点燃慢性癫痫大鼠海马[Ca2+]i及CaMK IIα, P-CaMK IIα蛋白、CaMK IIαmRNA表达的变化及尼莫地平的干预作用,探讨钙信号转导与癫痫后认知功能障碍的关系。
     方法:每组大鼠各取6只,10%水合氯醛麻醉,迅速取海马,制备海马组织混悬液,负载Fluo-3/AM,采用流式细胞分析技术测定各组大鼠海马细胞[Ca2+]i变化; RT-PCR方法检测CaMK IIαmRNA表达的变化。每组大鼠各取8只,10%水合氯醛麻醉,迅速取海马,提取海马总蛋白及膜蛋白,Western blot方法检测海马CaMK IIα, P-CaMK IIα蛋白表达的变化。
     结果:与NC组[Ca2+]i(1.26±0.21)比较,PTZ组海马[Ca2+]i(1.94±0.33)明显升高(P<0.05);与PTZ组[Ca2+]i比较,NMD1组[Ca2+]i(1.35±0.28)和NMD2组[Ca2+]i(1.32±0.26)明显降低(P<0.05);NMD1、NMD2组和NC组海马[Ca2+]i之间无明显差异(P>0.05)。各组大鼠海马CaMK IIα蛋白表达水平以CaMK IIα/β-actin表示。结果显示:与NC组CaMK IIα表达水平(1.030±0.133)比较,PTZ组CaMK IIα表达水平(0.700±0.061)显著降低(P<0.05);与PTZ组比较,NMD1组和NMD2组CaMK IIα表达水平(1.000±0.130)、(0.981±0.071)显著升高(P<0.05);NC组和NMD1、NMD2组大鼠海马CaMK IIα表达水平之间无明显差异(P>0.05)。各组大鼠海马P-CaMK IIα蛋白表达水平以P-CaMK IIα/β-actin表示。结果显示:与NC组P-CaMK IIα表达水平(0.693±0.035)比较,PTZ组P-CaMK IIα表达水平(0.250±0.036)显著降低(P<0.05);与PTZ组比较,NMD1组和NMD2组P-CaMK IIα表达水平(0.679±0.058)、(0.665±0.043)显著升高(P<0.05);NC组、NMD1和NMD2组P-CaMK IIα表达水平无显著性差异(P>0.05)。大鼠海马CaMK IIαmRNA表达水平以CaMK IIαmRNA/β-actin mRNA表示。结果显示,与NC组CaMK IIαmRNA表达水平(1.217±0.074)比较,PTZ组CaMK IIαmRNA表达水平(0.758±0.050)明显降低(P<0.05);与PTZ组比较,NMD1组和NMD2组CaMK IIαmRNA表达水平(1.149±0.083)、(1.300±0.071)明显增高(P<0.05);NMD1、NMD2组及NC组大鼠CaMK IIαmRNA表达水平无明显统计学差异(P>0.05)。
     结论:戊四氮点燃慢性癫痫大鼠海马内存在钙超载及P-CaMK IIα,CaMK IIα蛋白及CaMK IIαmRNA表达水平降低,导致钙信号转导异常,可能参与了癫痫后认知功能障碍的发病机制;尼莫地平可以调节海马[Ca2+]i水平,增强P-CaMK IIα,CaMK IIα蛋白及CaMK IIαmRNA表达水平,与它提高癫痫大鼠学习记忆成绩相一致,提示尼莫地平具有改善认知功能的药理学作用。
     第五部分慢性癫痫大鼠海马CREB表达水平的变化及尼莫地平的影响
     目的:观察戊四氮点燃慢性癫痫大鼠海马P-CREB蛋白及CREB mRNA表达的变化及尼莫地平的干预作用,探讨核转录因子CREB表达与癫痫后认知功能障碍的关系。
     方法:Western blot方法检测海马P-CREB(Ser133)蛋白表达的变化, RT-PCR方法检测CREB mRNA表达的变化。结果:各组大鼠海马P-CREB(Ser133)表达水平以P-CREB/β-actin表示。结果显示:与NC组P-CREB表达水平(0.643±0.054)比较,PTZ组大鼠海马P-CREB表达水平(0.275±0.041)显著降低(P<0.05);与PTZ组比较,NMD1组和NMD2组P-CREB表达水平(0.602±0.045)、(0.621±0.071)显著升高(P<0.05);NC组及NMD1、NMD2组大鼠海马P-CREB蛋白表达水平比较无显著性差异(P>0.05)。各组大鼠海马CREB mRNA表达水平以CREB mRNA/β-actin mRNA表示。结果显示,与NC组CREB mRNA表达水平(0.605±0.071)比较,PTZ组CREB mRNA表达水平(0.319±0.037)明显降低(P<0.05);与PTZ组比较,NMD1组和NMD2组CREB mRNA表达水平(0.560±0.058)、(0.582±0.083)明显增高(P<0.05);NMD1、NMD2组及NC组大鼠海马CREB mRNA表达水平之间无明显统计学差异(P>0.05)。
     结论:慢性癫痫大鼠海马CREB蛋白磷酸化水平及转录水平下调,尼莫地平可以提高CREB蛋白及转录水平,这与其学习和记忆成绩变化相一致,提示核转录因子CREB可能参与了癫痫后认知功能障碍的发病机制。
Epilepsy, which is essentially an abnormality of cerebral function resulting from the discharges of some cerebral neuron in over high excitement state, has been a common chronic clinical syndrome. Besides the common symptoms of epilepsy, about 30%~40% of the epileptic patients have been found to have deleterious cognitive consequences, which may affect the patients’life greatly, such as the declination of memory, the scattering of attention, etc. Despite the fact that the relationship between epilepsy and the cognitive deficiency has drawn much attention and become one of the focuses of modern epilepsy research, the mechanics of damaged cognition after epilepsy is not known yet.
     Synapse has been well recognized as the key of transmitting neural information for its being touch points among neurons. It is therefore that whether synapse is intact or not determines the quality of information transmitting, processing and storage. The synaptic plasticity refers to the ability of synapse to change shape and adjust functions under some certain conditions, which plays a crucial role in the whole developing process of neural system, study ability and memory. The synaptic plasticity, which is closely related with long-term potentiation (LTP) of hippocampus, is measured by the changes of the number of synaptic vesicles density (SVD), the width of synaptic cleft (WSC) and the postsynaptic density (PSD).
     The density and distribution of synaptophysin (SYN, P38), a typical proteinous marker of synaptic vesicles, is not only an indirect reflection of the quantity and distribution of synapse but also closely related to the reconstruction of synapse and cognitive process. Postsynaptic density 95(PSD-95) is an essential factor of inducing LTP for its role in clustering N-methy1-D-aspartate (NMDA). As the co-functioning results of the presynaptic and postsynaptic mechanics, the formation of LTP requires the increase of both the release of presynaptic transmitter and the efficiency of postsynaptic receptor. P38 reflects the release of presynaptic transmitter and PSD-95 reflects the efficiency of postsynaptic receptor.
     Calcium, an important messager of neural information, plays an important part in learning ability and memory. Any change of the intracellular concentration of Calcium ([Ca2+]i) will lead to a series of biological and even pathological changes. Calcium/calmodulin-dependent protein kinase IIα(CaMK IIα) is the most protein inside hippocampus and a main element of PSD simultaneously. There is a close relationship between autophosphorylation of CaMK IIαand the maintenance of LTP within 3 hours. Moreover the maintenance of LTP more than 3 hours requires the expression of a series of genes and the synthesis of new proteins. And cAMP response element binding protein (CREB), the intracellular transcription factor, which mediates the genetic transcription and the proteinous synthesis, plays a key role in the transition from short term memory to long term memory.
     Epilepsy, one of the high frequency stimulations (HFS), will cause the release of glutamic acid (Glu) and the inward flow of Calcium ion, which will induce the poisonous effect of excitatory amino-acid (EAA) and the overloading of Ca2+. And we have not found the truths, which may help find some new breakthroughs in the research on the mechanics of damaged cognition after epilepsy, such as whether the HPS will possibly lead to the declination of learning ability and memory, how the Calcium message transmits along Ca2+-CaMK II-CREB, how P38 in charge of the Glu release and PSD-95 in charge of clustering the Glu receptor change, and what the change of synaptic ultrastructure is, etc.
     Nimodipine (NMD) is an inhibitor of L-type voltage-dependent Ca2+ channels (VDCCs). Recent researches have showed that NMD could help improve the impairments of learning ability and memory resulted from various diseases. Still not published is the experimental research on NMD’s effect on damaged learning ability and memory after epilepsy. Based on the above mentioned facts, the dissertation intends to explore the possible mechanics of the damaged cognition after epilepsy through the research of synaptic plasticity and Calcium message transcription and observe the positive effects of NMD upon epilepsy and damaged cognition after epilepsy.
     Part I Establishment of chronic epileptic rat model, evaluation of behavioral features and the effect of NMD
     Objective: To establish a chronic epileptic rat model kindled by PTZ and observe the changes of learning ability and memory of epileptic rats and the effect of NMD.
     Methods: Adult male Sprague–Dawley (SD) rats were selected through Y-Maze tests and then divided into 4 groups randomly. The 35 rats in the normal control group (NC) were injected saline intraperitoneally (i.p) by 3.5 ml/kg for consecutive 44 days. The 40 rats in PTZ group received intraperitoneal injection of 1% pentylenetetrazol (PTZ) by 35 mg/kg for consecutive 44 days. From the 31st day on, each rat was injected saline intraperitoneally by 3.5 ml/kg 15 minutes before PTZ in the rest 14 days. Rats in NMD1 group and in NMD2 group (40 rats each group) were injected intraperitoneally 1% PTZ by 35mg/kg for consecutive 44 days. From the 31st day on, each rat was injected NMD intraperitoneally by 1.25 mg/kg and by 2.5 mg/kg respectively 15 minutes before PTZ in the rest 14 days. Then those rats were recorded with electroencephalogram (EEG) and tested with Morris Water Maze (MWM) and Y-Morris for the measurement of the rats’learning ability and memory.
     Results: Beginning from day 6 on, rats in epileptic and NMD groups had seizures induced by repetitive PTZ, which were characterized by head shaking, squealing and crawling. Moreover, wild running, loss of righting reflex and generalized tonic–clonic convulsions were seen on day 18~day 24, which indicated reaching the kindling standard. On day 30, the numbers of the rats being kindled in PTZ group, NMD1 group and NMD2 group were 35, 34, and 35 respectively. The Racine’s stage greatly reduced after NMD injection in the NMD groups. No seizures were found in the normal group. EEG changes: The EEG records of the rats in NC group were dominant withαwaves andβwaves and the background was normal without any discharges. The rats in PTZ group were recorded in EEG as sharps, spike-slow waves and most polyspike discharge, with high potential on a relatively normal background. The EEG records of the rats in NMD1 group and NMD2 group were demonstrated the repressed discharges. Place navigation results in MWM test: Comparisons were made among the mean escape latencies on each day. On day 1, comparisons of the four groups were of no difference in significance (P>0.05). On day 2, the mean escape latency of rats in PTZ group (27.36±6.13) s was much longer than that in NC group (15.14±4.69) s (P<0.05). Moreover, the mean escape latencies of the rats in both NMD1 group (21.66±5.21) s and NMD2 group (19.76±5.81) s were shorter than that of the rats in PTZ group (P<0.05), but much longer than that in NC group (P<0.05). The comparison of mean escape latency in NMD1 group and NMD2 group had no distinct difference (P>0.05). On day 3, the mean escape latency of the rats in PTZ group (7.71±1.30) s was obvious different from that in NC group (4.46±1.11) s (P<0.01). The mean escape latencies of the rats in both NMD1 group (5.94±1.19) s and NMD2 group (5.69±1.03) s were shorter than that in PTZ group (P<0.05), but longer than that of those in NC group (P<0.05). The comparison of mean escape latencies of the rats in NMD1 group and NMD2 group had no statistic difference (P>0.05). Spatial probe test: The number of crossing times through the platform quadrant within 120 s in PTZ group (5.73±2.14) decreased obviously compared with that in NC group (9.25±2.18) ( P<0.01). And the numbers of crossing times through the platform quadrant within 120 s in both NMD1 group (8.58±2.12) and NMD2 group (7.51±2.05) increased significantly compared with that in PTZ group (P<0.01), but were of no statistic significance compared with that in NC group(P>0.05). And the comparison of the numbers in NMD1 group and NMD2 group was not statistically significant (P>0.05). There was no significant difference of the swimming time spent in the platform quadrant of the rats in four groups (P>0.05). Y-maze results: The error number (EN) of the rats in PTZ group (12.75±2.50) increased obviously compared with that in NC group (6.25±3.10) (P<0.05). The ENs in both NMD1 (8.75±2.22) and NMD2 group (8.00±3.16) significantly decreased compared with that in PTZ group (P<0.05), but was of no obvious difference from that in NC group (P>0.05). There was no obvious difference between NMD1 group and NMD2 group (P>0.05). Comparisons of the total reaction time (TRT) of the rats in four groups were of no significant difference (P>0.05).
     Conclusion: The epileptic model kindled by PTZ in the experiment did have impairments in learning ability and memory. This model is the perfect animal model which is feasible to study the damaged cognition after epilepsy. NMD could partly improve the damaged cognitive function of epileptic rats.
     Part II Changes of postsynaptic density 95(PSD-95) and synaptophysin (P38) expression levels in hippocampus of rats kindled by PTZ and the effect of NMD
     Objective: To observe the changes of P38 protein, PSD-95 protein and PSD-95 mRNA in hippocampus of rats kindled by PTZ and the effect of NMD and to explore the role of PSD-95 and P38 in damaged cognition after epilepsy.
     Methods: 8 rats in each group were anesthetized by 10% chloral hydrate and perfused with 4% paraformaldehyde solution. The brain tissue containing hippocampus was cut and embedded with paraffin. The changes of P38 and PSD-95 were tested with immunohistochemical SP methods and the absorbency of immunohistochemical products was also detected. Another 8 rats in each group were anesthetized by 10% chloral hydrate and the hippocampi were quickly separated. Total RNA was extracted strictly by Trizol. The expression of PSD-95 mRNA was measured by RT-PCR.
     Results: The absorbency of PSD-95 immunohistochemical products in the hippocampal CA1 area of the rats in PTZ group (0.6525±0.0648) decreased distinctly compared with that in NC group (0.7108±0.0584) (P<0.05). Compared with the absorbency of PSD-95 products in PTZ group, those in NMD1 group (0.6921±0.0620) and NMD2 group (0.7033±0.0659) increased obviously (P<0.05). There was no distinct difference among NMD1 group, NMD2 group and NC group (P>0.05). The absorbency of P38 immunohistochemical products in the hippocampal CA1 area of the rats in PTZ group (0.4475±0.0505) reduced distinctly compared with that in NC group (0.6033±0.0444) (P<0.05). Compared with the absorbency in PTZ group, those in NMD1 group (0.5819±0.0367) and NMD2 group (0.5723±0.0528) increased significantly (P<0.05). The difference of the absorbencies among NMD1 group, NMD2 group and NC group was not distinct (P>0.05). The expression levels of PSD-95 mRNA were determined by calculating the density ratio of PSD-95 mRNA/β-actin mRNA. The expression level in PTZ group (0.325±0.030) reduced obviously compared with that in NC group (0.607±0.051) (P<0.05). Compared with that in PTZ group, the PSD-95 mRNA expression levels in both NMD1 group (0.512±0.035) and NMD2 group (0.575±0.041) increased significantly (P<0.05). The expression levels in NMD1 group, NMD2 group and NC group were of no statistic significance (P>0.05).
     Conclusion: There were reductions in expression levels of P38, PSD-95 and PSD-95 mRNA in the hippocampus of the PTZ-kindled rats in accordance with the decline of the rats’learning ability and memory, which suggests that both P38 and PSD-95 might participate in the mechanism of damaged cognition after epilepsy. NMD could improve the expression levels of P38, PSD-95 and PSD-95 mRNA and the damaged cognitive function of epileptic rats.
     Part III Changes of neuronal and synaptic ultrastructure in hippocampus of rats kindled by PTZ and the effect of NMD
     Objective: To observe the changes of neuronal ultrastructure and synaptic ultrastructure (SVD, PSD and WSC) in hippocampal CA1 area of rats kindled by PTZ and the effect of NMD and to explore the relationship between synaptic plasticity and damaged cognition after epilepsy.
     Methods: 3 rats in each group were anesthetized by 10% chloral hydrate and perfused with 4% paraformaldehyde solution (containing 2.5% glutaraldehyde). The changes of neuronal ultrastructure and synaptic ultrastructure (SVD, PSD and WSC) in hippocampal CA1 area of rats in each group were observed through the electron microscopy.
     Results: In hippocampal CA1 area of the rats in NC group, there were intact neurons, distinct structure, uniform chromatin, abundant apparatus, and integrate myelin. In PTZ group, however, there were condensed nucleus, edematous neuron, swollen perikaryon with vacuole, reduced mitochondria and Golgi apparatus and polyribosome; there was also Myelin-splitting nerve fiber. In NMD1 and NMD2 group, the neuron and neuropile were less swollen, karyotheca were normally intact, chromatin were uniform, the apparatus were rich and basically normal, and the myelin was complete and integrate. In NC group, Gray I type synapses in hippocampal CA1 area were abundant with distinct pre-and-post synaptic membranes and rich synaptic vesicles. The synaptic cleft was clear and the PSD was thick and uniform. In PTZ group, there were reduced synapses with indistinct pre-and-post synaptic membranes, increased WSC, thinner PSD, and decreased SVD. In both NMD1 group and NMD2 group, there were more synapses than that in PTZ group. The synapses had relatively distinct pre-and-post synaptic membranes, and uniformed PSD, and more synaptic vesicles. The PSD in hippocampal CA1 area of the rats in PTZ group (31.37±1.94) nm reduced notably compared with that in NC group (49.86±3.38) nm (P<0.05). Compared with that in PTZ group, PSD in both NMD1 group (45.69±2.70) nm and NMD2 group (48.20±2.15) nm increased notably (P<0.05). Comparisons of PSD in NMD1, NMD2 group and NC group were of no significant difference (P>0.05). The WSC in PTZ group (22.34±1.84) nm also increased obviously compared with that in NC group (14.62±1.19) (P<0.05). Compared with that in PTZ group, the WSC in both NMD1 group (16.37±1.72) nm and NMD2 group (15.02±1.63) nm reduced significantly (P<0.05). Comparisons of WSC of NMD1 group, NMD2 group and NC group were of no distinct difference (P>0.05). Compared with that in NC group (3362.61±102.08)/um2, the SVD in PTZ group (1078.36±111.03)/um2 decreased significantly (P<0.05). Compared with that in PTZ group, the SVD in hippocampal CA1 area in both NMD1 group (2932.01±142.95)/um2 and NMD2 group (3155.50±137.49)/um2 increased significantly (P<0.05). Comparisons of SVD of NMD1 group, NMD2 group and NC group had no obvious difference (P>0.05).
     Conclusion: There were abnormal changes in neuronal and synaptic ultrastructure in hippocampal CA1 area of the epileptic rats. NMD could ameliorate the neuronal and synaptic abnormal ultrastructure, which was consistent with the changes of learning ability and memory. There might be a close relationship between synaptic plasticity and damaged cognition after epilepsy.
     Part IV Changes of [Ca2+]i and calcium/calmodulin-dependent protein kinase IIα(CaMK IIα) expression levels in hippocampus of rats kindled by PTZ and the effect of NMD
     Objective: To observe the changes of [Ca2+]i, CaMK IIα, P-CaMK IIαprotein and CaMK IIαmRNA in hippocampus of rats kindled by PTZ and the effect of NMD and to explore the relationship between calcium signal transduction and damaged cognition after epilepsy.
     Methods: 6 rats in each group were sacrificed and the hippocampi were quickly separated, homogenized and the suspension was collected and incubated with Fluo-3/AM. The changes of [Ca2+]i were tested with flow cytometry; The expressions of CaMK IIαmRNA of the hippocampus in each group were tested with RT-PCR; 8 rats in each group were anesthetized by 10% chloral hydrate and the hippocampi were quickly separated. Total protein for CaMK IIαand membrane protein for P-CaMK IIαwas extracted. The expression levels of CaMK IIαand P-CaMK protein were detected by Western blot.
     Results: The [Ca2+]i in hippocampus of the rats in PTZ group (1.94±0.33) increased obviously compared with that in NC group (1.26±0.21) (P<0.05). Compared with that in PTZ group, the [Ca2+]i in hippocampus of the rats in both NMD1 group (1.35±0.28) and NMD2 group (1.32±0.26) reduced notably (P<0.05). The comparisons of [Ca2+]i in hippocampus among NMD1 group, NMD2 group and NC group were of no significant difference (P>0.05). The protein levels of CaMK IIαand P-CaMK IIαin hippocampus of rats in each group were determined by CaMK IIα/β-actin and P-CaMK IIα/β-actin respectively. The protein levels of CaMK IIαin hippocampus in PTZ group (0.700±0.061) reduced significantly compared with that in NC group (1.030±0.133) (P<0.05). Compared with that in PTZ group, the protein levels in hippocampus of the rats in both NMD1 group (1.000±0.130) and NMD2 group (1.000±0.130) increased significantly (P<0.05). The comparisons of the protein levels of CaMK IIαin hippocampus among NMD1 group, NMD2 group and NC group had no statistic difference (P>0.05). The protein levels of P-CaMK IIαin hippocampus in PTZ group (0.250±0.036) reduced significantly compared with that in NC group (0.693±0.035) (P<0.05). Compared with that in PTZ group, the protein levels in hippocampus of the rats in both NMD1 group (0.679±0.058) and NMD2 group (0.665±0.043) increased significantly (P<0.05). The comparisons of the protein levels of P-CaMK IIαin hippocampus among NMD1 group, NMD2 group and NC group were of no statistic difference (P>0.05). The expression levels of CaMK IIαmRNA in hippocampus of rats in each group were determined by calculating the density ratio of CaMK IIαmRNA/β-actin mRNA. The expression levels of CaMK IIαmRNA in hippocampus in PTZ group (0.758±0.050) reduced notably compared with that in NC group (1.217±0.074) (P<0.05). Compared with that in PTZ group, the CaMK IIαmRNA levels in hippocampus of the rats in both NMD1 group (1.149±0.083) and NMD2 group (1.300±0.071) increased notably (P<0.05). The comparisons of the CaMK IIαmRNA levels in hippocampus among NMD1 group, NMD2 group and NC group had no statistic difference (P>0.05).
     Conclusion: The [Ca2+]i in hippocampus of the epileptic rats increased and the expression levels of P-CaMK IIαprotein,CaMK IIαprotein and CaMK IIαmRNA in hippocampus reduced, which resulted in the imbalance of calcium signal transduction pathway. These might be one part of the molecule pathogenesis of damaged cognition after epilepsy. NMD could adjust [Ca2+]i and improve the expression levels of CaMK IIαprotein and mRNA in accordance with the improvement of learning ability and memory of the epileptic rats, which demonstrates NMD’s pharmacological effects on improving cognitive functions.
     Part V Changes of expression levels of cAMP response element binding protein (CREB) in hippocampus of rats kindled by PTZ and the effect of NMD
     Objective: To observe the changes of P-CREB protein and CREB mRNA in hippocampus of rats kindled by PTZ and the effect of NMD and to explore the relationship between transcription factor CREB and damaged cognition after epilepsy.
     Methods: The changes of the expressions of P-CREB(Ser133) and CREB mRNA were tested with Western blot and RT-PCR methods, respectively.
     Results: The protein levels of P-CREB (Ser133) in hippocampus of rats in each group were determined by P-CREB/β-actin. The protein levels of P-CREB in hippocampus in PTZ group (0.275±0.041) decreased significantly compared with that in NC group (0.643±0.054) (P<0.05). Compared with that in PTZ group, the protein levels in hippocampus of the rats in both NMD1 group (0.602±0.045) and NMD2 group (0.621±0.071) increased obviously (P<0.05). The comparisons of the protein levels of P-CREB in hippocampus among NMD1 group, NMD2 group and NC group had no statistic difference (P>0.05). The expression levels of CREB mRNA in hippocampus of rats in each group were determined by calculating the density ratio of CREB mRNA/β-actin mRNA. The CREB mRNA levels in hippocampus in PTZ group (0.319±0.037) reduced notably compared with that in NC group (0.605±0.071) (P<0.05). Compared with that in PTZ group, the CREB mRNA levels in hippocampus of the rats in both NMD1 group (0.560±0.058) and NMD2 group (0.582±0.083) increased notably (P<0.05). The comparisons of the CREB mRNA levels in hippocampus among NMD1 group, NMD2 group and NC group had no statistic difference (P>0.05).
     Conclusion: The expression levels of both CREB protein and mRNA in hippocampus of the epileptic rats reduced and NMD could improve that, which was consistent with the changes of learning ability and memory. Transcription factor CREB might participate in the mechanism of damaged cognition after epilepsy.
引文
1 Nagaraja RY, Becker A, Reymann KG, et al. Repeated adadministration of group I mGluR antagonists prevents seizure-induced long-term aberrations in hippocampal synaptic plasticity. Neuropharmacology, 2005, 49:179~187
    2 Mortazavi F, Ericson M, Story D, et al. Spatial learning deficits and emotional impairments in pentylenetetrazole-kindled rats. Epilepsy Behav, 2005, 7(4): 629~638
    3 Racine RJ. Modification of seizure activity by electrical stimulation:II Motor seizure. Electroencephaloqr Clin Neurophysiol, 1972, 32:281~294
    4 Morris R. Development of a water-maze procedure for studying spatial leaning in the rat, Neurosci Methods, 1984, 11:47~60
    5 洪震, 黄茂盛, 王蓓. 癫痫患者的认知功能状况分析. 临床神经电生理学杂志, 2002, 11(2):88~90
    6 彭金玲, 杨传友, 王春阳. 癫痫患者心理健康状况与认知功能研究. 河南实用神经疾病杂志, 2001, 4(5):26~27
    7 Erdogan F, Golgeli A, Arman F, et al. The effects of pentylenetetrazole-induced status epilepticus on behavior, emotional memory and learning in rats. Epilepsy Behav, 2004, 5:388~393
    8 Qu H, Elopayli H, Sonnewald U. Pentylenetetrazole affects metabolism of astrocytes in culture. J Neurosci Res, 2005, 79:48~54
    9 魏璐, 蔡文琴, 杨忠. 雌激素对癫痫大鼠海马区胶质细胞增生和突触可塑性变化的影响. 第三军医大学学报, 2006, 28(4):327~330
    10 Lamberty Y, Kitgaard H. Consequences of pentylenetetrazole kinding on spatial memory and emotional responding in the rat. Epilepsy Behav, 2000, 1:256~261
    11 Gandhi CC, Kellyl RM, Wiley RG, et al. Impaired acquisition of a Morris water maze task following selective destruction of cerebellar purkinje cells with OX7-saporin. Behav Brain Res, 2000, 109:37~47
    12 D’Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev, 2001, 36:60~90
    13 王维平,李攀,娄燕,等. 癫痫持续状态和慢性癫痫对大鼠学习记忆和情感行为的影响.脑与神经疾病杂志, 2007, 15:33~36
    14 Macdonald RL, Kelly KM. Mechanisms of action of currenty prescribed and newly developed antiepileptic drugs. Epilepsia, 1994, 35(4):51
    15 Macdonald RL, Kelly KM. Antiepileptic drug mechanisms of action. Epilepsia, 1995, 36 (2): 2
    16 李柱一, 苗建亭, 林宏, 等. 尼莫地平对实验性阿尔茨海默病记忆障碍的作用. 中国临床神经科学, 2002, 10:335~337
    17 崔尧元,史玉泉. 尼莫地平对大鼠脑梗塞后学习记忆的影响. 中国行为医学科学, 1995, 4:120~122
    18 Lopez-Arrieta JM, Birks J. Nimodipine for primary degenerative, mixed and vascular dementia. Cochrane Database Syst Rev, 2002, (3): 147
    19 李花, 邓常清, 陈北阳, 等. 三七总皂苷对大鼠脑缺血再灌注后 Caspase 表达的影响. 中国药理学通报, 2006, 22(2):189~193
    1 Bliss TVP, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 1993, 361:31~39
    2 Proper EA, Oestreicher AB, Jansen GH, et al. Immunohistochemical characterization of mossy fibre sprouting in the hippocampus of patient with pharmaco-resistant temporal lobe epilepsy. Brain, 2000, 123(1):19~30
    3 刘靖, 董大翠, 张 艳, 等. 突触素在人胎儿海马的表达与发育的研究. 中国组织化学与细胞化学杂志, 2006, 15(3):323~327
    4 章子贵, 徐晓虹. 尼莫地平改善高钙所致记忆障碍的脑内突触机制. 心理学报, 2006, 38(3):436~441
    5 梅镇彤. 学习记忆的神经机制. 生理科学进展, 1996, 27(3): 183~188
    6 Petukhov VV, Popov VI. Quantitative analysis of ultrastructural changes in synapses of the rat hippocampal fields CA3 in vitro in different functional states. Neurosci, 1986, 18(6):825~832
    7 Ramirez AV, Escobar ML, Chao V, et al. Synaptogensis of mossy fibers induced by spatial water maze overtraining. Hipocampus, 1999, 9(6):631~636
    8 宿宝贵, 潘三强, 韩辉, 等. 水迷宫训练后大鼠海马苔藓纤维的变化. 解剖学杂志, 1999, 23(6):516~519
    9 Krueger SR, Kolar A, Fitzsimonds RM. The presynaptic release apparatus is functional in the absence of dendritic contact and highly mobile within isolated axons. Neuron, 2003, 40(5):945~957
    10 Henze DA, McMahon DBT, Harris KM, et al. Giant miniature EPSCs at the hippocampal mossy fiber to CA3 pyramidal cell synapse are monoquantal. J Neurophysiol, 2002, 87(1):15~29
    11 Castillo PE, Schoch S, Schmitz F, et al. RIM1α is required for presynaptic long-term potentiation. Nature, 2002, 415(6869):327~330
    12 Mullany PM, Lynch MA. Evidence for a role for synaptophysin in expression of long-term potentiation in rat dentate gyrus. Neuroreport,1998, 9(11):2489~2494
    13 洪乐鹏, 龙大宏, 冷小龙. 痴呆模型鼠海马突触素改变及其与学习记忆的关系. 广州医学院学报, 2003, 31(4):43~46
    14 安思训. 大鼠学习记忆时 CA3 区突触素免疫阳性产物的变化及突触出芽表达. 中国老年学杂志, 2005, 12(25):1511~1512
    15 闵嵘, 秦川, 赵志炜, 等. APP17 肽对 APP 转基因小鼠突触相关蛋白表达的影响. 中国药理学通报, 2006, 22(6):710~714
    16 Lim IA, Hall DD, Hell JW. Selectivity and promiscuity of the first and second PDZ domains of PSD-95 and synapse-associated protein 102. Biol Chem, 2002, 277(24):21697~21711
    17 Hou XY, Zhang GY, Yan JZ, et al. Activation of NMDA receptors and L2 type voltage-gated calcium channels mediates enhanced formation of Fyn-PSD95-NR2A complex after transient brain ischemia. Brain Res, 2002, 955(122):123~132
    18 Meng FJ, Guo J, Song B, et al. Competitive binding of post synaptic density 95 and Ca2+/calmodulin dependent protein kinase II to N-methyl-D-aspartate receptor subunit 2B in rat brain. Acta Pharmacol Sin, 2004, 25(2):176~180
    19 Migaud M, Charlesworth P, Dempster M, et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature, 1998, 396(6710):433~439
    20 李玲, 肖波, 唐铁钰, 等. 颞叶癫痫大鼠海马区 NR2B/PSD-95 的动态表达变化. 中国临床神经科学, 2006, 14(2):134~138
    21 Zhong Y, William B, Imad MN. Increased numbers of coassembled PSD-95 to NMDA-receptor subunits NR2B and NR1 in human epileptic cortical dyspasia. Epilepsia, 2004, 45(4):314~321
    1 朱长庚. 神经解剖学. 北京:人民卫生出版社, 2002, 169~232
    2 Lynch MA, Mullany P. Changes in protein synthesis and synthesis of the synaptic vesicle protein, synaptophysin, in entorhinal cortex following induction of long-term potentiation in dentate gyrus: an age-related study in the rat. Neuropharmacology, 1997, 36(7): 973~978
    3 Chung E, Iwasaki K, Mishima K, et al. Repeated cerebral ischemia induced hippocampal cell death and impairments of spatial cognition in the rat. Life Sci, 2002, 72(4-5): 609~619
    4 Choid W. Cerebral hypoxia: some new approaches and unanswered questions. J Neurosci, 1990, 10 (8): 2493~2501
    5 郑富盛. 细胞形态立体计量学, 第 1 版. 北京:北京医科大学中国协和医科大学联合出版社, 1990, 48~65
    6 龚云, 冯慎远. 锌对大鼠学习记忆的影响及其与海马 CA3 区和大脑皮质感觉运动区突触界面结构的相关性研究. 解剖学杂志, 2000, 23(1):44~47
    7 李亚, 吴馥梅. 突触后致密结构的可塑性. 中国组织化学与细胞化学杂志, 1999, 8(3):352~354
    8 Ziff EB. Enlightening the postsynaptic density. Neuron, 1997, 19: 1163~1174
    9 Wilson MA, Tonegawa S. Synaptic platicity, place cells and spatial memory: study with second generation knockouts. Trends Neurosci, 1997, 20:102~106
    10 Lisman J. The CaM Kinase II hyothesis for the storage of synaptic memory. Trends Neurosci, 1994, 17:406~412
    11 Stefan S. Translocation of autophosphorylated Calcium/calmodulin -dependent protein Kinase II to the postsynaptic density. J Bio Chemi, 1997, 272:13467~13470
    12 Krueger SR, Kolar A, Fitzsimonds RM. The presynaptic release apparatus is functional in the absence of dendritic contact and highly mobile withinisolated axons. Neuron, 2003, 40(5):945~957
    13 Castillo PE, Schoch S, Schmitz F, et al. RIM1α is required for presynaptic long-term potentiation. Nature, 2002, 415(6869):327~330
    14 Lynch M, Sayin U, Golarai G, et al. NMDA receptor-dependent plasticity of granule cell spiking in the dentate gyrus of normal and epileptic rats. Neurophysiol, 2000, 84(6):2868~2879
    15 Heynen AL, Bear MF. Long-term potentiation of thalamocortical transmission in the adult visual cortex in vivo. Neurosci, 2001, 21(24):9801~9813
    16 项旭映, 张红梅, 胡能伟, 等. 脊髓背角 II 板层长时程增强诱导及维持过程中的突触形态计量学研究. 生理学报, 2004, 56(3): 397~402
    17 梁建民, 崔新明, 李艳茹, 等. 颞叶癫痫大鼠海马 CA1 区突触可塑性与 空 间 记 忆 能 力 关 系 的 研 究 . 中 风 与 神 经 疾 病 杂 志 , 2006, 23(2):140~142
    18 Sun CY, Qi SS, Lou XF, et al. Changes of learning, memory and levels of CaMKII, CaM mRNA, CREB mRNA in the hippocampus of chronic multiple-stressed rats. Chin Med J, 2006, 119( 2):140~147
    19 蒲昭霞, 赵聪敏, 鲁利群. 丰富环境对缺氧缺血性脑损伤大鼠海马突触超微结构及突触素表达的影响. 第三军医大学学报, 2006, 28(8):816~818
    20 张松筠, 杨晓光, 张若青. 糖尿病大鼠海马突触超微结构观察. 基础医学与临床, 2005, 25(3):253~256
    21 杨国帅, 胡珏, 肖波, 等. 癫痫大鼠海马区囊泡锚定蛋白 I 的表达及突触超微结构的改变. 临床神经病学杂志, 2006, 19(2):108~111
    22 赵小贞, 王玮, 康仲涵, 等. 血管性痴呆大鼠海马突触结构参数的变化. 解剖学杂志, 2002, 25(1):30~34
    1 Chen HX, OtmakhovN, Strack S, et al. Is persistent activity of calcium/calmodulin-dependent kinase required for the maintenance of LTP. J Neurophysiol, 2001, 75:1367~1376
    2 Sun CY, Qi SS, Lou XF, et al. Changes of learning, memory and levels of CaMKII, CaM mRNA, CREB mRNA in the hippocampus of chronic multiple-stressed rats. Chin Med J, 2006, 119(2):140~147
    3 Pinard CR, Mascagni F, McDonald AJ. Neuronal localization of Ca(v)1.2 L-type calcium channels in the rat basolateral amygdala. Brain Res, 2005, 1064(1-2):5255
    4 Ganter TE, Buntinas L, Sparagna GC, et al. The Ca2+ transport mechanism of mitochondria and Ca2+ uptake from physiological-tape Ca2+ transients. BBA, 1998, 1366: 5~15
    5 韩济生. 神经科学原理, 第二版. 北京: 北京医科大学出版社, 1999, 342~367
    6 Braun AP, Schulman H. The multifunctional Ca2+/calmodulin -dependent protein kinase: from form to function. Annu Rev Physiol, 1995, 57:417~445
    7 Erondu NE, Kennedy MB. Regional distribution of type II Ca2+/calmodulin dependent protein kinase in rat brain. J Neurosci, 1985, 5:3270~3277
    8 许绍芬. 神经生物学, 第 2 版. 上海: 上海科学技术出版社,1999, 237~250
    9 Butler LS, Silva AJ, Abeliovich A, et al. Limbic epilepsy in transgenic mice carrying a Ca2+/calmodulin-dependent kinase II alpha-subunit mutation. Proc Natl Acad Sci, 1995, 92(15):6852~6855
    10 Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic and behavioral memory. Nat Rev Neurosci, 2002, 3:175~190
    11 Takashi Y. Neuronal Ca2+/calmodulin-dependent protein kinase IIdiscovery, progress in a quarter of a century, and perspective: implication for learning and memory. Biol Pharm Bull, 2005, 28(8):1342
    12 Malenka RC, Nicoll RA. Long-term potentiation- a decade of progress. Science, 1999, 285:1870~1874
    13 Fukunaga K, Muller D, Miyamoto E. CaM Kinase II in long-term potentiation. Neurochem Int, 1996, 28(4):343~358
    14 Kennedy MB. Signal-processing machines at the postsynaptic density. Science, 2000, 290:750~754
    15 Soderling TR, Derkach VA. Postsynaptic protein phosphorylation and LTP. Trends Neurosci, 2000, 23:75~80
    16 Hudmon A, Schulman H. Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochem J, 2002, 364(Pt 3):593~611
    17 Fukunaga K, Stoppini L, Miyamoto E, et al. Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem, 1993, 268:7863~7867
    18 Fukunaga K, Muller D, Miyamoto E. Increased phosphorylation of Ca2+/calmodulin dependent protein kinase II and its endogenous substrates in the induction of long-term potentiation. J Biol Chem, 1995, 270:6119~6124
    19 Ouyang Y, Kanter D, Harris KM, et al. Visualization of the distribution of autophosphorylated calcium/calmodulin-dependent kinase II after tetanic stimulation in the CA1 area of the hippocampus. J Neurosci, 199, 717:5416~5427
    20 Abel T, Nguyen P, Barad M, et al. Genetic demonstration of a role for PKA in the phase of LTP and in hippocampus-based long-term memory. Cell, 1997, 88(5): 615~626
    21 Wickliffe CA, Barbara L, Jeffrey MG, et al. Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. J Neurosci, 2002, 22(21):9626~9634
    22 Kandel ER, Schwartz JH, Jessell TM. Principles of Neuronal Science(4th Edition). GrawHill, 2001, 386~409
    23 Vannucci RC, BrucklAchEr RM, Vannucci SJ. Intracellular calcium accumulation during the evolution of hypoxic-ischemic brain damage in the immature rat. Brain Res Dev Brain Res, 2001, 126(1):117~120
    24 Saski C, Kitagawa H, Zhang WR, et al. Temporal profile of cytochrome C and caspase-3 immunoreactives and TUNEL staining after permanent middle cerebral artery occlusion in rats. Neurol Res, 2000, 22(2): 223~228
    25 冯征, 张均田. 中枢神经系统钙稳态失调和老龄脑功能. 生理科学进展, 2000, 2(31): 102~105
    26 Wang YJ, Chen GH, Hu XY, et al. The expression of calcium/calmodulin-dependent protein kinase II-a in the hippocampus of patients with Alzheimer’s disease and its links with AD-related pathology. Brain Res, 2005, 1031:101~108
    27 Singleton MW, Holbert WH 2nd, Ryan ML, et al. Age dependence of pilocarpine-induced status epilepticus and inhibition of CaM kinace II activity in the rat. Brain Res Dev Brain Res, 2005, 156(1):67~77
    28 Min CL, Sung SB, Young JW, et al. Calcium / calmodulin kinase II activity of hippocampus in kainate-induced epilepsy. J Korean Med Sci, 2001, 16:643~648
    29 章子贵, 徐晓虹. 尼莫地平改善高钙所致记忆障碍的脑内突触机制. 心理学报, 2006, 38(3):436~441
    1 Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron, 2002, 35(4):605~623
    2 Pittenger C, Huang YY, Paletzki RF, et al. Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampus dependent spatial memory. Neuron, 2002, 34(3):447~462
    3 Nagakura A, Takagi N, Takeo S. Impairment of cerebral cAMP-mediated signal transduction system and of spatial memory function after microsphere embolism in rats. Neuroscience, 2002; 113: 519~528
    4 Nguyen PV. CREB and the enhancement of long-term memory. Trends Neurosci, 2001, 24:314
    5 Pandey SC, Roy A, Zhang H. The decreased phosphorylation of cyclic adenosine monophosphate (cAMP) response element binding (CREB) protein in the central amygdala acts as a molecular substrate for anxiety related to ethanol withdrawal in rats. Alcohol Clin Exp Res, 2003, 27(3): 396~409
    6 Chartoff EH, Papadopoulou M, Konradi C, et al. Dopamine-dependent increases in phosphorylation of cAMP response element binding protein (CREB) during precipitated morphine withdrawal in primary cultures of rat striatum. J Neurochem, 2003, 87(1):107~118
    7 Josselyn SA, Shi C, Carlezon WJ, et al. Long-term memory is facilitated by cAMP response element-binding protein over expression in the amygdala. J Neurosci, 2001, 21(7):2404~2412
    8 Wuz L, Thomass A, Villacrese C, et al. Altered behavior and Long-term Potentiation in type I adenylyl cyclase mutant Mice. Proc Natl Acad Sci USA, 1995, 92(1):220~224
    9 Finkbeiner S. CREB couples neurotroph in signals to survival messages. Neuron, 2000, 25: 11~14
    10 Schmid RS, Graffr D, Schalaerm D, et al. NACM stimulates theRas-MAPK pathway and CREB phosphorylation in neuron cells. J Neurobiol, 1999, 38(4):542~558
    11 Whited M, Walkers L, Brennemand E, et al. CREB contributes to the increased neurite of sensory neurons induced by vasoactive intestinal polypeptide and activity dependent neurotrophic factor. Brain Res, 2000, 868 (1):31~38
    12 Abel T, Nguyen P, Barad M, et al. Genetic demonstration of a role for PKA in the phase of LTP and in hippocampus-based long-term memory. Cell, 1997, 88(5): 615~626
    13 Wickliffe CA, Barbara L, Jeffrey MG, et al. Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. J Neurosci, 2002, 22(21):9626~9634
    14 Hagiwara M, Brindle P, Harootunian A, et al. Coupling of hormonal stimulation and transcription via the cyclic AMP-responsive factor CREB is rate limited by nuclear entry of protein kinase A. Mol Cell Biol, 1993, 13:4852
    15 Gonzalez GA, Montminy MR. Cyclic AMP-regulated stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell, 1989, 59:675
    16 Vallejo M,Gosse M E, Bechman W, et al. Impaired cyclic AMP dependent phosphorylation renders CREB a repressor of C-EBP induced transcription of the somatostatin gene in an insulinoma cell live. Mol Cell Biol, 1995, 15(1): 415~424
    17 Walton M, Woodgate AM, Muravlev A, et al. CREB phosphorylation promotes nerve cell survival. J Neurochem, 1999, 73:1836~1842
    18 Bernabeu R, Bevilaqua L, Arden G, et al. Involvement of Hippocampal cAMP/cAMP-dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats. Proc Natl Acad Sci USA, 1997, 94: 7041~7046
    19 Mabuchi T, Kitagawa K, Kuwabara K, et al. Phosphorylation of cAMP response element-binding protein in hippocampal neurons as a protectiveresponse after eexposure to glutamate in vitro and ischemia in vivo. J Neurosci, 2001, 21(23):9204~9213
    20 Bito H, Deisseroth K, Tsien RW. CREB phosphorylation and dephosphorylation: a Ca 2+ and stimulus duration-dependent switch for hippocampal gene expression. Cell, 1996, 87:1203~1214
    21 Kiessling M, Stumn G, Xie Y, et al. Differential transcription and translation of immediate early genes in the gerbil hippocampus after transient global ischemia. J Cereb Blood Flow Metab, 1993, 13:914~924
    22 Takeo S, Niimura M, Miyake TK, et al. A possible mechanism for improvement by a cognition enhancer nefiracetam of spatial memory function and cAMP-mediated signal transduction system in sustained cerebral ischemia in rats. Br J Pharmacol, 2003, 138(4):642~654
    23 Tao X, Finkbeiner S, Arnoldd B, et al. Ca2+ influx regulates BDNF transcription by a CREB family transcription factor dependent mechanism. Neuron, 1998, 20(4):709~726
    24 Finkbeiner S. Calcium regulation of the brain-derived neurotrophic factor gene. Cell Mol Life Sci, 2000, 57(3):394~401
    25 Lindvall O, Ernfors P, Bengzon J, et al. Differential regulation of mRNAs for nerve growth factor, brain derived neurotrophic factor, and neurotrophin 3 in the adult rat brain following cerebral ischemia. Proc Natl Acad Sci USA, 1992, 89:648~652
    26 Kuramoto N, Azuma Y, Inoue K, et al. Correlation between potentiation of AP1 DNA binding and expression of c-Fos in association with phosphorylation of CREB at serine133 in thalamus of gerbils with ischemia. Brain Res, 1998, 806(2):152~164
    27 Tanaka K. Alteration of second messengers during acute cerebral ischemia adenylate cyclase, cyclic AMP-dependent protein kinase, and cyclic AMP response element binding protein. Prog Neurobiol, 2001, 65(2):173~207
    28 车晓芳, 罗颖, 刘云鹏. Bcl-2 和 Bax 调节细胞凋亡的研究. 国外医学输血及血液学分册, 2001, 24(2):103~105
    29 Taubenfeld SM, Wiig KA, Bear MF, et al. A molecular correlate ofmemory and amnesia in the hippocampus. Nat Neurosci, 1999, 2(4): 309~310
    30 Bourtchuladze R, Frenguelli B , Blendy J, et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell, 1994, 79(1):59~68
    31 裴林, 李佃贵, 娄燕. 等. 调肝解毒方对慢性癫痫大鼠学习记忆及海马组织环磷酸腺苷反应元件结合蛋白表达的影响. 中医杂志, 2007, 48(3):265~267
    32 Tsankova NM, Kumar A, Nestler EJ. Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. J Neurosci, 2004, 24(24):5603~5610
    33 Nibuya M, Nestler EJ, Duman RS. Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci, 1996, 16:2365~2372
    1 韩济生. 神经科学原理, 第二版. 北京: 北京医科大学出版社, 1999, 342~367
    2 Tymianski M, Tator CH. Normal and abnormal calcium homeostasis in neurons: a basis for the pathophysiology of traumatic and ischemic central nervous system injury. Neurosurgery, 1996, 38(6): 1176~1195
    3 Tymianski M. Cytosolic calcium concentrations and cell death in vitro. Adv Neurol, 1996, 71:85~105
    4 Katleen B, Liesbet C, Koen P, et al. Calcium signal communication in the central nervous system. Biology of the Cell, 2004, 96: 79~91
    5 Gnegy ME. Ca2+/calmodulin signaling in NMDA-induced synaptic plasticity. Crit Rev Neurobiol, 2000 14(2): 91~129
    6 West AE, Chen WG, Dalva MB, et al. Calcium regulation of neuronal gene expression. Proc Natl Acad Sci, 2001, 98(20): 11024~11031
    7 Pinard CR, Mascagni F, McDonald AJ. Neuronal localization of Ca(v)1.2 L-type calcium channels in the rat basolateral amygdala. Brain Res, 2005, 1064(1-2):5255
    8 Ganter TE, Buntinas L, Sparagna GC, et al. The Ca2+ transport mechanism of mitochondria and Ca2+ uptake from physiological-tape Ca2+ transients. BBA, 1998, 1366: 5~15
    9 Hanson CJ, Bootman MD, Roderick HL. Cell signalling: IP3 receptors channel calcium into cell death. Curr Biol, 2004, 14(21):933~935
    10 Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol, 2003, 4(7): 552~565
    11 Paschen W. echanisms of neuronal cell death: diverse roles of calcium in the various subcellular compartments. Cell Calcium, 2003, 34: 305~310
    12 Duchen MR. Mitochondria and calcium: from cell signalling to cell death. J Physiol, 2000, 529: 57~68
    13 Delorenzo RJ, Sun DA, Deshpande LS. Cellular mechanisms underlying acquired epilepsy: The calcium hypothesis of the induction andmaintainance of epilepsy. Pharmacol Ther, 2005, 105(3): 229~266
    14 Pal S, Limbrick J, Rafiq A, et al. Induction of spontaneous recurrent epileptiform discharges causes longterm changes in intracellular calcium homeostatic mechanisms. Cell Calcium, 2000, 28(3): 181~193
    15 Pal S, Sombati S, Limbrick J, et al. In vitro status epilepticus causes sustained elevation of intracellular calcium levels in hippocampal neurons. Brain Res, 1999, 851:20~31
    16 Sun DA, Sombati S, Blair RE, et al. Longlasting alterations in neuronal calcium homeostasis in an in-vitro model of stroke-induced epilepsy. Cell Calcium, 2004, 35(2): 155~163
    17 Heinemann U, Hamon B. Calcium and epileptogenesis. Exp. Brain Res, 1986, 65:1~10
    18 Amano T, Amano T, Matsubayashi H, et al. Enhanced calcium influx in hippocampal CA3 neurons of spontaneously epileptic rats. Epilepsia, 2001, 42(3):345~350
    19 Delorenzo RJ, Sun DA, Deshpande LS. Cellular mechanisms underlying acquired epilepsy: The calcium hypothesis of the induction and maintainance of epilepsy. Pharmacol Ther, 2005, 105(3): 229~266
    20 Raze M, Pal S, Rafiq A, et al. Long-term alteration of calcium homeostatic mechanisms in the pilocarpine model of temporal lobe epilepsy. Brain Res, 2001, 903: 1~12
    21 Mohsin R, Robert E, Sompong S, et al. Evidence that injury-induced changes in hippocampal neuronal calcium dynamics during epileptogenesis cause acquired epilepsy. Proceedings of the National Academy of Science of the USA(PNAS), 2004, 101:17522~17527
    22 梅镇彤. 学习记忆的神经机制. 生理科学进展, 1996, 27(3):183~188
    23 He J, Deng C Y, Chen R Z , et al. Long-term potentiation induced by nicotine in CA1 region of hippocampal slice is Ca2+-dependent. Acta Pharmacol Sin, 2000, 21(5):429~ 432
    24 Seki K, Kudoh M, Shibuki K. Long-term potentiation of Ca2+ signal in the rat auditory cortex. Neurosci Res, 1999, 34 (3):187~197
    25 Kandel ER, Schwartz JH, Jessell TM. Principles of Neuronal Science (4th Edition). GrawHill, 2001, 386~409
    26 Vannucci RC, Bruck RM, Vannucci SJ. Intracellular calcium accumulation during the evolution of hypoxic-ischemic brain damage in the immature rat. Brain Res Dev Brain Res, 2001, 126(1):117~120
    27 Saski C, Kitagawa H, Zhang WR, et al. Temporal profile of cytochrome C and caspase-3 immunoreactives and TUNEL staining after permanent middle cerebral artery occlusion in rats. Neurol Res, 2000, 22(2): 223~228
    28 冯征, 张均田. 中枢神经系统钙稳态失调和老龄脑功能. 生理科学进展, 2000, 2(31): 102~105
    29 包雪鹤, 张淑琴, 寇玉红,等. 癫痫大鼠不同脑区神经内钙离子浓度变化与细胞凋亡的相互关系. 中风与神经疾病杂志, 2002, 19(6):332~334
    30 Woodside BL, Borroni AM, Hammonds MD, et al. NMDA receptors and voltage-dependent calcium channels mediate different aspects of acquisition and retention of a spatial memory task. Neurobiol Learn Mem, 2004, 81(2): 105~114
    31 Braun AP, Schulman H. The multifunctional Ca2+/calmodulin -dependent protein kinase: from form to function. Annu Rev Physiol, 1995, 57:417~445
    32 Roger JC, Charles MS, Yoshiaki H, et al. Calcium/calmodulin-dependent protein kinase II. Biochem J, 1989, 258(4):313~325
    33 Kanaseki T, Ikeuchi Y, sugiura H, et al. Structural features of Ca2+/ calmodulin-dependent protein kinase II revealed by electron microscopy. J Cell Biol, 1991, 115:1049~1060
    34 Erondu NE, Kennedy MB. Regional distribution of type II Ca2+/calmodulin dependent protein kinase in rat brain. J Neurosci, 1985, 5:3270~3277
    35 许绍芬. 神经生物学, 第 2 版. 上海: 上海科学技术出版社,1999, 237~250
    36 Butler LS, Silva AJ, Abeliovich A, et al. Limbic epilepsy in transgenic mice carrying a Ca2+/calmodulin-dependent kinase II alpha-subunit mutation. Proc Natl Acad Sci, 1995, 92(15):6852~6855
    37 Howard S. Phosphorylation of microtubule-associated proteins by a calcium/calmodulin-dependent protein kinase. J Cell Biol, 1984, 99:11~19
    38 王全保, 王建枝. 钙/钙调素依赖性激酶 II 及其生物学作用. 中国病理生理杂志, 2002, 18(10):1300~1302
    39 Perlin JB, Churn SB, Lothman EW, et al. Loss of type II calcium/calmodulin-dependent kinase activity correlates with stage of development of electrographic seizures in status epilepticus in rat. Epilepsy Res, 1992, 11:111~118
    40 Schulman H, Hanson Pl. Multifunctional Ca2+/calmodulin dependent protein kinase. Neurochem Res, 1993, 18: 65~77
    41 Bromstein J, Farber D, Wasterlain C. Decreased calmodulin kinase activity after status epilepticus. Neurochem Res, 1988, 13: 83~86
    42 Kochan LD, Churn SB, Omojokun O, et al. Status epilepticus results in an N-methyl-D-aspartate receptor-dependent inhibition of Ca2+/ calmodulin-dependent protein kinase II activity in the rat. Neurosci, 2000, 95(3):735~743
    43 Blair RE, Churn SB, Sombati S, et al. Long-Lasting decrease in neuronal Ca2+/calmodulin-dependent protein kinase Il activity in a hippocampal neuronal culture model of spontaneous recurrent seizures. Brain Res, 1999, 851:54~65
    44 Murray KD, Gall CM, Benson DL, et al. Decreased expression of the alpha subunit of Ca2+/calmodulin dependent protein kinase type II mRNA in the adult rat CNS following recurrent limbic seizures. Brain Res Mol Brain Res, 1995, 32(2): 221~232
    45 高灿, 纵艳艳, 张光毅. 谷氨酸损伤大鼠皮层神经元及抑制钙/钙调蛋白依赖性蛋白激酶 II 活性. 中国药理学与毒理学杂志, 2000, 14(3):
    202~206 46 Singleton MW, Holbert WH 2nd, Lee AT, et al. Modulation of CaM kinase II activity is coincident with induction of status epilepticus in the rat pilocarpine model. Epilepsia, 2005, 46(9):1389~1400
    47 Gibbs JW, Sombati S, DeLorenzo RJ, et al. Physiological andpharmacological alterations in postsynaptic GABA(A) receptor function in a hippocampal culture model of chronic spontaneous seizures. J Neurophysiol, 1997, 77(4): 2139~2152
    48 Naylor, D. Changes in nonlinear signal processing in rat hippocampus associated with loss of paired-pulse inhibition or epileptogenesis. Epilepsia, 2002, 43(Suppl5):188~193
    49 Moira KB, Whyte SJ, Hardwick LC, et al. Transcient elevations of cytosolic free calcium retard subsequent apoptosis in neutrophils in vitro. J Clin Invest, 1993, 92:446~448
    50 Wu GY, Cline HT. Stabilization of dendritic arbor structure in vivo by CaMK II. Science, 1998, 279: 222~226
    51 Churn SB, Sombati S, Jakoi ER, et al. Inhibition of Ca2+/calmodulin- dependent kinase II α subunit expression results in epileptiform activity in cultured hippocampal neurons. Proc Natl Acad SCI USA, 2000, 97:5604~5609
    52 Hudmon A, Schulman H. Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. J Biochem, 2002, 364(Pt 3):593~611
    53 Fukunaga K, Stoppini L, Miyamoto E, et al. Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem, 1993, 268:7863~7867
    54 Fukunaga K, Muller D, Miyamoto E. Increased phosphorylation of Ca2+/calmodulin dependent protein kinase II and its endogenous substrates in the induction of long-term potentiation. J Biol Chem, 1995,
    270:6119~6124
    55 Ouyang Y, Kanter D, Harris KM, et al. Visualization of the distribution of autophosphorylated calcium/calmodulin-dependent kinase II after tetanic stimulation in the CA1 area of the hippocampus. J Neurosci, 1999, 717:5416~5427
    56 Abel T, Nguyen P, Barad M, et al. Genetic demonstration of a role for PKA in the phase of LTP and in hippocampus-based long-term memory. Cell,1997, 88(5): 615~626
    57 Wickliffe CA, Barbara L, Jeffrey MG, et al. Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. J Neurosci, 2002, 22(21):9626~9634
    58 Chen HX, Otmakhov N, Strack S, et al. Is persistent activity of calcium/calmodulin-dependent kinase required for the maintenance of LTP? J Neurophysiol, 2001, 85:1368~1376
    59 Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic and behavioral memory. Nat Rev Neurosci, 2002, 3:175~190
    60 Takashi Y. Neuronal Ca2+/calmodulin-dependent protein kinase II discovery, progress in a quarter of a century, and perspective: implication for learning and memory. Biol Pharm Bull, 2005, 28(8):1342
    61 Malenka RC, Nicoll RA. Long-term potentiation-a decade of progress. Science, 1999, 285:1870~1874
    62 Fukunaga K, Muller D, Miyamoto E. CaM Kinase II in long-term potentiation. Neurochem Int, 1996, 28(4):343~358
    63 Kennedy MB. Signal-processing machines at the postsynaptic density. Science, 2000, 290:750~754
    64 Soderling TR, Derkach VA. Postsynaptic protein phosphorylation and LTP. Trends Neurosci, 2000, 23:75~80
    65 Barria A, Muller D. Regulatory phosphorylation of AMPA-type Glutamate receptors by CaMK II during long-term potentiation. Science, 1997, 276(9):2042~2043
    66 John EL, Justin RF. What Maintains Memories? Science, 1999, 283(15):339~340
    67 Malenka RC, Malenka RC, Kauer JA, et al. An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature, 1989, 340(6): 554~557
    68 Kiessling M, Stumn G, Xie Y, et al. Differential transcription and translation of immediate early genes in the gerbil hippocampus after transient global ischemia. J Cereb Blood Flow Metab, 1993, 13:914~924
    69 Takeo S, Niimura M, Miyake TK, et al. A possible mechanism for improvement by a cognition enhancer nefiracetam of spatial memory function and cAMP-mediated signal transduction system in sustained cerebral ischemia in rats. Br J Pharmacol, 2003, 138(4):642~654
    70 Tao X, Finkbeiner S, Arnoldd B, et al. Ca2+ influx regulates BDNF transcription by a CREB family transcription factor dependent mechanism. Neuron, 1998, 20(4):709~726
    71 Finkbeiner S. Calcium regulation of the brain-derived neurotrophic factor gene. Cell Mol Life Sci, 2000, 57(3):394~401
    72 Lindvall O, Ernfors P, Bengzon J, et al. Differential regulation of mRNAs for nerve growth factor, brain derived neurotrophic factor, and neurotrophin 3 in the adult rat brain following cerebral ischemia. Proc Natl Acad Sci USA, 1992, 89:648~652
    73 Kuramoto N, Azuma Y, Inoue K, et al. Correlation between potentiation of AP1 DNA binding and expression of c-Fos in association with phosphorylation of CREB at serine133 in thalamus of gerbils with ischemia. Brain Res, 1998, 806(2):152~164
    74 Tanaka K. Alteration of second messengers during acute cerebral ischemia adenylate cyclase, cyclic AMP-dependent protein kinase, and cyclic AMP response element binding protein. Prog Neurobiol, 2001, 65(2):173~207
    75 车晓芳, 罗颖, 刘云鹏. Bcl-2 和 Bax 调节细胞凋亡的研究. 国外医学输血及血液学分册, 2001, 24(2):103~105
    1 梅镇彤. 学习记忆的神经机制. 生理科学进展, 1996, 27(3):183~188
    2 Markus EJ, Petit TL. Synaptic structure plasticity: Role of synaptic shape. Synapse, 1989, 3:1~11
    3 David C, Chen J. Involvement of caspase-3-like protease in the mechanism of cell death following focally evoked limbic seizures. J Neurochemistry, 2000, 74(3):1215~1223
    4 Krueger SR, Kolar A, Fitzsimonds RM. The presynaptic release apparatus is functional in the absence of dendritic contact and highly mobile within isolated axons. Neuron, 2003, 40(5):945~957
    5 Henze DA, McMahon DBT, Harris KM, et al. Giant miniature EPSCs at the hippocampal mossy fiber to CA3 pyramidal cell synapse are monoquantal. J Neurophysiol, 2002, 87(1):15~29
    6 Schoch S, Castillo PE, Jo T, et al. RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature, 2002, 415(6869):321~326
    7 Castillo PE, Schoch S, Schmitz F, et al. RIM1α is required for presynaptic long-term potentiation. Nature, 2002, 415(6869): 327~330
    8 John R, Schieder W, Ouimet C, et al. A 38,000-Dalton membrane protein (p38) present in synaptic vesicles. Proc Natl Acad Sci, 1985, 82(12):4137~4141
    9 Cabalka LM, Ritchie TC, Coulter JD. Immunolocalization and quantitation of a noval nerve terminal protein in spinal cord development. J Comp Neurol, 1990, 295:83
    10 Sarnat HB, Born DE. Synaptophysin immunocytochemistry with thermal intensification: a marker of terminal axonal matmation in the human fetal nervous system. Brain Dev, 1999, 21(1):41~50
    11 Eastwood SL, Burnet PWJ, McDonald B, et al. Synaptophysin gene expression in human brain: A quantiative in situ hybridization and immunohistochemical study. Neuroscience, 1994, 59:881~892
    12 Proper EA, Oestreicher AB, Jansen GH, et al. Immunhistochemical Characterization of mossy fibre sprouting in the hippocampus of patitents with pharmaco-resistant temporal lobe epilepsy. Brain, 2000, 123:19~30
    13 Davies KG, Schweitzer JB, Looney MR, et al. Synaptophysin immunohistochemistry densitometry measurement in resected human hippocampus: implication for the etiology of hippocampal sclerosis. Epilepsy Res, 1998, 32:335~344
    14 Alder J, Lu B, Valtorta F, et al. Calcium-dependent transmitter secretion reconstituted in xenopus oocytes: Requirement for synoptophysin. Science, 1992, 257:657
    15 Calhoun ME, Juch M, Martin LJ, et al. Comparative evaluation of synaptophysin based methods for quantification of synapses. J Neurocytol, 1996, 25 (12):821~829
    16 Mullany PM, Lynch MA. Evidence for a role for synaptophysin in expression of long-term potentiation in rat dentate gyrus. Neuroreport, 1998, 9(11):2489~2494
    17 Henkel AW, O' Conner V, Augustine GJ, et al. Synaptic vesicle exocytosis molecular mechanism and models. Cell, 1994, 76:785~788
    18 Rubenstein JL, Greengard P, Czerngk AJ. Calacium-dependent serine phosphorylation of synaptophsin. Synapse, 1993, 13:161~172
    19 洪乐鹏, 龙大宏, 冷小龙. 痴呆模型鼠海马突触素改变及其与学习记忆的关系. 广州医学院学报, 2003, 31(4):43~46
    20 安思训. 大鼠学习记忆时CA3区突触素免疫阳性产物的变化及突触出芽表达. 中国老年学杂志, 2005, 12(25):1511~1512
    21 李亚, 吴馥梅. 突触后致密结构的可塑性. 中国组织化学与细胞化学杂志, 1999, 8(3):352~354
    22 Ziff EB. Enlightening the postsynaptic density. Neuron, 1997, 19: 1163~1174
    23 Wilson MA, Tonegawa S. Synaptic platicity, place cells and spatial memory: study with second generation knockouts. Trends Neurosci, 1997, 20:102~106
    24 Lisman J. The CaM Kinase II hyothesis for the storage of synaptic memory. Trends Neurosci, 1994, 17:406~412
    25 Stefan S. Translocation of autophosphorylated Calcium/calmodulin- dependent protein Kinase II to the postsynaptic density. J Bio Chemi, 1997, 272:13467~13470
    26 Takashi Y. Neuronal Ca2+/calmodulin-dependent protein kinase II discovery, progress in a quarter of a century, and perspective: implication for learning and memory. Biol Pharm Bull, 2005, 28 (8):1342
    27 Geinisman Y, De Toledo ML, Morrell F. Associative learning elicits the formation of multiple-synapse boutons. J Neurosci, 2001, 21(15):5568~5573
    28 Geinisman Y, Morrell D. Synapses with a segmented, completely partitioned postsynaptic density express more AMPA receptors than other axospinous synaptic junctions. Neurosci, 2004, 125(3):615~623
    29 Geinisman Y, Morrell F, De Toledo ML. Synapse restructuring associated with the maintenance phase of hippocampal long-term potentiation. J Comp Neural, 1996, 386:413~423
    30 Brandon JG, Coss RG. Rapid dendritic spine stem origins during one trial learning the honeybee’s first orientation fright. Brain Res, 1982, 252:51~61
    31 Geinisman Y. Remodeling of hippocampal synapses after hippocampus-dependent associative learning. J Comp Neurol, 2000, 417(1):49~59
    32 Xiao MY, Wasling P, Hanse E, et al. Creation of AMPA-silent synapses in the neonatal hippocampus. Nat Neurosci, 2004, 7 (3):236~243
    33 Shi SH, Cheng T, Jan LY, et al. The immunoglobulin family member dendrite arborzation and synapse maturation 1 (Dasm1) controls excitatory synapse maturation. Proc Natl Sci USA, 2004, 101(36): 13346~13351
    34 Lin H, Huganir R, Liao D. Temporal dynamics of NMDA receptor-induced changes in spine morphology and AMPA receptor recruitment to spines. Biochem Biophys Res Commun, 2004, 316:501~511
    35 Shi SH, Hayashi Y, Petralia RS, et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science, 1999, 284 (5421):1811~1816
    36 Poncer JC, Esteban JA, Malinow R. Multiple mechanisms for the potentiation of AMPA receptor-mediated transmission by α-Ca2+/calmodulin-dependent protein kinase II. J Neurosci, 2002, 22: 4406~4411
    37 Hudmon A, Schulman H. Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. J Biochem, 2002, 364(Pt 3):593~611
    38 Fukunaga K, Stoppini L, Miyamoto E, et al. Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem, 1993, 268:7863~7867
    39 Fukunaga K, Muller D, Miyamoto E. Increased phosphorylation of Ca2+/calmodulin dependent protein kinase II and its endogenous substrates in the induction of long-term potentiation. J Biol Chem, 1995, 270:6119~6124
    40 Ouyang Y, Kanter D, Harris KM, et al. Visualization of the distribution of autophosphorylated calcium/calmodulin-dependent kinase II after tetanic stimulation in the CA1 area of the hippocampus. J Neurosci, 1999, 717:5416~5427
    41 Abel T, Nguyen P, Barad M, et al. Genetic demonstration of a role for PKA in the phase of LTP and in hippocampus-based long-term memory. Cell, 1997, 88(5): 615~626
    42 Wickliffe CA, Barbara L, Jeffrey MG, et al. Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. J Neurosci, 2002, 22(21):9626~9634
    43 Braun AP, Schulman H. The multifunctional Ca2+/calmodulin- dependent protein kinase: from form to function. Annu Rev Physiol, 1995, 57:417~445
    44 Erondu NE, Kennedy MB. Regional distribution of type II Ca2+/calmodulin dependent protein kinase in rat brain. J Neurosci, 1985, 5:3270~3277
    45 许绍芬. 神经生物学,第2版. 上海:上海科学技术出版社. 1999,237~250
    46 Butler LS, Silva AJ, Abeliovich A, et al. Limbic epilepsy in transgenic mice carrying a Ca2+/calmodulin-dependent kinase II alpha-subunit mutation. Proc Natl Acad Sci, 1995, 92(15):6852~6855
    47 Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic and behavioral memory. Nat Rev Neurosci, 2002, 3:175~190
    48 Malenka RC, Nicoll RA. Long-term potentiation-a decade of progress. Science, 1999, 285:1870~1874
    49 Fukunaga K, Muller D, Miyamoto E. CaM Kinase II in long-term potentiation. Neurochem Int, 1996, 28(4): 343~358
    50 Petukhov VV, Popov VI. Quantitative analysis of ultrastructural changes in synapses of the rat hippocampal fields CA3 in vitro in different functional states. Neurosci, 1986, 18(6):825~832
    51 Ramirez AV, Escobar ML, Chao V, et al. Synaptogensis of mossy fibers induced by spatial water maze overtraining. Hipocampus, 1999, 9(6):631~636
    52 宿宝贵, 潘三强, 韩辉, 等. 水迷宫训练后大鼠海马苔藓纤维的变化. 解剖学杂志, 1999, 23(6):516~519
    53 项旭映, 张红梅, 胡能伟, 等. 脊髓背角II板层长时程增强诱导及维持过程中的突触形态计量学研究. 生理学报, 2004, 56(3): 397~402
    54 Lynch M, Sayin U, Golarai G, et al. NMDA receptor-dependent plasticity of granule cell spiking in the dentate gyrus of normal and epileptic rats. J Neurophysiol, 2000, 84(6):2868~2879
    55 Heynen AL, Bear MF. Long-term potentiation of thalamocortical transmission in the adult visual cortex in vivo. J Neurosci, 2001, 21(24):9801~9813
    56 梁建民, 崔新明, 李艳茹, 等. 颞叶癫痫大鼠海马CA1区突触可塑性与空间记忆能力关系的研究.中风与神经疾病杂志, 2006, 23(2):140~142
    57 张艳玲, 李露斯, 可金星. 慢性脑灌注不足大鼠记忆和突触结构参数分析. 电子显微学报, 2002, 21(5):535~536
    58 蒲昭霞, 赵聪敏, 鲁利群. 丰富环境对缺氧缺血性脑损伤大鼠海马突触超微结构及突触素表达的影响. 第三军医大学学报, 2006, 28(8):816~818
    59 张松筠, 杨晓光, 张若青. 糖尿病大鼠海马突触超微结构观察. 基础医学与临床, 2005, 25(3):253~256
    60 赵小贞, 王玮, 康仲涵, 等. 血管性痴呆大鼠海马突触结构参数的变化. 解剖学杂志, 2002, 25(1):30~34
    61 Sun CY, Qi SS, Lou XF, et al. Changes of learning, memory and levels of CaMKII, CaM mRNA, CREB mRNA in the hippocampus of chronic multiple-stressed rats. Chin Med J, 2006, 119( 2):140~147
    62 杨敏, 李涛, 余茜. 运动训练对脑梗死大鼠行为学及突触形态结构参数的影响. 中国康复医学杂志, 2007, 22(1):24~27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700