用户名: 密码: 验证码:
NFKB1、SUMO4和PDCD1基因多态性与银屑病的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
银屑病(俗称牛皮癣)是一种病情顽固、易反复、治疗困难的常见皮肤病,严重影响着大约1-3%的世界人口的日常生活和心身健康。尽管其确切病因尚不完全清楚,但目前越来越多的证据表明,银屑病的发生是携带着遗传易感基因的个体,在感染、创伤等因素作用下,激发了机体的细胞免疫应答,出现了CD4+T细胞介导的自身免疫紊乱。本实验立足于银屑病的遗传发病机制与免疫发病机制交汇点,瞄定了与银屑病的免疫学发病机制密切相关的三个分子NF-κB、SUMO4和PDCD1,从单核苷酸多态性角度探索它们与银屑病发病的相关性。下面简要介绍一下本项研究瞄定的三个分子。
     NF-κB(nuclear factor-κB)是一种重要的真核细胞转录因子,位于活化T细胞信号转导通路的末端,它作为关键的桥梁,连接着活化的T细胞和银屑病相关分子的转录,如TNF-α、IL-8、IL-12和细胞周期蛋白D等。有研究表明银屑病患者皮损处有大量活化形式的NF-κB,当银屑病病情好转,皮疹平复时,伴随着皮疹区活化形式的NF-κB明显减少。因此,NF-κB的任何异常都很可能导致银屑病的发生或银屑病病情的加重。
     转录因子NF-κB由NFKB1基因编码,在NFKB1基因的启动子区,存在着-94位ATTG四个碱基的插入与缺失多态性,相应的有三种NFKB1基因型:纯合子WW(insert/insert)、DD(delete/delete)和杂合子WD。Karban AS等研究发现NFKB1 D等位基因能增加自身免疫性疾病—溃疡性结肠炎患病的危险性,功能研究表明NFKB1 D等位基因具有降低NFKB1基因启动子启动基因转录的活性。那么,由此推断,此多态性位点很可能是自身免疫性疾病—银屑病的发病危险因素,研究NFKB1-94 ATTG多态性与寻常型银屑病发病的相关性将是非常有意义的切入点。
     SUMO4蛋白(Small ubiquitin-related modifier),位于细胞质中,是转录因子NF-κB活化的负性调控分子。SUMO4蛋白由位于染色体6q25的SUMO4基因编码。SUMO4基因中有编号rs237025、由G突变到A的单核苷酸多态性(Single nucleotide polymorphism, SNP),此SNP位点的基因突变导致sumo4蛋白质肽链中的第55位氨基酸由缬氨酸替换蛋氨酸(M55V)。有研究表明SUMO4蛋白的M55V替换与1型糖尿病的发病密切相关,SNP位点的功能研究表明,M55V替换能使NF-κB蛋白转录活性提高5.5倍。由此我们推测,作为NF-κB活化的负性调控分子,SUMO4 rs237025多态性可能是银屑病潜在的发病危险因素。
     PDCD1(programmed cell death 1)也称作程序性细胞死亡,是分布在细胞表面的抑制性免疫受体, PDCD1分子通过下调PKCθ的信号转导通路,抑制其下游的转录因子NF-κB的活化。PDCD1是位于细胞膜上,SUMO4上游的NF-κB的活化负性调控分子。PDCD1分子的异常及其编码基因的多态性,可能是通过下游的转录因子NF-κB或其它的环节促进了银屑病的发生,或者是加重银屑病的病情。依据文献资料,我们选择了PDCD1基因的三个SNPs位点进行研究:位于启动子区的PD1.1,位于外显子5上的PD1.5和PD1.9位点。
     基于NF-κB与银屑病发病的紧密相关性,以及SUMO4和PDCD1分子对NF-κB活化的负性调控作用,我们提出了如下假说,即NFKB1基因、SUMO4基因和PDCD1基因的基因多态性可能是银屑病患病的危险因素,或者加重了银屑病的病情,或者与银屑病的某种临床表型相关,并在本实验中予以验证。
     实验目的:分析NFKB1基因、SUMO4基因和PDCD1基因的基因多态性与中国寻常型银屑病发病的相关性,探讨银屑病的遗传学背景及发病机制。
     实验方法:采用性别、年龄相匹配的病例-对照研究方法,收集519例寻常型银屑病患者和541例正常对照的外周血,提基因组DNA,用聚合酶链式反应-限制性片断长度多态性(polymerase chain reaction-restriction fragment length polymorphism, PCR-RFLP)方法鉴定NFKB1、SUMO4和PDCD1基因上的基因多态性,用SAS软件进行统计学分析,探讨分别位于三个基因上的五个基因多态性位点与寻常型银屑病发病的相关性。依据患者的性别、发病年龄、家族史和PASI评分对患者进行分组,用分层分析的统计方法,进一步研究基因多态性的遗传背景与银屑病的上述临床表型之间的相关性。
     实验结果
     1.首次进行了NFKB1-94ins/del ATTG多态性与寻常型银屑病的相关性研究,发现NFKB1 WW基因型是危险基因型,携带NFKB1-94ins/del ATTG WW基因型的个体患银屑病的危险性增加1.57倍,校正OR =1.57,95% CI =1.10-2.24。
     2.研究基因多态性与银屑病临床表型的相关性,本实验对NFKB1-94ins/del ATTG多态性位点进行了联合基因型的分层分析,以NFKB1WD+DD基因型为参照,Logistic回归分析发现携带NFKB1WW基因型可增加下列各组寻常型银屑病的患病危险性:年龄≤40、PASI评分>20、男性患者与无家族史的银屑病患者。
     3.本实验首次研究了SUMO4基因的功能性SNP位点rs237025与银屑病的相关性,结果表明SUMO4基因的AA、GA、GG基因型和G、A等位基因均与银屑病的发病无相关性,提示SUMO4 rs237025多态性位点与中国寻常型银屑病的易感性无关。
     4.本实验首次研究了PDCD1基因与银屑病发病的相关性,发现PD1.1GG基因型有增加银屑病患病危险性的趋势,校正OR =1.30,95% CI =0.93-1.83;PD1.5的TT、TC、CC基因型和T、C等位基因与银屑病的发病无显著相关性;PD1.9CC基因型使寻常型银屑病患病危险性增加了1.4倍,校正OR =1.40, 95% CI =1.00-1.95。
     5.对PDCD1基因的多态性位点进行联合基因型分析,以PD1.1AG+AA/PD1.9TC+TT为参照, Logistic回归分析发现PD1.1GG/PD1.9CC联合基因型使寻常型银屑病患病危险性增加了1.54倍,提示PD1.1GG和PD1.9CC基因型的致病性具有联合效应。
     6. PDCD1基因的三个多态性位点间存在着连锁不平衡,据此通过软件构建出八种单倍体等位基因,分别为ATT、GTT、ATC、ACT、GCT、ACC、GTC、GCC。Logistic回归分析发现,单倍体等位基因与银屑病的易感性有随着危险等位基因数目的增多而增高的趋势,具有三个危险等位基因的GCC单倍体等位基因使寻常型银屑病的患病危险性增高了3.78倍。
     7.在PDCD1基因的三个SNPs中,我们进一步分析了个体所携带的危险等位基因数目与银屑病易感性的相关性,发现携带5-6个危险等位基因的个体患寻常型银屑病的危险性高于携带0-4个危险等位基因的个体,校正OR =1.43,95% CI =1.05-1.94。
     实验结论
     本研究表明SUMO4 rs237025多态性与中国寻常型银屑病的患病危险性无关。携带NFKB1 WW基因型个体患银屑病的危险性增加1.57倍,同时与发病年龄≤40岁的早发型、PASI评分>20的银屑病临床表型相关。在PDCD1基因的SNPs中,PD1.5多态性位点与银屑病的发病无显著相关性,携带PD1.1GG基因型与PD1.9CC基因型有增加银屑病患病危险性的趋势,具有三个危险等位基因的GCC单倍体等位基因使寻常型银屑病的患病危险性增高3.78倍。总之,本研究表明银屑病的发病与NFKB1基因和PDCD1基因的基因多态性相关,支持银屑病发病的免疫学说与遗传学说。
Psoriasis is a common dermatological disorder, affecting approximately 1% to 3% of the general population. Although the pathogenesis of psoriasis has not been definitively understood, recent evidence suggests that the CD4-positive T-lymphocytes paly an important role in the pathogenesis and progression of psoriasis under a polygenic inheritance background. Considering the crossing of immunopathogenesis and genetic background for psoriasis etiology, the present study selected NFKB1, SUMO4 and PDCD1 gene,assessed the associations between psoriasis and the five single nucleotide polymorphisms respectively in the three genes. Then, I concisely introduce the selected three genes.
     Nuclear factor kappa-beta (NF-κB) is a critical transcription factor modulating the expression of many genes involved in the pathogenesis of psoriasis. Located at the signaling pathway terminal of the activated T cells, NF-κB acts as a key bridge which links the activated Th1 cells with the transcription of many crucial genes involved in the pathogenesis of psoriasis, 第四军医大学博士学位论文such as TNF-α, IL-8, IL-12 and cyclin D. Furthermore, the increased expression of NF-κB in the involved synovial membranes and lesions has been demonstrated in the psoriatic patients. Therefore, the dysfunction of NF-κB may contribute to the formation or aggravation of psoriasis.
     NF-κB protein is encoded by the NFKB1 gene. In the promoter region of NFKB1, there is a -94ATTG 4 base insert/delete (-94W/D) polymorphism site, which consists of three genotypes: wild homozygous WW (ins/ins), variant homozygous DD (del /del) and heterozygous WD (ins/del). A previous study by Karban AS et al has found that the D allele could increase the risk of ulcerative colitis and decrease the NFKB1 promoter activity in vitro. To date, we have not seen any published paper regarding the association between this promoter polymorphism in NFKB1 and psoriasis vulgaris. Therefore, it is worthwhile to investigate whether this promoter polymorphism in NFKB1 is also associated with the etiology of psoriasis vulgaris, a newly defined autoimmune disease.
     Small ubiquitin-related modifier (SUMO) is a negative regulator of NF-κB in the upstream of NF-κB signaling pathway. The 94 amino acid SUMO4 protein is encoded by SUMO4 gene located at chromosome 6q25. A rs237025 A>G single nucleotide polymorphism (SNP) has been detected in SUMO4 gene. This SNP locates in the coding region of SUMO4 gene and corresponds the substitution of a methionine with a valine residue (M55V). Studies have verified that the substitution (M55V) of SUMO4 is strongly associated with type1 diabetes. Functional research has manifested that the M55V substitution results in 5.5 times greater NF-κB transcriptional activity. As both type1 diabetes and psoriasis are autoimmune-related diseases, the pathogenesis of them might result from the same SUMO4 rs237025 A>G SNP.
     Programmed cell death 1(PDCD1)is another negative regulator of NF-κB which located at the cell surface. By down-regulating the PKCθcell signaling pathway, PDCD1 inhibits the activation of NF-κB. Thus the SNPs in PDCD1 gene might contribute to the pathogenesis of psoriasis or worsen the patients’clinical symptoms. According to the published papers, we selected three SNPs in the PDCD1 gene to study their associations with psoriasis vulgaris risk. PD1.1 is in the promoter resion. PD1.5 and PD1.9 are all locating at the extron 5. Therefore, on the basis of the key role of NF-κB in the pathogenesis of psoriasis and the negative regulation of SUMO4 and PDCD1 on NF-κB, we investigated the association between psoriasis and five SNPs separately in the three genes by a hospital-based, case-control study.
     Objective: To investigated the association of five SNPs in NFKB1, SUMO4 and PDCD1 gene with psoriasis vulgaris susceptibility in the Chinese.
     Methods: In a hospital-based case-control study, 519 psoriasis patients and 541 controls were enrolled in frequency matching by the age and sex. Genotyping for the five polymorphisms was conducted using polymerase chain reaction (PCR) -restriction fragment length polymorphism (RFLP) method. The Chi-square test was used to evaluate the differences in the frequency distributions of selected demographic variables, each of the alleles and genotypes of the five polymorphisms between patients with psoriasis vuagaris and individuals in the control group. As the age of onset, sex, family history and PASI score are the different clinical characteristics of psoriasis, the associations between the combined-genotypes and the risk of psoriasis in different subgroups were also evaluated.
     Results:
     1. A significantly increased psoriasis risk was associated with the NFKB1 WW genotype. Individuals with the NFKB1 WW genotype had 1.57 fold psoriasis risk (adjusted OR =1.57, 95% CI =1.10-2.24).
     2. The NFKB1 WW genotype frequency was also statistically higher in the psoriatic subgroups of onset age≤40, PASI>20, male patients and sporadic patients than in controls.
     3. No associations of the SUMO4 rs237025 A>G polymorphism with the susceptibility of psoriasis was found in the present study.
     4. Individuals with the PD1.1 GG genotype had the tendency of increased psoriasis risk (adjusted OR =1.30, 95% CI =0.93-1.83);The TT, TC, CC genotypes and T, C alleles in the PD1.5 polymorphism did not show any association with the susceptibility of psoriasis. Individuals with the PD1.9 CC genotype had 1.4 fold psoriasis risk (adjusted OR =1.40, 95% CI =1.00-1.95).
     5. We performed a combined genotype analysis for the PD1.1 and PD1.9 SNPs in the PDCD1 gene. When the individuals with the PD1.1AG+AA/PD1.9TC+TT genotype was used as the reference, individuals with the PD1.1GG/PD1.9CC combined genotype had 1.54 fold psoriasis risk, which illustrate that the PD1.1GG and PD1.9CC genotype have joint effect for psoriasis risk.
     6. We detected linkage disequilibrium among the three PDCD1 SNPs. By Phase software, we constructed eight haplotypes for the three SNPs: ATT, GTT, ATC, ACT, GCT, ACC, GTC and GCC. The GCC haplotype genotype with 3 risk alleles was associated with 3.78 fold psoriasis risk compared to that with 0 risk alleles.
     7. When the combined genotype containing 0–4 PDCD1 risk alleles was used as the reference, a significantly higher risk was associate with the combined genotypes containing 5–6 PDCD1 risk alleles (adjusted OR=1.43; 95% CI=1.05-1.94)
     In conclusion: As far as we know, this is the first association study between NFKB1, SUMO4 and PDCD1 polymorphisms and the psoriasis vulgaris in the Chinese population. Larger, population-based studies are needed to confirm these findings.
引文
1. de Korte J, Van Onselen J, Kownacki S, Sprangers MA, Bos JD. Quality of care in patients with psoriasis: an initial clinical study of an international disease management programme. J Eur Acad Dermatol Venereol 2005;19: 35-41.
    2. Nevitt GJ, Hutchinson PE. Psoriasis in the community: prevalence, severity and patients' beliefs and attitudes towards the disease. The British journal of dermatology 1996;135: 533-537.
    3. Yip SY. The prevalence of psoriasis in the Mongoloid race. Journal of the American Academy of Dermatology 1984;10: 965-968.
    4. Griffiths CE. The immunological basis of psoriasis. J Eur Acad Dermatol Venereol 2003;17 Suppl 2: 1-5.
    5. Zhang XJ, Zhang AP, Yang S, et al. Association of HLA class I alleles with psoriasis vulgaris in southeastern Chinese Hans. Journal of dermatological science 2003;33: 1-6.
    6. Fatma OS, Sarper DA, Dilek E, et al. HLA-DRB1 association in Turkish psoriasis vulgaris patients. Swiss Med Wkly 2003;133: 541-543.
    7. Zhang X, Wang H, Te-Shao H, Yang S, Chen S. The genetic epidemiology of psoriasis vulgaris in Chinese Han. International journal of dermatology 2002;41: 663-669.
    8. Morris A, Rogers M, Fischer G, Williams K. Childhood psoriasis: a clinical review of 1262 cases. Pediatric dermatology 2001;18: 188-198.
    9. Duffy DL, Spelman LS, Martin NG. Psoriasis in Australian twins. Journal of the American Academy of Dermatology 1993;29: 428-434.
    10. Brandrup F, Holm N, Grunnet N, Henningsen K, Hansen HE. Psoriasis in monozygotic twins: variations in expression in individuals with identical genetic constitution. Acta dermato-venereologica 1982;62: 229-236.
    11. Capon F, Dallapiccola B, Novelli G. Advances in the search for psoriasis susceptibility genes. Molecular genetics and metabolism 2000;71: 250-255.
    12. Prens EP, Kant M, van Dijk G, van der Wel LI, Mourits S, van der Fits L. IFN-alpha enhances poly-IC responses in human keratinocytes by inducing expression of cytosolic innate RNA receptors: relevance for psoriasis. The Journal of investigative dermatology2008;128: 932-938.
    13. Scarponi C, Nardelli B, Lafleur DW, et al. Analysis of IFN-kappa expression in pathologic skin conditions: downregulation in psoriasis and atopic dermatitis. J Interferon Cytokine Res 2006;26: 133-140.
    14. Arican O, Aral M, Sasmaz S, Ciragil P. Serum levels of TNF-alpha, IFN-gamma, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity. Mediators of inflammation 2005;2005: 273-279.
    15. Borska L, Fiala Z, Krejsek J, et al. Immunologic changes in TNF-alpha, sE-selectin, sP-selectin, sICAM-1, and IL-8 in pediatric patients treated for psoriasis with the Goeckerman regimen. Pediatric dermatology 2007;24: 607-612.
    16. Ozawa M, Terui T, Tagami H. Localization of IL-8 and complement components in lesional skin of psoriasis vulgaris and pustulosis palmaris et plantaris. Dermatology (Basel, Switzerland) 2005;211: 249-255.
    17. Onuma S. Immunohistochemical studies of infiltrating cells in early and chronic lesions of psoriasis. The Journal of dermatology 1994;21: 223-232.
    18. Brune A, Miller DW, Lin P, Cotrim-Russi D, Paller AS. Tacrolimus ointment is effective for psoriasis on the face and intertriginous areas in pediatric patients. Pediatric dermatology 2007;24: 76-80.
    19. Liao YH, Chiu HC, Tseng YS, Tsai TF. Comparison of cutaneous tolerance and efficacy of calcitriol 3 microg g(-1) ointment and tacrolimus 0.3 mg g(-1) ointment in chronic plaque psoriasis involving facial or genitofemoral areas: a double-blind, randomized controlled trial. The British journal of dermatology 2007;157: 1005-1012.
    20. Vissers WH, van Vlijmen I, van Erp PE, de Jong EM, van de Kerkhof PC. Topical treatment of mild to moderate plaque psoriasis with 0.3% tacrolimus gel and 0.5% tacrolimus cream: the effect on SUM score, epidermal proliferation, keratinization, T-cell subsets and HLA-DR expression. The British journal of dermatology 2008;158: 705-712.
    21. Gottlieb AB, Lebwohl M, Shirin S, et al. Anti-CD4 monoclonal antibody treatment of moderate to severe psoriasis vulgaris: results of a pilot, multicenter, multiple-dose, placebo-controlled study. Journal of the American Academy of Dermatology 2000;43: 595-604.
    22. Cafardi JA, Cantrell W, Wang W, Elmets CA, Elewski BE. The safety and efficacy of high-dose alefacept compared with a loading dose of alefacept in patients with chronic plaque psoriasis. Skinmed 2008;7: 67-72.
    23. Huang PH, Liao YH, Wei CC, Tseng YH, Ho JC, Tsai TF. Clinical effectiveness and safety experience with alefacept in the treatment of patients with moderate-to-severe chronic plaque psoriasis in Taiwan: results of an open-label, single-arm, multicentre pilot study. J Eur Acad Dermatol Venereol 2008.
    24. Krell J, Nelson C, Spencer L, Miller S. An open-label study evaluating the efficacy and tolerability of alefacept for the treatment of scalp psoriasis. Journal of the American Academy of Dermatology 2008;58: 609-616.
    25. Tsai TF, Liu MT, Liao YH, Licu D. Clinical effectiveness and safety experience with efalizumab in the treatment of patients with moderate-to-severe plaque psoriasis in Taiwan: results of an open-label, single-arm pilot study. J Eur Acad Dermatol Venereol 2008;22: 345-352.
    26. Varma R, Cafardi JA, Cantrell W, Elmets C. Safety and Efficacy of Subcutaneously Administered Efalizumab in Adults with Moderate-to-Severe Hand and Foot Psoriasis: An Open-Label Study. American journal of clinical dermatology 2008;9: 105-109.
    27. Wozel G, Vitez L. Palmoplantar Pustular Psoriasis: Successful Therapy with Efalizumab after Non-response to Infliximab. Acta dermato-venereologica 2008;88: 169-170.
    28. Raza N, Usman M, Hameed A. Chronic plaque psoriasis: streptococcus pyogenes throat carriage rate and therapeutic response to oral antibiotics in comparison with oral methotrexate. J Coll Physicians Surg Pak 2007;17: 717-720.
    29. Borecki IB, Suarez BK. Linkage and association: basic concepts. Advances in genetics 2001;42: 45-66.
    30. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American journal of human genetics 1980;32: 314-331.
    31. Brookes AJ. The essence of SNPs. Gene 1999;234: 177-186.
    32. Dawn Teare M, Barrett JH. Genetic linkage studies. Lancet 2005;366: 1036-1044.
    33. Piruzian AL, Abdeev RM. [The molecular genetics of psoriasis]. Vestnik Rossiiskoi akademii meditsinskikh nauk / Rossiiskaia akademiia meditsinskikh nauk 2006: 33-43.
    34. Zhang XJ, He PP, Wang ZX, et al. Evidence for a major psoriasis susceptibility locus at 6p21(PSORS1) and a novel candidate region at 4q31 by genome-wide scan in Chinese hans. The Journal of investigative dermatology 2002;119: 1361-1366.
    35. Long AD, Langley CH. The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome research 1999;9: 720-731.
    36. Bowcock AM, Shannon W, Du F, et al. Insights into psoriasis and other inflammatory diseases from large-scale gene expression studies. Human molecular genetics 2001;10: 1793-1805.
    37. Zhou X, Krueger JG, Kao MC, et al. Novel mechanisms of T-cell and dendritic cell activation revealed by profiling of psoriasis on the 63,100-element oligonucleotide array. Physiological genomics 2003;13: 69-78.
    38. Finishing the euchromatic sequence of the human genome. Nature 2004;431: 931-945.
    39. Hattersley AT, McCarthy MI. What makes a good genetic association study? Lancet 2005;366: 1315-1323.
    40. Mallon E, Bunce M, Wojnarowska F, Welsh K. HLA-CW*0602 is a susceptibility factor in type I psoriasis, and evidence Ala-73 is increased in male type I psoriatics. The Journal of investigative dermatology 1997;109: 183-186.
    41. Chang YT, Liu HN, Shiao YM, et al. A study of PSORS1C1 gene polymorphisms in Chinese patients with psoriasis. The British journal of dermatology 2005;153: 90-96.
    42. Chang YT, Chou CT, Shiao YM, et al. Psoriasis vulgaris in Chinese individuals is associated with PSORS1C3 and CDSN genes. The British journal of dermatology 2006;155: 663-669.
    43. Jenisch S, Koch S, Henseler T, et al. Corneodesmosin gene polymorphism demonstrates strong linkage disequilibrium with HLA and association with psoriasis vulgaris. Tissue antigens 1999;54: 439-449.
    44. Capon F, Allen MH, Ameen M, et al. A synonymous SNP of the corneodesmosin gene leads to increased mRNA stability and demonstrates association with psoriasis across diverse ethnic groups. Human molecular genetics 2004;13: 2361-2368.
    45. Asumalahti K, Laitinen T, Itkonen-Vatjus R, et al. A candidate gene for psoriasis near HLA-C, HCR (Pg8), is highly polymorphic with a disease-associated susceptibility allele. Human molecular genetics 2000;9: 1533-1542.
    46. Asumalahti K, Veal C, Laitinen T, et al. Coding haplotype analysis supports HCR as the putative susceptibility gene for psoriasis at the MHC PSORS1 locus. Human molecular genetics 2002;11: 589-597.
    47. Kaluza W, Reuss E, Grossmann S, et al. Different transcriptional activity and in vitro TNF-alpha production in psoriasis patients carrying the TNF-alpha 238A promoter polymorphism. The Journal of investigative dermatology 2000;114: 1180-1183.
    48. Reich K, Mossner R, Konig IR, Westphal G, Ziegler A, Neumann C. Promoter polymorphisms of the genes encoding tumor necrosis factor-alpha and interleukin-1beta are associated with different subtypes of psoriasis characterized by early and late disease onset. The Journal of investigative dermatology 2002;118: 155-163.
    49. Krueger GG, Langley RG, Leonardi C, et al. A human interleukin-12/23 monoclonal antibody for the treatment of psoriasis. The New England journal of medicine 2007;356: 580-592.
    50. Tsunemi Y, Saeki H, Nakamura K, et al. Interleukin-12 p40 gene (IL12B) 3'-untranslated region polymorphism is associated with susceptibility to atopic dermatitis and psoriasis vulgaris. Journal of dermatological science 2002;30: 161-166.
    51. Cargill M, Schrodi SJ, Chang M, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. American journal of human genetics 2007;80: 273-290.
    52. Donn RP, Plant D, Jury F, et al. Macrophage migration inhibitory factor gene polymorphism is associated with psoriasis. The Journal of investigative dermatology 2004;123: 484-487.
    53. Plant D, Young HS, Watson RE, Worthington J, Griffiths CE. The CX3CL1-CX3CR1 system and psoriasis. Experimental dermatology 2006;15: 900-903.
    54. Chang YC, Wu WM, Chen CH, Lee SH, Hong HS, Hsu LA. Association between the insertion/deletion polymorphism of the angiotensin I-converting enzyme gene and risk for psoriasis in a Chinese population in Taiwan. The British journal of dermatology 2007;156: 642-645.
    55. Young HS, Summers AM, Bhushan M, Brenchley PE, Griffiths CE. Single-nucleotide polymorphisms of vascular endothelial growth factor in psoriasis of early onset. The Journal of investigative dermatology 2004;122: 209-215.
    56. Halsall JA, Osborne JE, Pringle JH, Hutchinson PE. Vitamin D receptor gene polymorphisms, particularly the novel A-1012G promoter polymorphism, are associated with vitamin D3 responsiveness and non-familial susceptibility in psoriasis. Pharmacogenetics and genomics 2005;15: 349-355.
    57. Vasku V, Bienertova Vasku J, Pavkova Goldbergova M, Vasku A. Three retinoid X receptor gene polymorphisms in plaque psoriasis and psoriasis guttata. Dermatology (Basel, Switzerland) 2007;214: 118-124.
    58. Brand K, Eisele T, Kreusel U, et al. Dysregulation of monocytic nuclear factor-kappa B by oxidized low-density lipoprotein. Arteriosclerosis, thrombosis, and vascular biology 1997;17: 1901-1909.
    59. Johansen C, Flindt E, Kragballe K, et al. Inverse regulation of the nuclear factor-kappaB binding to the p53 and interleukin-8 kappaB response elements in lesional psoriatic skin. The Journal of investigative dermatology 2005;124: 1284-1292.
    60. Hong K, Chu A, Ludviksson BR, Berg EL, Ehrhardt RO. IL-12, independently of IFN-gamma, plays a crucial role in the pathogenesis of a murine psoriasis-like skin disorder. J Immunol 1999;162: 7480-7491.
    61. Lizzul PF, Aphale A, Malaviya R, et al. Differential expression of phosphorylated NF-kappaB/RelA in normal and psoriatic epidermis and downregulation of NF-kappaB in response to treatment with etanercept. The Journal of investigative dermatology 2005;124: 1275-1283.
    62. Danning CL, Illei GG, Hitchon C, Greer MR, Boumpas DT, McInnes IB. Macrophage-derived cytokine and nuclear factor kappaB p65 expression in synovial membrane and skin of patients with psoriatic arthritis. Arthritis and rheumatism 2000;43: 1244-1256.
    63. Chen FE, Huang DB, Chen YQ, Ghosh G. Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. Nature 1998;391: 410-413.
    64. Chen F, Castranova V, Shi X, Demers LM. New insights into the role of nuclear factor-kappaB, a ubiquitous transcription factor in the initiation of diseases. Clinical chemistry 1999;45: 7-17.
    65. Le Beau MM, Ito C, Cogswell P, Espinosa R, 3rd, Fernald AA, Baldwin AS, Jr. Chromosomal localization of the genes encoding the p50/p105 subunits of NF-kappa B(NFKB2) and the I kappa B/MAD-3 (NFKBI) inhibitor of NF-kappa B to 4q24 and 14q13, respectively. Genomics 1992;14: 529-531.
    66. Heron E, Deloukas P, van Loon AP. The complete exon-intron structure of the 156-kb human gene NFKB1, which encodes the p105 and p50 proteins of transcription factors NF-kappa B and I kappa B-gamma: implications for NF-kappa B-mediated signal transduction. Genomics 1995;30: 493-505.
    67. Borm ME, van Bodegraven AA, Mulder CJ, Kraal G, Bouma G. A NFKB1 promoter polymorphism is involved in susceptibility to ulcerative colitis. International journal of immunogenetics 2005;32: 401-405.
    68. Karban AS, Okazaki T, Panhuysen CI, et al. Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Human molecular genetics 2004;13: 35-45.
    69. Glas J, Torok HP, Tonenchi L, et al. Role of the NFKB1 -94ins/delATTG promoter polymorphism in IBD and potential interactions with polymorphisms in the CARD15/NOD2, IKBL, and IL-1RN genes. Inflammatory bowel diseases 2006;12: 606-611.
    70. Mirza MM, Fisher SA, Onnie C, et al. No association of the NFKB1 promoter polymorphism with ulcerative colitis in a British case control cohort. Gut 2005;54: 1205-1206.
    71. Oliver J, Gomez-Garcia M, Paco L, et al. A functional polymorphism of the NFKB1 promoter is not associated with ulcerative colitis in a Spanish population. Inflammatory bowel diseases 2005;11: 576-579.
    72. Orozco G, Sanchez E, Collado MD, et al. Analysis of the functional NFKB1 promoter polymorphism in rheumatoid arthritis and systemic lupus erythematosus. Tissue antigens 2005;65: 183-186.
    73. Rueda B, Nunez C, Lopez-Nevot MA, et al. Functional polymorphism of the NFKB1 gene promoter is not relevant in predisposition to celiac disease. Scandinavian journal of gastroenterology 2006;41: 420-423.
    74. Bayer P, Arndt A, Metzger S, et al. Structure determination of the small ubiquitin-related modifier SUMO-1. Journal of molecular biology 1998;280: 275-286.
    75. Desterro JM, Rodriguez MS, Hay RT. SUMO-1 modification of IkappaBalpha inhibitsNF-kappaB activation. Molecular cell 1998;2: 233-239.
    76. Su HL, Li SS. Molecular features of human ubiquitin-like SUMO genes and their encoded proteins. Gene 2002;296: 65-73.
    77. Bohren KM, Nadkarni V, Song JH, Gabbay KH, Owerbach D. A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. The Journal of biological chemistry 2004;279: 27233-27238.
    78. Noso S, Ikegami H, Fujisawa T, et al. Genetic heterogeneity in association of the SUMO4 M55V variant with susceptibility to type 1 diabetes. Diabetes 2005;54: 3582-3586.
    79. Guo D, Li M, Zhang Y, et al. A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nature genetics 2004;36: 837-841.
    80. Bos JD. Psoriasis, innate immunity, and gene pools. Journal of the American Academy of Dermatology 2007;56: 468-471.
    81. Bos JD, de Rie MA, Teunissen MB, Piskin G. Psoriasis: dysregulation of innate immunity. The British journal of dermatology 2005;152: 1098-1107.
    82. Devendra D, Liu E, Eisenbarth GS. Type 1 diabetes: recent developments. BMJ (Clinical research ed 2004;328: 750-754.
    83. Lambert AP, Gillespie KM, Thomson G, et al. Absolute risk of childhood-onset type 1 diabetes defined by human leukocyte antigen class II genotype: a population-based study in the United Kingdom. The Journal of clinical endocrinology and metabolism 2004;89: 4037-4043.
    84. Liu Y, Krueger JG, Bowcock AM. Psoriasis: genetic associations and immune system changes. Genes and immunity 2007;8: 1-12.
    85. Yoon JW, Jun HS. Autoimmune destruction of pancreatic beta cells. American journal of therapeutics 2005;12: 580-591.
    86. Parry RV, Chemnitz JM, Frauwirth KA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Molecular and cellular biology 2005;25: 9543-9553.
    87. Bennett F, Luxenberg D, Ling V, et al. Program death-1 engagement upon TCR activation has distinct effects on costimulation and cytokine-driven proliferation: attenuation of ICOS, IL-4, and IL-21, but not CD28, IL-7, and IL-15 responses. JImmunol 2003;170: 711-718.
    88. Wang J, Yoshida T, Nakaki F, Hiai H, Okazaki T, Honjo T. Establishment of NOD-Pdcd1-/- mice as an efficient animal model of type I diabetes. Proceedings of the National Academy of Sciences of the United States of America 2005;102: 11823-11828.
    89. Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999;11: 141-151.
    90. Shinohara T, Taniwaki M, Ishida Y, Kawaichi M, Honjo T. Structure and chromosomal localization of the human PD-1 gene (PDCD1). Genomics 1994;23: 704-706.
    91. Velazquez-Cruz R, Orozco L, Espinosa-Rosales F, et al. Association of PDCD1 polymorphisms with childhood-onset systemic lupus erythematosus. Eur J Hum Genet 2007;15: 336-341.
    92. Ferreiros-Vidal I, Gomez-Reino JJ, Barros F, et al. Association of PDCD1 with susceptibility to systemic lupus erythematosus: evidence of population-specific effects. Arthritis and rheumatism 2004;50: 2590-2597.
    93. Johansson M, Arlestig L, Moller B, Rantapaa-Dahlqvist S. Association of a PDCD1 polymorphism with renal manifestations in systemic lupus erythematosus. Arthritis and rheumatism 2005;52: 1665-1669.
    94. Kroner A, Mehling M, Hemmer B, et al. A PD-1 polymorphism is associated with disease progression in multiple sclerosis. Ann Neurol 2005;58: 50-57.
    95. Lin SC, Liu CJ, Yeh WI, Lui MT, Chang KW, Chang CS. Functional polymorphism in NFKB1 promoter is related to the risks of oral squamous cell carcinoma occurring on older male areca (betel) chewers. Cancer letters 2006;243: 47-54.
    96. Bowcock AM, Cookson WO. The genetics of psoriasis, psoriatic arthritis and atopic dermatitis. Human molecular genetics 2004;13 Spec No 1: R43-55.
    97. Galadari I, Sharif MO, Galadari H. Psoriasis: a fresh look. Clinics in dermatology 2005;23: 491-502.
    98. Landgren E, Braback L, Hedlin G, Hjern A, Rasmussen F. Psoriasis in Swedish conscripts: time trend and association with T-helper 2-mediated disorders. The British journal of dermatology 2006;154: 332-336.
    99. Lee MR, Cooper AJ. Immunopathogenesis of psoriasis. The Australasian journal ofdermatology 2006;47: 151-159.
    100. Perez-Lorenzo R, Nunez-Oreza LA, Garma-Quen PM, Lopez-Pacheco E, Bricaire-Bricaire G. Peripheral blood mononuclear cells proliferation and Th1/Th2 cytokine production in response to streptococcal M protein in psoriatic patients. International journal of dermatology 2006;45: 547-553.
    101. Dai X, Yamasaki K, Shirakata Y, Sayama K, Hashimoto K. All-trans-retinoic acid induces interleukin-8 via the nuclear factor-kappaB and p38 mitogen-activated protein kinase pathways in normal human keratinocytes. The Journal of investigative dermatology 2004;123: 1078-1085.
    102. Ouyang W, Ma Q, Li J, et al. Cyclin D1 induction through IkappaB kinase beta/nuclear factor-kappaB pathway is responsible for arsenite-induced increased cell cycle G1-S phase transition in human keratinocytes. Cancer research 2005;65: 9287-9293.
    103. Shaker OG, Moustafa W, Essmat S, Abdel-Halim M, El-Komy M. The role of interleukin-12 in the pathogenesis of psoriasis. Clinical biochemistry 2006;39: 119-125.
    104. Victor FC, Gottlieb AB, Menter A. Changing paradigms in dermatology: tumor necrosis factor alpha (TNF-alpha) blockade in psoriasis and psoriatic arthritis. Clinics in dermatology 2003;21: 392-397.
    105. Henseler T, Christophers E. Psoriasis of early and late onset: characterization of two types of psoriasis vulgaris. Journal of the American Academy of Dermatology 1985;13: 450-456.
    106. Fredriksson T, Pettersson U. Severe psoriasis--oral therapy with a new retinoid. Dermatologica 1978;157: 238-244.
    107. Bell S, Degitz K, Quirling M, Jilg N, Page S, Brand K. Involvement of NF-kappaB signalling in skin physiology and disease. Cellular signalling 2003;15: 1-7.
    108. Butt C, Sun S, Peddle L, et al. Association of nuclear factor-kappaB in psoriatic arthritis. The Journal of rheumatology 2005;32: 1742-1744.
    109. Goldenkova-Pavlova IV, Piruzian AL, Abdeev RM, Khripach LV, Radzhabov MO, Piruzian LA. [Population analysis and determination of the ethnic background are necessary in the study of multifactorial diseases: a study using the Dagestan population as a model]. Genetika 2006;42: 1137-1142.
    110. Zhukova OV, Shneider Iu V, Morozova I, et al. [Genetic markers and psoriasis in threeethnic populations of Dagestan]. Genetika 2005;41: 1702-1706.
    111. Klement JF, Rice NR, Car BD, et al. IkappaBalpha deficiency results in a sustained NF-kappaB response and severe widespread dermatitis in mice. Molecular and cellular biology 1996;16: 2341-2349.
    112. Lan CC, Yu HS, Wu CS, Kuo HY, Chai CY, Chen GS. FK506 inhibits tumour necrosis factor-alpha secretion in human keratinocytes via regulation of nuclear factor-kappaB. The British journal of dermatology 2005;153: 725-732.
    113. Jennings CE, Owen CJ, Wilson V, Pearce SH. No association of the codon 55 methionine to valine polymorphism in the SUMO4 gene with Graves' disease. Clinical endocrinology 2005;62: 362-365.
    114. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. The EMBO journal 1992;11: 3887-3895.
    115. Agata Y, Kawasaki A, Nishimura H, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. International immunology 1996;8: 765-772.
    116. Vibhakar R, Juan G, Traganos F, Darzynkiewicz Z, Finger LR. Activation-induced expression of human programmed death-1 gene in T-lymphocytes. Experimental cell research 1997;232: 25-28.
    117. Kong EK, Prokunina-Olsson L, Wong WH, et al. A new haplotype of PDCD1 is associated with rheumatoid arthritis in Hong Kong Chinese. Arthritis and rheumatism 2005;52: 1058-1062.
    118. Hiromine Y, Ikegami H, Fujisawa T, et al. Trinucleotide repeats of programmed cell death-1 gene are associated with susceptibility to type 1 diabetes mellitus. Metabolism: clinical and experimental 2007;56: 905-909.
    119. Maniatis N, Collins A, Xu CF, et al. The first linkage disequilibrium (LD) maps: delineation of hot and cold blocks by diplotype analysis. Proceedings of the National Academy of Sciences of the United States of America 2002;99: 2228-2233.
    120. Pritchard JK, Przeworski M. Linkage disequilibrium in humans: models and data. American journal of human genetics 2001;69: 1-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700