用户名: 密码: 验证码:
长期施肥对亚热带稻田土壤有机碳氮及微生物学特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
选取分布在湖南省不同县市的8个稻田长期定位施肥试验点,以不同施肥小区(无肥、化肥、有机肥、秸秆还田)的耕层土壤作为研究对象,通过室内分析和培养实验,对土壤有机碳、活性有机碳、有机氮组分、微生物生物量、微生物多样性、土壤酶活、有机碳氮的矿化作用等进行测定分析,揭示涉及土壤有机质积累转化过程中的土壤微生物学特性及土壤有机质组分的特征。主要结果如下:
     一、稻田土壤碳氮积累特征
     1、各试验点耕层土壤有机碳(TOC)含量范围为16.18~38.65 g/kg,长期不施肥处理(CK)土壤TOC的含量保持在一个较为稳定的水平上,在17年的试验过程中,土壤TOC有上升趋势。单施化肥(NPK)对土壤TOC含量的影响不显著(仅在桃江和临澧试验点显著提高);化肥配施有机肥处理(MOM、HOM)均显著提高了土壤TOC的含量,秸秆还田处理(STR)也对土壤TOC含量的提高作用明显。
     2、各试验点耕层土壤全氮(TN)含量范围为1.07~3.93 g/kg,CK处理土壤TN的含量与试验初始时相比基本持平。各施肥处理对土壤TN的影响与TOC相似,NPK处理对土壤TN含量的提高有一定的效果,且在3个试验点上影响显著;MOM、HOM和STR处理均显著提高了土壤TN的含量。
     3、稻田土壤碳氮比(C/N)在9:1~17:1之间,各施肥处理对其影响不显著,只在半数试验点上的MOM、HOM处理对其提高显著。
     4、各试验点土壤pH值变化在5.07~8.00之间,除南县和武冈试验点的土壤是偏碱性外,其余试验点土壤pH值均呈酸性。与稻田土壤初始值相比,长期种植水稻后土壤的pH值均表现出下降的趋势;与CK处理相比,长期施肥后稻田土壤pH值有明显的下降。
     二、稻田土壤活性有机碳特征
     1、各试验点耕层土壤可溶性有机碳(SOC)含量范围为23.73~122.77 mg/kg。NPK处理对SOC含量的影响不显著;MOM、HOM、STR处理均显著提高SOC的含量,且影响效果是HOM>MOM>STR。土壤SOC占TOC含量的0.13%~0.32%,新化和南县点土壤SOC所占的比例较高,MOM、HOM和STR处理除个别试验点外均显著提高其比例。
     2、各试验点耕层土壤轻组有机碳(LFOC)含量范围为0.62~6.08 g/kg。NPK处理可以提高LFOC的含量;MOM、HOM、STR处理均显著提高了LFOC的含量。土壤LFOC占TOC含量的3.80%~17.40%,MOM、HOM和STR处理均显著提高了土壤LFOC占土壤TOC的比例。
     3、土壤易氧化有机碳(ROOC)含量范围为5.87~18.60 g/kg。土壤ROOC占TOC的比例变化范围在49.02%~58.31%之间,与CK处理相比,不同施肥处理之间的比例差异均不显著。
     4、土壤活性有机碳各组分均与土壤TOC有显著的正相关性,可以作为表征稻田土壤有机碳的指标。
     三、稻田土壤有机氮组分特征
     1、各试验点耕层土壤酸解总氮(TAHN)的含量范围为822~3102 mg/kg,占土壤TN的64%~92%,是土壤氮的主体。长期不同施肥处理对TAHN含量及其组分有显著的影响。与CK处理相比,各施肥处理可以提高土壤TAHN及其组分中的氨基酸氮(AAN)、氨基糖氮(ASN)和酸解氨态氮(AN)的含量,但在个别试验点上影响未达显著水平。不同施肥处理使土壤酸解未知氮(HUN)和非酸解性氮(NHN)的含量有不同的变化规律,总体上施肥后HUN的含量有所降低,而使NHN有所增加。
     2、不同施肥处理土壤TAHN各组分所占TN比例的变化规律不尽相同,各处理间差异不太显著,大致上讲ASN和AAN的比例有所增加,AN和HUN的比例有下降趋势。AAN所占份额较大,对施肥处理的响应最为显著,ASN所占份额最小,且所占份额对不同施肥措施不敏感。
     3、土壤可溶性有机氮(SON)含量的变化范围为6.19~30.86 mg/kg,占土壤TN的0.32%~0.96%。NPK处理对土壤SON的影响不显著,化肥配施有机肥显著提高SON含量及其所占TN的比例。土壤SON与酸解有机氮各组分均存在显著的正相关性。
     四、稻田土壤微生物量、群落功能多样性及酶活性特征
     1、各试验点稻田土壤微生物量碳(MBC)、微生物量氮(MBN)含量的范围分别为261~968 mg/kg和25~109 mg/kg。NPK处理对半数试验点的土壤MBC、MBN含量影响不显著,MOM、HOM、STR处理则均有显著提高。土壤MBC占TOC的1.3%~4.5%,平均为2.1%;MBN占TN的1.3%~3.7%,平均为2.5%。施肥对微生物量占土壤TOC和TN的比例影响不太显著。土壤MBC与TOC、MBN与TN之间的关系呈显著正相关。各试验点稻田土壤微生物量碳氮比变化范围在6.5~13.5之间,除株洲和武冈试验点值较大外,其余都在7~9左右。与CK处理相比,各施肥处理降低了微生物碳氮比,但差异不显著。
     2、各试验点不同施肥措施在Biolog测定的细菌单一碳源利用模式上区分明显:Biolog盘中每孔的平均吸光值AWCD随培养时间的延长而增加,即土壤微生物碳源利用率在提高;不同施肥处理土壤微生物在碳源的利用能力上存在显著差异;土壤微生物群落利用的碳源主要为氨基酸类和糖类,但不同施肥处理碳源利用类型有差异。Shannon和Simpson指数的结果显示所有施肥处理均有利于维持微生物群落多样性,但秸秆还田使土壤微生物群落均匀度(McIntosh指数)降低。
     3、不同施肥处理下稻田土壤与碳循环有关的酶活(蔗糖转化酶、淀粉酶、纤维素酶、),与氮循环有关的酶活性(蛋白酶、脲酶)以及参与磷循环的酶活性(酸性磷酸酶),与CK处理相比,活性均有显著的提高,其中HOM处理的促进作用最大,STR的影响在新化试验点上最为明显。
     五、稻田土壤有机碳氮矿化作用特征
     1、在淹水条件下,不同施肥处理土壤有机碳矿化速率总趋势基本相似,CO_2的产生速率在前期保持较高水平,之后迅速下降直至稳定水平;CH_4的产生速率呈现为先缓慢升高后迅速降低的动态变化;土壤CO_2累积排放量范围为448.64~1516.77μg/g,CH_4累积排放量在范围15.60~33.34μg/g,化肥配施有机肥处理显著增加CO_2和CH_4的累积排放量;在培养期内土壤有机碳累积排放总量占TOC的3.6%~5.6%;土壤不同碳形态的含量与累积排放总量之间极显著正相关性,而仅ROOC、HC和FC的比例与累积排放总量呈显著正相关性;土壤有机碳累积排放总量所占TOC的比例与各碳形态相关性不显著。
     2、在不同温度条件下,土壤有机碳矿化在培养前期土壤CO_2产生速率较快,后期逐渐趋于平缓,其速率变化符合对数函数。升温促进了稻田土壤有机碳的矿化,以MOM、HOM和STR处理土壤有机碳矿化总量较高。土壤矿化总量与不同形态碳含量呈显著正相关关系。土壤的Q_(10)值变化在1.01~1.53之间,与土壤微生物代谢商和酶活显著正相关性,与土壤C/N比和Kos呈负相关。
     3、土壤有机氮矿化实验中,初始阶段矿化作用较强,矿化速率最大,有机氮矿化量迅速增加;但随着时间的延续,矿化作用减弱,矿化速率不断下降,矿化量达到最大值后变化平缓。10~30℃范围内,土壤有机氮矿化作用逐渐增强,65%田间持水量比淹水状态更有利于土壤氮素的矿化。长期化肥配施有机肥施用可以促进土壤氮素的矿化作用,使氮矿化量和矿化速率增大。
     综上,化肥配施有机肥对稻田土壤有机碳、氮及其各组分,有机碳、氮的矿化作用,土壤微生物量、活性和群落多样性都有明显促进作用,显著提高土壤碳氮肥力。不同有机肥之间的效果有所差别,秸秆还田措施不及施用猪粪处理,因此合理选择有机肥管理措施,可以提高土壤健康质量,增加土壤有机碳库,对缓解温室效应、发展可持续农业有重要的现实意义。
Soil organic matter,soil microbial biomass,soil microbial community functional diversity,and soil organic matter mineralization affected by the applications of inorganic fertilizers and organic amendments in subtropical paddy soils were investigated.Soil samples were collected from the plough layer of 8 long-term field experiments at Xinhua, Ningxiang,Taojiang,Zhuzhou,Hanshou,Linli,Nanxian,and Wugang counties in Hunan Province,China.The long-term field experiments began in 1986,with the sites receiving the treatments:(1) no fertilizer[CK](2) inorganic NPK fertilizer[NPK](3) medium rate manure along with NPK fertilizer[MOM](4) high rate manure along with NPK fertilizer [HOM](5) rice straw along with NPK fertilizer[STR](6) inorganic NK fertilizer[NK](7) inorganic NP fertilizer[NP].
     Results showed that:
     1.Compared with initial levels,soil total organic C(TOC) in CK treatment increased at all sites,and total N(TN) increased at three sites.Compared with CK,application of NPK alone showed no significant effects on soil TOC and TN.NPK plus manure or straw significantly increased soil TOC and TN content.
     Ratio of C to N of paddy soils were ranged from 9:1~17:1.The different treatments had no significant effects on these values,except the MOM and HOM treatments.
     In comparison with initial levels,long-term plantation altered the soil pH; Application of inorganic fertilizers or organic amendments caused a soil pH decrease, compared with CK.The observed pH changes were due to the acidification of inorganic fertilizer and additional organic amendments to soils.
     2.Compared with CK,application of manure or straw along with inorganic fertilizer significantly increased the contents of soluble organic C(SOC),light fraction organic C (LFOC),readily oxidation organic C(ROOC).The percentages of TOC presented as SOC, LFOC and ROOC were ranged from 0.13%~0.32%,3.8%~17.4%and 49.0%~58.3%, respectively.There was significant difference in these percentages for different treatments. There were highly significant correlations between SOC,LFOC,ROOC and TOC.
     3.Soil organic N was fractionated by acid hydrolysis-distillation method.Total acid hydrolysable N(TAHN) accounted for 64%~92%of the TN in the paddy soils. Compared with CK,application of inorganic fertilizer or organic amendments increased amino acid N(AAN),ammonium N(AN),and amino sugar N(ASN) and decreased hydrolysable unidentified nitrogen(HUN) for most of sites.Several treatments had no significant effects.
     Soil soluble organic N(SON) accounted for 0.4%~0.9%of TN.NPK plus manure or straw significant increased the contents and percentages of SON.SON was closely correlated with the soil organic N fractions.
     4.Soil microbial biomass(MB) C and N were measured by the fumigation-extraction method.Compared with CK,application of inorganic fertilizers alone showed no significant effects on soil MB C and MB N.Application of manure or straw along with inorganic fertilizers also significantly increased soil MB C and MB N contents for all sites.In average,soil MB C represented 2.1%of TOC and MB N accounted for 2.5%of TN.MBC and MBN were closely correlated with the soil TOC and TN contents respectively.The tendency for a reduction in MB C:N ratio in all the treatments compared with CK.
     The soil microbial community functional diversity was detected by BIOLOG system. The Average Well Color Development(AWCD) in BIOLOG plates indicated the ability of carbon utilization of microbial community.All the treatments exhibited the elevation of AWCD during the period of incubation,but the differences among the treatments were obvious.Application of manure along with inorganic fertilizer caused the highest increase of the AWCD while applying straw-incorporation had less affection on the AWCD, which was even lower than the CK treatment.It implicated that long-term fertilization resuked in the variation of the carbon utilization efficiency of soil microbial communities.
     The indices of Shannon,Simpson and McIntosh were calculated to show the richness, dominance and evenness of the functional diversity,while the principal component analysis of substrate reactions reflected the main carbon sources utilized by microbial community.The treatments of manure along with inorganic fertilizer remarkably improved the richness,dominance and evenness of soil microbial community in comparison with CK.The treatment of straw-incorporation induced increase of the dominance,but had no significant effects on the richness and evenness.
     The principal components were extracted from the principal component analysis and their cumulative contribution of variance accounted to 85%~92%.The correlation coefficients between main substrates and PC1 or PC2 indicated that the main carbon sources for soil microbes were carbohydrates and amino acids in all treatments and there were significant differences of carbon substrate utilization patterns in different treatments.
     5.Dynamics of soil organic C and N mineralization affected by different treatments and its relationship with organic C fractions in paddy soils were investigated.
     Mineralization of soil organic C was estimated by using 58-d anaerobic incubation at 30℃.The cumulative amounts of mineralized CO_2 ranged from 448.64~1516.77μg/g and mineralized CH_4 ranged from 15.60~33.34μg/g.Total amounts accounted for 3.59~5.57%of soil TOC.The rates of CO_2 production were higher during the 13-day incubation for different treatments,then decreased and afterwards a little varied.The rates of CH_4 production presented a slowly increasing at first and then rapidly declined to low constant rates.The cumulative released C(CRC) in NPK plus manure or straw treatments were greater than that in NPK treatments.Significant correlations were found between CRC and different organic C fractions.However,the percentages of ROOC,HC,and FC in TOC were positively correlated with the CRC.The correlations of soil organic C fractions with the percentages of CRC in TOC were not significant.
     Mineralization of soil organic C was estimated by using 33-d aerobic incubation under 3 temperature regimes(10℃,20℃,30℃).The rates of CO_2 production were higher during the earlier phase(0~13 d) for different treatments,then decreased and afterwards a little varied.Daily mineralization of soil organic C during incubation accords to relationship of logarithm.While the soil temperature increasing,the amounts of total mineralized C increased for each treatment of each site.The amounts of total mineralized C in NPK plus manure or straw treatments were greater than that in inorganic fertilizers treatments.The correlations of different soil C fractions with total mineralized C were significantly correlated at 10℃,20℃and 30℃.The Q_(10) values of paddy soils for different treatments ranged from 1.01~1.53.Significant correlations were found between qCO_2,enzyme activities and Q_(10),while there were negative correlations between C/N ratios,Kos and Q_(10).
     Mineralization of soil organic C was estimated by using 21-d incubation under 4 temperature regimes(10℃,20℃,30℃,45℃) and 2 water contents(submerged and 65% water-filled pore spaces).Mineralization enhanced gradually with temperature in the range of 10-30℃.Compared with submerged incubation,the condition of 65% water-filled pore spaces was more beneficial to soil N mineralization.
     Mineralization of soil organic N was estimated by using 98-d anaerobic incubation at 30℃.The amounts of net mineralized N(NMN) increased with the prolongation of incubation time.The rates of N mineralization were highest about at the 4th week incubation for different treatments.The rate of mineralization and the ratio of NMN to TN in NPK plus manure or straw treatments are greater than that of inorganic fertilizers treatments.Significant correlations were found between NMN and TN and MBN.
     The data obtained show that the soil organic matter and microbial activities in paddy soils was improved by application of manure along with inorganic fertilizers when compared to inorganic fertilizers alone.It is therefore important that the traditional use of manure should be strongly promoted in order to maintain long-term soil productivity even where inorganic fertilizers are being used to achieve high yields.Not only will this improve the soil organic matter but it will also reduce the rates of inorganic fertilizers required since nutrients will be released from the manures.The incorporation of rice straw is another important way of promoting soil organic matter accumulation,so the importance of straw retention also needs to be stressed.
引文
1.艾绍英,李生秀.不同土壤条件土壤及有机物料的氮素矿化过程.西北农业学报,1995,4(增刊):73-76
    2.陈刚才,甘露,王仕禄,万国江.土壤氮素及其环境效应.地质地球化学,2001,29(1):63-67
    3.陈义,吴春艳,水建国,王家玉.长期施用有机肥对水稻土CO_2释放与固定的影响.中国农业科学,2005,38(12):2468-2473
    4.程励励,文启孝.稻草还田对土壤氮素和水稻产量的影响.土壤,1992,24(5):234-238,243
    5.戴晓艳,须湘成,陈恩凤.不同肥力棕壤和黑土各粒级微团聚体氮素矿化势.沈阳农业大学学报,1990,214(4):327-330
    6.董炳友,高淑英,吕正文.不同施肥措施对连作大豆的产量及土壤pH值的影响.黑龙江八一农垦大学学报.2002,14(4):19-21
    7.杜丽君,金涛,阮雷雷,陈涛,胡荣桂.鄂南红壤几种典型利用方式CO_2的排放及其影响因素.环境科学,2007,28(7):1607-1613
    8.方精云.全球生态学.北京:高等教育出版社,2000
    9.付会芳,李生秀.土壤氮素矿化与土壤供氮能力.旱地土壤氮素矿化两种培养方式之比较.西北农业大学学报,1992a,20(增刊):48-52
    10.付会芳,李生秀.土壤氮素矿化与土壤供氮能力.土壤有机氮组分及其矿化.西北农业大学学报。1992b,20(增刊):63-67
    11.龚伟,胡庭兴,王景燕,宫渊波,冉华.川南天然常绿阔叶林人工更新后枯落物对土壤的影响.林业科学,2007,43:112-119
    12.关松荫.化学农药对土壤脲酶活性抑制作用研究.土壤通报,1992,23:232-233
    13.关松荫.土壤酶活性影响因子的研究—有机肥料对土壤中酶活性及氮磷转化的影响.土壤学报,1989,26(1):72-78.
    14.关松荫.土壤酶及其研究法.北京:农业出版社,1986
    15.郭大勇.黄土高原南部半湿润地区长期施肥对土壤供氮能力影响的研究.西北农林科技大学,2004:32-33
    16.郭金如,林葆.我国肥料研究史话,中国农史,1990,(1)237-239
    17.郭景恒,朴河春,刘启明.碳水化合物在土壤中的分布特征及其环境意义.地质地球化学,2000,28:59-64
    18.郭胜利.黄土早塬农田土壤有机碳、氮的演变与模拟.[博士学位论文].西安:西北农林科技大学图书馆.2001
    19.韩志卿,张电学,陈洪斌,常连生,于玉桥,刘东强,王介元.长期定位施肥小麦-玉米轮 作制度下土壤有机质质量演变规律.河北职业技术师范学院学报,2003,17(4):10-14
    20.韩志卿,张电学,王介元,陈洪斌.长期施肥对土壤有机质氧化稳定性动态变化及其与肥力关系的影响.河北农业大学学报,2000,23(3):31-35
    21.郝黎仁,樊元,郝哲欧等.SPSS实用统计分析.北京:中国水利水电出版社,2003
    22.何才富.酸性紫色土长期定位施钾效应及对土壤肥力的影响.西南农业学报,1996,9(4):46-52
    23.何振立.土壤微生物量及其在养分循环和环境质量评价中的意义.土壤,1997,29(2):61-69
    24.侯晓杰,汪景宽,李世朋.不同施肥处理与地膜覆盖对土壤微生物群落功能多样性的影响.生态学报,2007,27(2):655-661
    25.胡霭堂.植物营养学(下册).北京:北京农业大学出版社,1995
    26.胡田田,李生秀.土壤供氮能力测试方法研究Ⅱ:几种测氮方法的测定值与作物吸氮量的关系.干旱地区农业研究,1993,11(增刊):62-67
    27.黄东迈,朱培立.有机氮各化学组分在土壤中的转化.江苏农业学报,1986,2(2):17-25
    28.解惠光.黑土肥力监测及肥效定位试验研究.中国土壤学会全国土壤肥料长期定位试验学术讲座会议文集,1994:66-88
    29.金绍龄.小麦/玉米带田土壤肥力变化及培肥.西北农业大学学报,1996,24(5):49-54
    30.巨晓棠,李生秀.培养条件对土壤氮素矿化的影响.西北农业学报,1997,6(2):64-67
    31.巨晓棠,李生秀.土壤氮素矿化的温度水分效应.植物营养与肥料学报,1998,4(1):37-42
    32.巨晓棠,刘学军,张福锁.长期施肥对土壤有机氮组成的影响.中国农业科学,2004,37:87-91
    33.李长生,肖向明,Frolking S,B MooreⅢ,W Salas,邱建军,张宇,庄亚辉,王效科,戴昭华,刘纪远,秦小光,廖柏寒,R Sass.中国农田的温室气体排放.第四纪研究,23(5):493-503
    34.李菊梅,李生秀.可矿化氮和各有机氮组分的关系.植物营养与肥料学报,2003,9:158-164
    35.李良漠.土壤硝化作用研究概况.土壤学进展,1984,(5):1-9
    36.李生秀,艾绍英,何华.连续淹水培养条件下土壤氮素的矿化过程.西北农业大学学报,1999,27(1):1-5
    37.李世清,卜彤英,李生秀.石灰性土壤中NH_4~+-N的硝化与NH_4~+-N的粘土矿物固定.干旱地区农业研究,1993,11(增刊):99-107
    38.李世清,李生秀,李东方.长期施肥对半干旱农田土壤氨基酸的影响.中国农业科学,2002,35(1):63-67
    39.李世清,李生秀,李凤民.石灰性土壤氮素的矿化和硝化作用.兰州大学学报(自然科学版),2000,36(1):98-104
    40.李世清,李生秀,邵明安,郭大勇.半干旱农田生态系统长期施肥对土壤有机氮组分和徽生物体氮的影响.中国农业科学,2004,37:859-864
    41.李世清,李生秀.有机物料在维持土壤微生物体氮库中的作用.生态学报,2001,21(1):136-142
    42.李学垣.土壤化学及实验指导.北京:中国农业出版社,1997
    43.李忠佩,张桃林,陈碧云.可溶性有机碳的含量动态及其与土壤有机碳矿化的关系.土壤学报,2004,41(4):544-552
    44.李忠佩.红壤丘陵区土地利用方式变更后土壤有机碳动态变化的模拟.应用生态学报,1998,9(4):365-370
    45.林葆,林继雄,李家康.长期施肥的作物产量和土壤肥力变化.北京:中国农业科技出版社,1996,65-79
    46.林心雄,文启孝.秸秆利用对土壤肥力的影响.中国土壤科学现状与展望,南京:江苏科学技术出版社,1991
    47.林心雄.中国土壤有机质状况及其管理.见:沈善敏主编.中国土壤肥力.北京:中国农业出版社,1998:112-159
    48.刘宝东.实验室培养条件下森林暗棕壤的氮矿化特征.东北林业大学,2006
    49.刘守龙,肖和艾,童成立,吴金水.亚热带稻田土壤微生物生物量碳、氮、磷状况及其对施肥的反映特点.农业现代化研究,2003,24(4):278-282
    50.刘小虎,邹德乙.长期轮作施肥对棕壤腐殖质动态变化的影响.土壤通报,1999,30(2):68-70
    51.刘杏兰.有机—无机肥配施的增产效应及对土壤肥力影响的定位研究.土壤学报,1996,2:138-147
    52.刘育红,吕军.施外源氮对稻田土壤氮素矿化的影响.青海大学学报,2005,23(2):43-46
    53.刘忠翰,彭江燕.化肥氮素在水稻田中迁移与淋失的模拟研究.农村生态环境,2000,(2):10-14
    54.鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000:152-156
    55.陆发熹.珠江三角洲土壤.北京.:中国环境科学出版社,1998
    56.马克平,刘玉明.生物群落多样性的测度方法Ⅰ.a多样性的测度方法(下).生物多样性,1994,2(4):231-239
    57.马毅杰.水稻土物质变化与生态环境.科学出版社,1999
    58.倪进治,徐建民,谢正苗.土壤轻组有机质.环境污染治理技术与设备,2000,1(2):58-64
    59.丘华昌.土壤学.北京:中国农业科技出版社,1995
    60.申晓辉.吉林省主要早田土壤有机氮组分的研究.吉林农业大学学报,1990,12(3):43-50
    61.沈宏,曹志洪,徐本生,杨建堂,王文亮,霍晓婷.施肥对不同农田土壤微生物活性的影响.农村生态环境,1997,13(4):29-35,54
    62.沈宏,曹志洪,徐本生.玉米生长期间土壤微生物量与土壤酶活变化及其相关性研究.应用生态学报,1999a,10(4):471-474
    63.沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态效应.生态学杂志,1999b,18(3):32-38
    64.沈其荣,史瑞和.不同土壤有机氮的化学组成及其有效性的研究.土壤通报,1990,21(2):8-11
    65.沈润平,曾新民.稻田土壤有机质氧化稳定性与土壤肥力关系的研究.江西农业大学学报,1997,1:1-4
    66.宋琦.我国几种土壤的有机氮构成和性质的研究.土壤学报,1988,25(1):95.110
    67.苏德纯,杨奋翩,张福锁.北京郊区蔬菜保护地土壤磷空间及形态分布特征.中国蔬菜,1999,4:7-11
    68.孙波,赵其国,张桃林,俞慎.土壤质量与持续环境Ⅲ.土壤质量评价的生物学指标.土壤,1997,29(5):225-234
    69.孙成权,高峰,曲建升.全球气候变化的新认识—IPCC第三次气候变化评价报告概览.自然杂志,2002,24(2):114-122
    70.谭周进,周卫军,张杨珠.不同施肥制度对稻田土壤微生物的影响研究.植物营养与肥料学报,2007,13(3):430-435
    71.汤树德.秸秆还田原理及其应用.北京:中国农业大学出版社,1993,47-53
    72.田茂洁.土壤氮素矿化影响因子研究进展.西华师范大学学报,2004,25(3):298-303
    73.田秀平,姬景红,韩晓日.长期施肥对白浆土有机质含量及其氧化稳定性的影响.黑龙江八一农垦大学学报,2004,16(2):12-14
    74.王百群,余存祖,戴鸣钧.水分淋洗下土壤各形态氮在剖面中的分布与移动.1994,1(5):6-11
    75.王岩,蔡大同,史瑞和.肥料残留氮的有效性及其与形态分布的关系.土壤学报,1993,30(1):19-25
    76.魏朝富,高明,谢得体.有机肥对紫色水稻土水稳性团聚体的影响.土壤通报,1995,26(3):114-116
    77.文启孝,林心雄.红壤地区土壤有机质的含量和特征.见:李庆逵主编.中国红壤.北京:科学出版社,1983:119-127
    78.文启孝.土壤氮素的含量和形态.见:朱兆良,文启孝主编.中国土壤氮素.南京:江苏科学技术出版社,1992:3-26
    79.文启孝.土壤有机质研究方法.北京:农业出版社,1984:19-38
    80.吴建国,艾丽,朱高,田自强,苌伟.祁连山北坡云杉林和草甸土壤有机碳矿化及其影响因素.草地学报,200,15(1):20-27
    81.吴金水.土壤有机质及其周转动力学.见:何电源主编,中国南方土壤肥力与栽培植物施肥,北京科学出版社,1994,28-62
    82.吴景贵,王明辉,刘洁.非腐解有机物培肥对水田土壤理化性质的影响.吉林农业大学学 报,1998,20(1):49-54
    83.肖玉,谢高地,鲁春霞,丁贤忠,吕耀.施肥对稻田生态系统气体调节功能及其价值的影响.植物生态学报,2005,29(4):577-583
    84.熊明彪,雷孝章,田应兵,宋光煜,曹叔尤.长期施肥对紫色土酶活的影响,四川大学学报(工程科学版),2007,35(4):60-63,99
    85.徐华.土壤性质和冬季水分对水稻生长期CH_4排放的影响及机理.中国科学院博士研究生学位论文,2001
    86.徐建民,袁可能.我国地带性土壤中土壤有机质氧化稳定性的研究.土壤通报,1995,26(1):1-3
    87.徐明岗.土壤活性有机碳研究进展.土壤肥料,2000,63-73
    88.徐明岗.中国土壤肥力演变.北京:中国农业科学技术出版社,2006
    89.徐阳春,沈其荣,茆泽圣.长期施用有机肥对土壤及不同粒级中酸解有机氮含量与分配的影响.中国农业科学,2002,35:403-409
    90.许春霞,吴守仁.填土有机氮的构成及其在施肥条件下的变化.土壤通报,1991,22(2):54-56
    91.许月蓉.不同施肥条件下潮土中微生物量及其活性.土壤学报,1995,32(3):349-352
    92.杨邦俊,向世群.有机肥料对紫色水稻土磷酸酶活性及磷素转化作用的影响.西南农业大学学报,1989,7(2):108-110
    93.杨靖一.利用最优回归设计对啤酒大麦最佳施肥配方的研究.土壤通报,1990,(5):38-41
    94.杨志谦,王维敏.秸秆还田后碳、氮在土壤中的积累与释放.土壤肥料,1991,(5):43-46
    95.姚喜源.秸秆还田对农田生态系统及作物生长的影响.干旱地区农业研究,1989,(1):5-9
    96.殷士学.黄土旱塬降水向土壤输入的氮素.干旱地区农业研究,1993,S1
    97.余晓鹤,朱培立.土壤表层管理对稻田土壤氮矿化势、固氮强度及铵态氮的影响.中国农业科学,1991,24(1):73-79
    98.余也非.我国古代稻、麦产量变化情况.重庆师院学报,1980,(3):19-30
    99.袁可能,张友全.土壤腐殖质氧化稳定性的研究.浙江农业科学,1964,7;345-349
    100.裒可能.土壤有机矿质复合体中腐殖质氧化稳定性的初步研究.土壤学报,1963,11(3):286-292
    101.张春霞,郝明德,魏孝荣.黑垆土长期轮作培肥土壤有机质氧化稳定性的研究.土壤肥料,2004,(3)10-12
    102.张夫道.长期施肥条件下土壤养分的动态和平衡:Ⅰ.对土壤腐殖质积累及其品质的影响.植物营养与肥料学报,1995,(3-4):10-21
    103.张付申.长期施肥条件下(?)土和垆土有机质氧化稳定态研究.土壤肥料,1996,(6)32-34
    104.张继宏,颜丽.见:窦森主编.农业持续发展的土壤培肥研究.沈阳:东北大学出版社,1995
    105.张金波,宋长春,杨文燕.不同土地利用下土壤呼吸温度敏感性差异及影响因素分析.环境科学学报,2005,25(11):1537-1542
    106.张卫峰,季玥秀,马骥,王雁峰,马文奇,张福锁.中国化肥消费需求影响因素及走势分析—Ⅰ化肥供应.资源科学,2007,29(6):162-169
    107.张逸飞,钟文辉,李忠佩,蔡祖聪.长期不同施肥处理对红壤水稻土酶活性及微生物群落功能多样性的影响.生态与农村环境学报,2006,22(4):39-44
    108.郑华,欧阳志云,王效科,方治国,赵同谦,苗鸿.不同森林恢复类型对土壤微生物群落的影响.应用生态学报,2004,15(11):2019-2024
    109.周礼恺.土壤酶学.北京,科学出版社,1987
    110.朱海平,姚槐应,张勇勇,吴愉萍.不同培肥管理措施对土壤微生物生态特征的影响.土壤通报,2003,34(2):140-142
    111.朱洪勋.不同施肥处理对作物产量及土体NO_3~--N累积的长期定位试验.土壤肥料,1994,67-85
    112.朱兆良.中国土壤的氮素肥力与农业中的氮素管理.见:沈善敏主编.中国土壤肥力.北京:中国农业出版社,1998:160-211
    113.朱兆良.合理施用化肥充分利用有机肥 发展环境友好的施肥体系.中国科学院院刊,2003,(2):89-93
    114.朱兆良.土壤氮素.见:熊毅,李庆逵主编,中国土壤.科学出版社,1988.464-482
    115.朱兆良.土壤氮素矿化和土壤氮素有效性指标的评价.见:朱兆良,文启孝主编,中国土壤氮素.南京:江苏科学技术出版社,1992,37-59
    116.朱兆良.土壤中氮素的转化和移动的研究近况.土壤学进展,1979,(2):14-160
    117.朱志建,姜培坤,徐秋芳.不同森林植被下土壤微生物量碳和易氧化态碳的比较.林业科学研究,2006,19(4):523-526
    118.卓苏能,文启孝,杜丽娟.胡敏酸中非酸解性氮的形态.科学通报,1992,6-15
    119.邹建文,黄耀,宗良纲,王跃思,Ronald L S.不同种类有机肥施用对稻田CH_4和N_2O排放的综合影响.环境科学,2003,24(4):7-12
    120.Aber J D.Nitrogen cycling and nitrogen saturation in temperate forest ecosystems.Trends Ecol Evol,1992,7:220-223
    121.Ahmad Z,Yahiro Y,Kai H,Harada T.Factors affecting immobilization and release of nitrogen in soil and chemical characteristics of the nitrogen newly immobilization.Soil Sci Plant Nutr,1973,19:287-298
    122.Alexander M.Introduction to Soil Microbiology.New York:John Wiley and Sons,1977.68-72
    123.Allison F E.Soil organic matter and its role in crop produotion:soil organic matter formation.Elsevier Sci Pub Corn Amsterdam,1973.97-119
    124.Amann R I,Ludwig W,Schleifer K H.Phylogenetic identification and in situ detection of individual microbial cells without cultivation.Microbiol Rev,1995,59:143-169
    125.Anderson G.Nucleic acid derivatives in soil.Nature,1957,180:287-288
    126.Anderson T H and Domsch K H.Ratios of microbial biomass to total organic carbon in arable soils.Soil Biol Biochem,1989,21:471-479
    127.Appel T,Mengel K.Nitrogen fraction in sandy soils in relation to plant nitrogen uptake and organic matter incorporation.Soil Biol Biochem,1993,25:685-691
    128.Approach A Q.Functional diversity of microbial communities:a quantitative approach.Soil Bioi Biochem,1996,26:1101-1108
    129.Aulakh M S,Doran J W,Waiters D T,Power J F.Legume residue and soil water effects on denitrification in soils of different textures.Soil Biol Biochem,1991,23:1161-1167
    130.Beare M H,Coleman D C,Crossley D A,Hendrix P F,Odum E P.A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling.Plant and Soil,1995,170:5-22
    131.Bernhard-Reversat F.Soil nitrogen mineralization under a Eucatyptus plantation and a natural Acacia forest in Senegal.For Ecol Manage,1988,23:233-244
    132.Biederbcck V O,Janzen,H H,Campbell C A,Zentner R P.Labile soil organic matter as influenced by cropping practices in an arid environment.Soil Biol Biochem,1994,26:1647-1656
    133.Blair.Soil C fractions based on their degree of oxidation and the development of a C management index for agricultural systems.Aust J Agri Res,1995,46:1459-1466
    134.Bochner B."Breath prints" at the microbial level.ASM News,1984,55:536-539
    135.Bolan N S,Baskaran S,Thiagarajan S.An evaluation of the measure method dissolved organic carbon in soils,manures,sludge,and stream water.Commun Soil Sci Plant Anal,1996,27:2732-2737
    136.Bonde T A,Rosswall T.Seasonal variation of potentially mincralizable nitrogen in four cropping systems.Soil Sci Soc Am J,1988,51:1508-1514
    137.Bossio D A,Scow K M,Gunapala N,Graham K J.Determinants of soil microbial communities:effects of agricultural management,season,and soil type on phospholipid fatty acid profiles.Microbial Ecology,1998a,36:1-12
    138.Bossio D A,Scow K M.Impact of carbon and flooding on soil microbial communities:phospholipid fatty acid profiles and substrate utilization patterns.Microbial Ecology,1998b,35:265-278
    139.Bremer E,Janzen H H,Johnston A M.Sensitivity of total,light fraction and mineralizable organic matter to management practices in a Lethbridge soil.Can J Soil Sci,1994,74(2):131-138
    140.Bremner J M,Shaw K.Studies on the estimation and decomposition of amino sugars in soil.J Agr Sci,1954,44:152-159
    141. Bremner J M. Amino-acids in soil. Nature, 1950. 165-367
    142. Bremner J M. Determination of fixed ammonium in soil. J Agri Sci, 1959, 52: 147-160
    143. Bremner J M. Nitrogeneous compounds. McLaren and Petersen eds., Soil Biochemistry, Marcel Dekker, Inc, New York. 1967. 26-30
    144. Bremner J M. Organic forms of soil nitrogen. In: Black C A. ed., Methods of Soil Analysis. Agronomy 9. Madison: American Society of Agronomy Incorporation, 1965:1148-1178
    145. Bremner J M. Study on soil organic matter. I: The chemical nature of soil organic nitrogen. J Agri Sci, 1949,39:183-193
    146. Brookes P C, Landman A, Pruden G, Jenkinson D S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem, 1985, 17: 837-842
    147. Burgangulova M N. Nucleic acids of soils. Biol Nuclein Obmen Test, 1959, 177-182
    148. Camargo F A de O, Gianello C, Tedesco M J, Riboldi J, Meurer E J, Bissani C A. Comparative study of five hydrolytic methods in the determination of soil organic nitrogen compounds. Commun Soil Sci Plant Anal, 1997, 28: 15-16,1303-1309
    149. Cambardelfa C A, Elliott E T. Paniculate soil organic matter across a grassland cultivation sequence. Soil Sci Soc Am J, 1992, 56: 776-783
    150. Campbell C A, Schnitzer M, Stewart J W B, Biederbeck V O, Selles F. Effect of manure and P fertilizer on properties of a black chernozem in southern Saskatchewan. Can J Soil Sci, 1986, 66: 601-613
    151.Campell C A, Souster W. Loss of organic matter and potentially mineralizable nitrogen from Saskatchewan soils due to cropping. Can J Soil Sci, 1982, 62: 651-656 .
    152. Campell C A, Zentner R P, Janzen H H, Bowren K E. Crop rotation studies on the Canadian prairies. Research Branch, Can Gov Publ Cent, Supply and Service Canada. Ottawa, 1990. 103-128
    153. Carter M R. Microbial biomass as an index for tillage induced changes in soil biological properties. Soil Till Res, 1986, 7: 29-40
    154. Chantigny M H, Angers D A, Prevost D, Simard R R, Chalifour Francois-P. 1999. Dynamics of soluble organic C and C mineralization in cultivated soils with varying N fertilization. Soil Biol Biochem, 31: 543-550
    155. Chen C R, Xu Z H. Soil carbon and nitrogen pools and microbial properties in a 6-year-old slash pine plantation of subtropical Australia: impacts of harvest residue management. For Ecol Manage, 2005,206: 237-247
    156. Christensen B T. Physical fractionation of soil and structural and functional complexity in organic matter turnover, Euro J Soil Sci, 2001, 52: 345-353
    157.Currie W S,Aber J D.Modeling leaching as a decomposition process in humid mountain forest.Ecology,1996,78:1844-1860
    158.Dalai R C,Mayer R J.Long-term trends in fertility of soils under coninuous cultivation and cereal cropping in southern Queensland.Ⅳ.Loss of organic carbon from different density fractions.Austr J Soil Res,1986,24:293-300
    159.Dalal R C,Mayer R J.Long-term trends in fertility of soils under cominuous cultivation and cereal cropping in southern Queensland Ⅵ.Loss of total nitrogen from different particle-size and density fractions.Austr J Soil Res,1987,25:83-93
    160.Degens B P,Harris J A.Development of physiological approach to measuremem the catabolic diversity of soil microbial communities.Soil Biol Biochem,1997,29(9/10):1309-1320
    161.Degens B P.Microbial functional diversity can be influenced by the addition of simple organic substrates to soil.Soil Biol Biochem,1998,30(14):1981-1988
    162.Dick R P.A review:long-term effects of agricultural systems on soil biochemical and microbial parameters.Agr Ecosyst Environ,1992,40:25-36
    163.Doran J W.Microbial biomass and mineralizable nitrogen distributions in no-tillage and plowed soils.Biol Fertil Soils,1987,5:68-75
    164.Fauci M F,Dick R P.Soil microbial dynamics:short- and long-term effects of organic and inorganic nitrogen.Soil Sci Soc Am J,1994,58:801-808.
    165.Findlay R.The use of phospholipid fatty acids to determine microbial community structure.In:Akkermanns,A D L,Elsas,J D,van,B F eds,Molecular microbial ecology manual,Kluwer,Dordrecht,section 4,1996.1-17
    166.Fliessbach A.Microbial biornass and size-density fractions differ between soils of organic and conventional agricultural systems.Soil Biol Biochem,2000,32:757-768
    167.Ford G W and Greenland D J.The dynamic of partly humified organic matter in some arable soils.In:Holmes J W.ed.Trans.lnt Congr Soil Sci 9th,Adelaide,Vol 2.Elsevier,NY,1968:403-410
    168.Franco W,Frank R,Martin H,Andreas F.Community structures and substrate utilization of bacteria in soils from organic and conventional farming systems of the DOK long-term field experiment.Appl Soil Ecol,2006,33:294-307
    169.Fransluebbers A J,Horns F M,Zuberer D A.Soil organic carbon microbial biomass,and mineralizable carbon and nitrogen in sorghum.Soil Sci Soc Am J,1995,59:460-466
    170.Franzluebbers A J,Haney R L,Honeycutt C W,Arshad M A,Schomberg H H,Hons F M.Climatic influences on active fractions of soil organic matter.Soil Biol Biochem,2002,33(7-8):1103-1111
    171.Garcia C,Hernandez T,Roldan A,Martin A.Effect of plant cover decline on chemical and microbiological parameters under Mediterranean climate.Soil Biol Biochem,2002,34:635-642
    172. Garica F O, Rice C W. Microbial biomass dynamics in tall grass prairie. Soil Sci Soc Am J, 1994, 58: 816-823
    173. Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microb, 1991, 57: 2351-2359
    174. Giller K E, Beare M H, Lavelle P, Izac A -M N, Swift M J. Agricultural intensification, soil biodiversity and agroecosystem function. Appl Soil Ecol, 1997, 6: 3-16
    175. Goodfroend W L. Microbial community patterns of potential substrate utilization: a comparison of salt marsh, dune, and seawater-irrigated agronomic systems. Soil Biol Biochem, 1998, 30(8/9): 1169-1176
    176. Goyal S, Mishra M M, Hooda I S, Singh R. Organic matter-microbial biomass relationships in field experiments under tropical conditions: effects of inorganic fertilization and organic amendments. Soil Biol Biochem, 1992, 24: 1081-1084
    177. Grayston S J, Grifith G S, Mawdsley J L, Campbell C D, Bardgett R D. Accounting for Variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol Biochem, 2001, 33: 533-551
    178. Greenfield L G. The nature of the organic nitrogen of soils. Plant and Soil, 1972, 36: 191-198
    179. Gregorich E G, Carter M R, Angers D A, Monreal C M, Ellen B H. Towards a minimum data set to assess soil organic matter quality in agriculture soils. Can J Soil Sci, 1994, 74: 367-385
    180. Gregorich E G, Ellen B H, Drury C F, Liang B C. Fertilization effect on soil organic matter turnover and corn residue C storage. Soil Sci Soc Am J, 1996, 60:472-476
    181. Gregorich E G, Ellert B H, Monreal C M. Turnover of soil organic matter and storage of corn residue carbon estimated from natural ~(13)C abundance. Can J Soi Sci, 1995, 75: 161-167
    182. Griffiths S M, Sowden F J, Schnitzer M. The alkaline hydrolysis of acid-resistant soil and humic residues. Soil Biol Biochem, 1976, 8: 529-531
    183. Guo L P and Lin E D. Carbon sink in cropland soils and the emission of greenhouse gases from paddy soils: a review of work in China. Chemosphere, Glob Change Sci, 2001, 3:413-418
    184. Gupta V V, Germida J J. Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation. Soil Biol Biochem, 1988, 20: 777-786
    185.Haack S K, Garchow H, Klug M J, Forney L J. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns. Appl Environ Microb, 1995,61:1458-1468
    186. Hadas A, Feigin A, Feigenbaum S, Portnoy R. Nitrogen mineralization in the field at various depths. Euro J Soil Sci, 1989,40(1): 131-137
    187. Haynes R J. Labile organic matter as an indicator of organic matter quality in arable and pastoral soil in New Zealand.Soil Biol Biochem,2000,32:211-219
    188.Hill G T,Mitkowsld N A,Aldrich-Wolfe L,Emele L R,Jurkonie D D,Ficke A,Maldonado-Ramirez S,Lynch S T,Nelson E B.Methods for assessing the composition and diversity of soil microbial communities.Appl Soil Ecol,2000,15:25-36
    189.Hu R G,Hatano R,Kusa K,Sawamoto T.Soil respiration and net ecosystem production in an onion field in central Hokkaido,Japan.Soil Sci Plant Nutri,2003,50(1):27-33
    190.Huggins D R,Fuchs D J.Long-term N management effects on corn yield and soil C of Aquic Haplustoll in Minnesota,Soil Organic Matter in Temperature Agroecosystems.Boca Raton(FL):CRC Press,1997.121-139
    191.Imam H,Hutchinson T C,Reber H H.Effects of heavy metal stress on the metabolic quotient of the soil micro flora.Soil Biol Biochem,1996,28:691-694
    192.Imam H,Parkinson D,Domsch K H.Influence of macroclimate of soil microbial biomass.Soil Biol Biochem,1989,21(2):211-221
    193.Imam H.Development in Soil Microbiology since the Mid 1960s.Geoderma,2001,100(4):389-402
    194.IPCC.Climate change 2001:the scientific basis.Contribution of working group 1 to the Second assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press.Cambridge,2001.g81-883
    195.IPCC.Technical Guidelines for Assessing Climate Change Impacts and Adaptations.1995
    196.Islam M M.Effect of organic residue amendment on mineralization of nitrogen in flooded rice soils under laboratory conditions.Commun Soil Sci Plant Anal,1998,29(7&8):971-981
    197.Janzen H H,Campbell C A,Brandt S A,Lafond G P,Towrtley-Smith L.Light fraction organic matter in soils from long-term crop rotations.Soil Sci Soc Am J,1992,56:1799-1806
    198.Janzen H H.Soil organic matter characteristics after long-term cropping to various spring wheat rotations.Can J Soil Sci,1987,67:845-856
    199.Jenkinson D S,Ladd J N.Microbial biomass in soil:measurement and turnover.In:Paul E A and Ladd J N ed.Soil biochemistry,Vol 5,Mercel,New York,1981:415-471
    200.Jenkinson D S,Parry L N.The nitrogen cycle in the Broadbalk wheat experiment,a model for the turnover of nitrogen through the soil microbial biomass.Soil Biol Biochem,1989,21:535-541
    201.Jenkinson D S.In:Wild A,ed.,Soil conditions and plant growth.Harlow:Longman,1988:564-607
    202.Jenkinson D S.The turnover of organic carbon and nitrogen in soil.In:Philo Trans R Soc London B,1990,329:361-368
    203.Johnsen K,Jacobsen C S,Torsvik V.A review:Pesticide effects on bacterial diversity in agricultural soils.Biol Fertil Soils,2001,33:443-453
    204. Johnson M G Levine E R, Kern J S. Soil Organic Matter: Distribution. Genesis and management it Reduce Greenhouse Gas Emissions. Water Air and Soil Pollution, 1995, 82: 593-615
    205. Keeney D R. Nitrogen-availability indices. In: Methods of soil analysis (Paga A L ed., part 2. Am Soc of Agro, 1982,711-733
    206. Keeny D R, Bremner J M. Characterization of mineralizable nitrogen in soils. Soil Sci Soc Am Proc, 1966,30:714-718
    207. Keeny D R, Bremner J M. Effects of cultivation on the nitrogen distribution in soils. Soil Sci Soc Am Proc, 1964,28:653-656
    208. Khan S V. Nitrogen fractions in a gray wooded soil as influenced by long-term cropping systems and fertilizers. Can J Soil Sci, 1971, 51: 431-437
    209. Knight B Y, McGrath S Y, Chaudri A M. Biomass carbon measurement and substrate utilization patterns of microbial populations from soils amended with cadmium, copper, or zinc. Appl and Environ Microb, 1997, 63(1): 9-43
    210. Kushwaha C P, Tripathi S K, Singh K P. Variations in soil microbial biomass and N availability due to residue and tillage management in dryland rice agroecosystem. Soil Till Res, 2000, 56: 153-166
    211. Ladd J N and Russell J S. Soil nitrogen. In: Soils: An Australian viewpoint. Academic Press, London, 1983.589-607
    212. Lefroy R D B, Blaie G J. Changes in soil organic matter with cropping as measured by organic carbon fractions and ~(13)C natural isotope abundance. Plant and Soil, 1993, 155(156): 399-402
    213. Lefroy R D B, Blair G J, Strong W M. Changes in soil organic mater with cropping as measured by organic C fractions and ~(13)C natural isotope abundance. Plant and Soil, 1993, 156: 399-402
    214. Li C S. Modeling trace gas emission from agricultural ecosystems. Nutr Cyc1 Agroecosyst, 2000, 58: 259-276
    215. Lin Q M, Brookes P C. An evaluation of the substrate-induced respiration method. Soil Biol Biochem, 1999, 31:1969-1983
    216. Lovell R D, Hatch D J. Stimulation of microbial activity following spring applications of nitrogen. Biol Fertil Soils, 1995, 26(1): 28-30
    217. Luo Y, Wan S, Hui D, Wallace L L. Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 2001, 413: 622-625
    218. Lynch J M, Panting L M. Variations in the size of the soil biomass. Soil Biol Biochem, 1980, 12: 547-550
    219. MacDonald N W, Randlett D L, Donald Z R. Soil warming and carbon loss from a lake states Spodosol. Soil Sci Soc Am J, 1999, 63: 211-218
    220. Marumoto T J, Domsch K H. Mineralization of nutrients from soil microbial biomass. Soil Biol Biochem,1982,14:469-475
    221.McGill W B.Review and classification often soil organic matter(SOM) models.In:Powlson D S,Smith P,Smith J U,eds.,Evaluation of Soil Organic Matter Models.Berlin,Heidelberg:Spinger-Verlag,1996.111-132
    222.Oades J M,Ladd J N.Biochemical properties:carbon and nitrogen metabolism.In:Russell J S,Greacen E L,ed.,Soil Factors in Crop Production Semi-arid Environment.University of Queensland Press.St Lucia,1977,127-160
    223.Pankhurst C E,Hawke B G,McDonald H J,Kirkby C A,Buckerfield J C,Michelsen P,O'Brien,K A,Gupta V V S R,Doube B M.Evaluation of Soil Biological Properties as Potential Bioindicators of Soil Health.Aust J Exp Agric,1995 35(7):1015-1028
    224.Park J H,Kalbitz K,Matzner E.Resource control on the production of dissolved organic carbon and nitrogen in a deciduous forest floor.Soil Biol Biochem,2002,34(6):813-822
    225.Paul E A,Clark F E.Soil microbiology and biochemistry,Academic Press Inc.New York.London,1989.
    226.Paul E A,Schmidt E L.Extraction of free amino acids from soil.Soil Sci Soc Am Proc,1960,24:195-198
    227.Paul E A,Schmidt E L.Formation of free amino acids in rhizosphere and nonrhizosphere soil.Soil Sci Soc Am Proc,1961,25:359-362
    228.Paul E A,Van Veen J A.The use of tracers to determine the dynamic nature of organic matter,11th Intern Cong of Soil Sci,1978,3:61-102
    229.Paustian K,Patton W J,Persson J.Modelling soil organic matter in organic-amended and nitrogen fertilized long-term plots.Soil Sci Soc Am J,1992,56:476-488
    230.Perrot K W,Sarachandra S U.Nutrient and organic matter levels in a range of New Zealand soils under established pasture.N Z J Agric Res,1987,30:249-259
    231.Plymale A E,Boomer R J,Logan T J.Relative nitrogen mineralization and nitrification in soils of two contrasting hardwood forests:effects of site microclimate initial soils chemistry.For Ecol Manage,1987,21(1):21-36
    232.Porter L K,Stewart B A,Haas H J.Effects of long-term cropping on hydr01ysable organic nitrogen fraction in some Great Plain soils.Soil Sci Soc Am Proc,1964,28:368-370
    233.Post W M,Emannuel W R,Zinke P J,Stangenberger A G.Soil carbon pools and world life zones.Nature,1982,298:156-159
    234.Powlson D S,Brookes P C.Christensen B J.Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation.Soil Biol Biochem,1987,19:159-164
    235.Powlson D S,Jenkinson D S.A comparison of the organic matter,biomass,adenosine triphosphate and mineralzable nitrogen contents of ploughed and direct-drilled soils. J Agri Sci, 1981,97:713-721
    236. Powlson D S. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol Biochem, 1987, 19: 159-164
    237. Powlson D S. The effects of biocidal treatment on metabolism in soil: Gramma irradiation, autoclaving, air-drying and fumigation. Soil Biol Biochem, 1976, 16: 459-464
    238. Preston-Mafham J, Boddy L, Randerson P F. Analysis of microbial community functional diversity using sole2carbon2source utilization profiles 2a critique. FEMS Microb Ecol, 2002, 42: 1-14
    239. Rice C W, Sieraega P E, Tiedje J M, Sierzega P E, Jacobs L W. Simulated denitrification in them icroenvironment of a biodegradable organic water injected into soil. Soil Sci Soc Am J. 1988, 52: 102-108
    240. Rovira P, Vallejo V R. Organic carbon and nitrogen mineralization under mediterranean climate conditions: the effects of in incubation depth. Soil Boil Biochem, 1997, 29(9/10): 1509-1520
    241. Saffigna P G. Influence of sorghum residues and tillage on soil organic matter and soil microbial biomass in an Australian veritsol. Soil Biol Biochem, 1989, 21: 754-766
    242. Schnitzer M, Spiteller M. The chemistry of the "unknown" nitrogen Trans. 13~(th) Congr 1SSS, 1986, 2: 473-474
    243. Schnurer J, Clarholm M, Rosswall T. Microbial biomass and activity in an agricultural soil with different organic matter contents. Soil Biol Biochem, 1985,17: 611-618
    244. Shen S H, Pruden G, Jenkinson D S. Mineralizatiion and immobillization of nitrogen in fumigated soil and the measurement of microbial biomass nitrogen. Soil Biol Biochem, 1983,16: 437-444
    245. Shin-ichi Ono, 1991, Effects of flooding and liming on the promotion of mineralization of soil organic nitrogen. Soil Sci Plant Nutr, 37(3): 427-433
    246. Singh K A. Golden timothy grass under integrated nutrient management on an acid Inceptisol under humid sub-tropical climate. Tropical-Agriculture, 1999, 76:104-108
    247. Six J, Paustian K, Elliott E T. Soil Structure and organic matter: I. Distribution of Aggregate-Size Classes and Aggregate-Associated Carbon. Soil Sci Soc Am J, 2000, 64: 681-689
    248. Smith J L, Paul E A. The significance of soil microbial biomass estimations. VS-Jean-Marc Bollag and Gstotxky, eds., Marcel Deeker INC, Newyork, USA, soil Biochemistry, 1991, 357-396
    249. Sonergaard M, Middelboe M. A cross-system analysis of labile dissolved organic carbon. Mar Ecol Progr Ser, 1995, 118: 283-294
    250. Sorensen L H. Organic matter and microbial biomass in a soil incubated in the field for 20 years with ~(14)C-labelled barley straw. Soil Biol Biochem, 1987,19: 39-42
    251.Sorensen L H.Organic matter and microbial biomass in a soil incubated in the field for 20 years with ~(14)C-labelled barley straw.Soil Biol Biochem,1987,19:39-42
    252.Sowden F L.Investigation on the amounts of hexosamines found in various soil and methods for their determination.Soil Sci,1959,88:138-143
    253.Sparling G P.Soil microbial biomass activity and nutrient cycling as indicators of soil health.In:Pankhurst C E,eds.,Biological indicators of Soil Health.CAB International,Wallingford,1997.97-119
    254.Stanford G,Smith S J.Nitrogen mineralization potential of soils.Soil Sci Soc Amer Proc,1972,36:465-472
    255.Stevensen F J.Carbon-Nitrogen relationship in soil.Soil Sci,1959,88:201-207
    256.Stevenson F J.Distribution of the forms of nitrogen in some soil profiles.Soil Sci Soc Am Proc,1957,21:283-287
    257.Stevenson F J.Isolation and identification of some amino compounds in soils.Soil Sci Soc Am Proc,1956,20:201-204
    258.Stevenson F J.Organic forms of soil nitrogen.In:Stevenson F J,ed.,Nitrogen in Agricultural Soil,Amer Soc Agron,Madison,Wisconsin,1982.67-122
    259.Strickland T C,Sollins P.Improved method for separation light-fraction and heavy fraction organic material from soil,Soil Sci Soc Am J,1987,51:1390-1393
    260.Suzuki M,Kamekawa K,Sekiya S.Effect of continuous application of organic or inorganic fertilizer for sixty years on soil fertility and rice yield in paddy field.Transactions 14~(th)International Congress of Soil Science,Kyoto,Japan,1990.14-19
    261.Theng B K G,Orchard V A.Interactions of clays with microorganisms and bacterial survival in soil:A physicochemical perspective.In:Huang P M,ed.,Environmental Impact of Soil Component Interactions,Vol.Ⅱ.CRC Lewis Publishers,Boca Raton,FL,1995.123-143
    262.Thurman E M.Organic geochemistry of natural water.Soil Biol Biochern,1985,7:389-394
    263.Tipping E,Woof C,Rigg E,Harrison A F,Ineson P,Taylor K,Benham D,Poskitt J,Rowland A P,Bol R,Harkness D D.Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils,investigated by a field manipulation experiment.Environmental International,1999,25(1):83-95
    264.Van Veen J A,Ladd J H,Frissel M J.Modeling C and N turnover through the microbial biomass in soil.Plant and Soil,1984,76:257-274
    265.Van Veen J A,Ladd J N,Amato M.Turnover of carbon and nitrogen through the microbial biomass in a sandy loan and a clay soil incubated with[~(14)C(U)]glucose and[~(15)N](NH_4)~2SO_4under different moisture regimes.Soil Biol Biochem,1985,17:747-756
    266.Wang T S C,Yang T K,Cheng S Y.Amino acid in subtropical soil hydrolysates.Soil Sci,1967, 103:67-74
    267. Wardle D A, Parkinson D, Interactions between microclimatic variables and the soil microbial biomass. Biol Fertil Soils, 1992, 9: 273-280
    268. Wardle D A, Yeates C W, Watson R N, Nicholson K S. Response of soil microbial biomass and plant litter decomposition to weed management strategies in maize and asparagus ecosystems. Soil Biol Biochem, 1990, 25: 857-868
    269. Wardle D A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev, 1992, 67: 321-358
    270. Warning S A, Bremner J M. Ammonium production in soil under waterlogged conditions as an index of nitrogen availability. Nature, 1964, 201: 951-952
    271. Whitbread A M, Lefroy R D B, Blair G J. Survey of the impact of cropping on soil physical and chemical properties in South Wales. Aust J Soil Research, 1998, 36: 669-681
    272. Witt C, Biker U, Galicia C C, Ottow J C G. Dynamics of soil microbial biomass and nitrogen availability in a flooded rice soil amended with different C and N sources. Biol Fertil Soils, 2000, 30: 520-527
    273. Wu J, Brookes P C, Jenkinson D S. Formation and destruction of microbial biomass during the decomposition of glucose and ryegrass in soil. Soil Biol Biochem, 1993, 25: 1435-1441
    274. Wu J, Joergensen R G, Pommerening B, Chaussod R, Brooks P C. Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure. Soil Biol Biochem, 1990a, 22: 1167-1169
    275. Wu J. The turnover of soil organic C in soil. Ph. D thesis, University of Reading, U K, 1990b
    276. Yan F, McBratney A B, Copeland L. Functional substrate biodiversity of cultivated and uncultivated A horizons of vertisols in NW New South Wales. Geoderma, 2000, 96: 321-343
    277. Zabinski C A, Gannon J E. Effects of recreational impacts on soil microbial communities. Environ Man, 1997, 21 (2): 233-238
    278. Zak D R, Holmes W E, Macdonald N W. Soil temperature, matric potential and the knetics of microbial respiration and nitrogen mineralization. Soil Sci Soc Am J, 1999, 63: 575-584
    279. Zak J C, Willig M R, Moorhead D L, Wildman H G. Functional diversity of microbial communities: a quantitative approach. Soil Biol Biochem, 1994, 26: 1101-1108
    280. Zelles L. Fatty acid patterns of phospholipids and lip polysaccharides in the characterization of microbial communalities in soil: a review. Biol Fertil Soils, 1999, 29: 111-129
    281.Zsolnay Gorlitz H. Water extractable organic matter in arable soil: effect of drought and long-term fertilization. Soil Biol Biochem, 1991, 26(9): 1257-1261

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700