用户名: 密码: 验证码:
粘虫颗粒体病毒对苏云金杆菌增效作用及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏云金杆菌(Bacillus thuringiensis,Bt)是研究应用最为广泛的生物杀虫剂,实际使用中存在作用速度慢、防效低等弱点。美洲粘虫颗粒体病毒(Pseudaletia unipuncta granulosis virus , PuGV )是含有增效蛋白( enhancin)的杆状病毒(Baciluvirus),能提高核型多角体病毒(nuclear polyhedrosis virus,NPV)的侵染能力及Bt的毒力。本文以Bt和东方粘虫P. separata转主增殖的美洲粘虫颗粒体病毒(PuGV-Ps)为材料,明确了PuGV-Ps对Bt的增效作用和增效特性;并从PuGV-Ps对杀虫晶体蛋白的酶解活化、昆虫中肠酶活性的变化、昆虫中肠围食膜(peritrophic membrane,PM)结构的破坏等方面探索了增效机理;克隆和测序了PuGV-Ps增效蛋白基因并原核表达了增效蛋白;研制了PuGV-Ps对Bt的增效制剂,并明确了其应用效果。主要结果如下:
     1明确了PuGV-Ps对Bt的增效作用以小菜蛾Plutella xylostella、甜菜夜蛾Spodoptera exigua、棉铃虫Helicoverpa armigera为试虫,采用生物测定方法测定了PuGV-Ps对Bt制剂的增效作用。结果表明Bt中加入PuGV-Ps对3种鳞翅目害虫都具有增效作用,共毒系数达127-146。高温灭活的PuGV-Ps对Bt同样具有增效作用,对小菜蛾的共毒系数达135.8,说明PuGV-Ps中含有对Bt毒力增强作用的增效因子。PuGV-Ps可以提高Bt对小菜蛾的杀虫速度,250μg/mL浓度的Bt中加入PuGV-Ps较单用Bt致死中时间LT50缩短了37.8%。转Bt基因的抗虫棉叶经PuGV-Ps处理后饲喂棉铃虫死亡率也得到相应提高。PuGV-Ps还能增强Bt对甜菜夜蛾生长发育的抑制作用,表现为幼虫生长量相对减少、蛹重下降、化蛹率降低和化蛹历期延长。
     2分离纯化了PuGV-Ps增效蛋白并测定其对Bt的增效活性用PuGV感染东方粘虫获得的转寄主粘虫颗粒体病毒PuGV-Ps的包涵体中含有分子量为108 kD的增效蛋白。PuGV-Ps经碱溶、Sephadex G-200凝胶过滤层析分离获得部分纯化的增效蛋白。以小菜蛾、甜菜夜蛾、棉铃虫等3种鳞翅目昆虫为试虫测定部分纯化的增效蛋白对Bt的增效作用,联合作用的共毒系数在116-155之间,表明PuGV-Ps增效蛋白是一种增效因子,可以增强Bt鳞翅目昆虫的毒力。
     3探明了PuGV-Ps对Bt增效作用的影响因子PuGV-Ps对Bt的增效程度随PuGV-Ps量的变化而不同,试验范围内不同配伍的PuGV-Ps和Bt间的共毒系数在105.3至195.0之间,其中以Bt∶PuGV-Ps为4∶1增效作用最明显,72 h LC50为0.039 mg/mL。不同温度和pH都影响PuGV-Ps对Bt的增效作用,16℃~ 20℃增效程度明显高于24℃~ 32℃,而碱性条件下(pH 8-9)增效作用更显著。PuGV-Ps对Bt的增效作用因小菜蛾龄期不同而变化,2、3龄幼虫试验,小菜蛾死亡率较Bt分别提高了50%和30.31%,而对低龄(1龄)和高龄(4龄)幼虫增效不显著。PuGV-Ps饲喂2 h后接毒Bt,小菜蛾死亡率明显提高,48 h死亡率达66.67%,较Bt+PuGV-Ps处理死亡率提高了53.87%,差异显著。
     4分析了PuGV-Ps对苏云金杆菌δ-内毒素的酶解活化作用用氨苯磺胺偶氮酪蛋白为底物测定PuGV-Ps中总蛋白酶活力表明,PuGV-Ps在pH 7.38-10.38的碱性条件下均具有一定的蛋白酶活性,且蛋白酶活力随pH的升高而显著提高。4种蛋白酶抑制剂都能抑制PuGV-Ps的蛋白酶活力,以大豆胰蛋白酶抑制剂(STI)的抑制作用最强,表明PuGV-Ps的蛋白酶活性是以胰蛋白酶为主要活力的多种蛋白酶的活性特征。通过SDS-PAGE研究了PuGV-Ps对苏云金杆菌δ-内毒素的降解活化作用,结果表明,碱性条件下Bt晶体蛋白和PuGV-Ps共同孵育,130 kD的δ-内毒素被进一步酶解成分子量为110 kD、87 kD、61 kD、47 kD等多种不同分子量的肽链,其酶解活化程度随缓冲液pH的升高而加深,在pH 10.7的0.1 mol Na2CO3缓冲液中,δ-内毒素被完全酶解,产生具有一定抗蛋白酶继续降解能力的分子量为47 kD、60 kD和61 kD的活性片段。同时PuGV-Ps量的多少和碱解时间都影响δ-内毒素的酶解活化程度,STI能一定程度抑制PuGV-Ps对δ-内毒素的酶解活化。
     5明确了PuGV-Ps抑制甜菜夜蛾中肠液对δ-内毒素的过度降解PuGV-Ps具有蛋白酶活性,对甜菜夜蛾中肠酶液离体蛋白酶活力及取食PuGV-Ps后总蛋白酶活力影响测定表明,在中肠酶液适宜pH范围(pH 9.38-10.38)内,PuGV-Ps都一定程度抑制了中肠酶液的总蛋白酶活力。SDS-PAGE试验显示,PuGV-Ps影响了甜菜夜蛾中肠酶液对苏云金杆菌δ-内毒素的降解活化作用,表现在对中肠酶液酶解130 kD的δ-内毒素成60 kD-87 kD的较大分子量的活性多肽无明显影响,但对活性多肽的进一步降解具有抑制作用,这种过度降解的抑制作用在25℃-30℃的温度和随酶解时间的延长更为显著。不同缓冲液同样影响甜菜夜蛾中肠酶液对δ-内毒素的降解,Na2CO3盐的存在是影响降解程度的重要因子。
     6证实了PuGV-Ps并发现Bt对甜菜夜蛾中肠PM结构的破坏作用利用环境扫描电镜和SDS-PAGE电泳技术研究了Bt、PuGV-Ps及其增效蛋白对甜菜夜蛾中肠PM的影响。电镜观察结果表明,正常的甜菜夜蛾PM外壁有韧性,表面较平滑,少皱褶,内壁表面较粗糙,有较厚质感,无孔洞和缝隙;取食PuGV-Ps或增效蛋白后的PM外壁皱缩,内壁平滑、质薄;Bt单独作用于PM同样改变了围食膜结构,但影响程度较小;但不同处理未发现对甜菜夜蛾PM造成穿孔或裂缝。中肠PM蛋白的SDS-PAGE试验表明,取食PuGV-Ps和增效蛋白后,PM上200 kD、150 kD、80 kD的大分子量的蛋白一定程度被降解成78 kD以下的小分子量蛋白带,小分子量27 kD的蛋白也被部分降解,而分子量为28 kD的小分子蛋白同时被完全降解;Bt也影响了PM蛋白的构成,取食Bt的PM蛋白电泳减少了28 kD的小分子蛋白,说明甜菜夜蛾PM上28 kD的蛋白是PuGV-Ps增效蛋白和Bt的共同靶蛋白。离体降解试验进一步证明Bt及增效蛋白对甜菜夜蛾PM上28 kD蛋白具有降解作用。
     7克隆和测序了PuGV-Ps增效蛋白的全长基因以PuGV-Ps的DNA为模板,参考粉纹夜蛾颗粒体病毒(TnGV)和棉铃虫颗粒体病毒(HaGV)的增效蛋白基因序列设计引物,通过PCR反应扩增出一条2.7 kb的特异性基因片段。纯化的PCR产物克隆到载体质粒pEASY-E2中,构建了重组质粒pEASY-En;用DNA双链测序法测定重组质粒pEASY-En中的外源基因序列,证明PCR扩增的产物是PuGV转宿主病毒PuGV-Ps增效蛋白的全长基因。与原始PuGV基因组增效蛋白的序列比较,两者同源性达99.59%,其中5’端500 nt相似性为98.60%,而3’端500 nt仅1个碱基发生突变。说明PuGV-Ps增效蛋白基因的3’端是基因的保守区域。
     8原核表达了PuGV-Ps增效蛋白并测定了表达蛋白的增效活性以大肠杆菌BL21(DE3)为感受态细胞,将插入PuGV-Ps增效蛋白基因的重组质粒pEASY-En转化到大肠杆菌中,构建了重组菌,于37℃下通过IPTG诱导表达了108 kD的表达产物。表达的目的蛋白带有6×His标签,能特异性吸附在Ni2+上并得到纯化,证明表达产物是目标增效蛋白。LB培养液中加入0.2%的葡萄糖后有利于增效蛋白基因的表达。生物测定结果表明,粗提的表达产物具有增效活性,可以提高Bt对棉铃虫、甜菜夜蛾的敏感性,600μg/g Bt浓度中加入300μg/g增效蛋白表达产物后甜菜夜蛾死亡率提高了10%,400μg/g Bt浓度中加入400μg/g增效蛋白表达产物后,棉铃虫死亡率由23.67%提高至38.67%,差异显著。随表达产物量的增加,增效作用更为显著。
     9研制了PuGV-Ps增强Bt制剂,并明确了其应用效果依据PuGV-Ps对Bt的增效作用,采用人工增PuGV-Ps、液体发酵Bt和喷雾干燥加工技术,研制了一种病毒增强Bt可湿性粉剂。该制剂主要成份为PuGV-Ps和Bt,含量为3.0×109OB/g PuGV-Ps·1.0×1010活芽孢/g Bt,共毒系数达162.57。该制剂毒性微毒,大白鼠经口LD50大于5000 mg/kg,无致敏和刺激性,无致病性,对鱼、鸟和蜜蜂均为低毒。田间应用结果表明,对小菜蛾、甜菜夜蛾、水稻纵卷叶螟Canphalocrocis medinalis等多种害虫都有较好防效。2000μg/mL浓度对小菜蛾2 d、7 d的防效达86.74%和79%,较Bt单剂的防效分别提高了23.5%和29.7%,差异显著;对甜菜夜蛾10 d防效达61.22%,与阿维菌素(Abamectin)1000μg/mL防效相当;水稻田使用病毒增强Bt 1500 g/ha对稻纵卷叶螟7 d防效达80.77%,高于Bt单剂71.15%的防效;使用病毒增强Bt对稻田蜘蛛无影响,药后7 d田间蜘蛛减少率为3.92%,而阿维菌素等对蜘蛛杀伤率达34.39%。
Bacillus thuringiensis (Bt) has been extensively used for four decades as biopesticide due to its safety to environment and human health. The widespread use of Bt is often challenged by the efficacy of controlling pests. Pseudaletia unopuncta granulovirus (PuGV), which contains a special protein called enhancin, can synergize the infection of nucleopolyhedtovirus and enhance the toxicity of Bt to pests. In this study, with Bt and PuGV-Ps propagated in the larvae of P. separata by PuGV as materials, the synergistic effect and characterization of Bt toxicity to lepidoperous species with PuGV-Ps were investigated. The mechanisms of enhancement were analyzed in respect of proteolytic activity of PuGV-Ps, degradation ofδ-endotoxin, influence of midgut enzyme and damage to peritrophic membrane (PM). The enhancin gene of PuGV-Ps was cloned and expressed. A preparation of Bt enhanced by PuGV-Ps was devised and its application effect was also studied. The main results were as fellows:
     1 Enhancement of B. thuringiensis Toxicity to Lepidopterous Species with P. unipuncta Granulovirus-Ps: Enhancement of toxicity of B. thuringiensis with PuGV-Ps was demonstrated by bio-assays employing larvae of several lepidopterous species. Combinations of Bt and PuGV-Ps were synergistic and enhanced toxicity against Plutella xylostella, Helicoverpa armigera, and Spodoptera exigua. The co-toxicity coefficients (CTC) of Bt combined with PuGV-Ps to different larvae were diverse from 127 to 146. Denatured PuGV-Ps also enhanced toxicity of Bt to larvae of P. xylostella with CTC value of 136, indicating PuGV-Ps contained some synergistic factors. Besides the increase of mortality to larvae, the rate of larval death of P. xylostella was also accelerated by adding PuGV-Ps in Bt, and the median survival time (LT50) reduced 38 percent compared with the treatment of Bt alone at concentration of 250μg/mL. The toxicity of transgenic Bt cotton to H. armigera were also elevated by adding PuGV-Ps. PuGV-Ps also enhanced the effect of Bt on the larval development of S. exigua, with less weight of larvae and pupae, delay of pupating and lower ratio of pupation.
     2 Purification of Enhancin from P. unipuncta Granulovirus-Ps and Evaluation of Its Synergistic Effect to Bt: PuGV-Ps was propagated in the larvae of P. separata infected by P. unipuncta granulovirus. SDS-PAGE showed the capsules of PuGV-Ps contained a special protein called enhancin with molecular weight of 108 kD. The capsules was dissolved in alkaline solution of 0.02 mol NaOH, and then filtered through on a column of Sephadex G-200 and enhancin proteins were purified from the concentrated crude protein extract. The synergistic effects of PuGV-Ps enhancin on B. thuringiensis were tested by bio-assays employing larvae of several lepidopteral species, such as P. xylostella, H. armigera, and S. exigua. The CTC of Bt combined with PuGV-Ps enhancin to larvae of different species were range from 116 to 155. The results showed that PuGV-Ps enhancin was a synergistic factor, and could enhance the toxicity of Bt to larvae of Lepidoptera.
     3 Characterization of B. thuringiensis Enhancement by P. unipuncta Granulouvirus-Ps: The synergistic effects of PuGV-Ps on Bt were tested by bio-assays employing larvae of P. xylostella. The CTC of Bt combined with PuGV-Ps in different ratios were diverse from 105.3 to 195.0, showing a positive synergistic effect of PuGV-Ps on Bt. Among the mixtures, the most significant effect was found in the ratio of Bt and PuGV-Ps being 4:1, in which the LC50 was 0.039mg/mL. When environmental temperature was low (16℃and 20℃), the synergistic effects were statistically significant, while there were no differences at temperature of 28℃and 32℃comparing with the treatment of feeding the insects with Bt alone. The synergistic effect was elevated along with increase of pH value. In higher pH value of 8 and 9, PuGV-Ps elevated mortalities of P. xylostella larvae by Bt up to 16.67% and 23.33%, respectively. The co-effects of Bt and PuGV-Ps were also varied along with the larval age. Mortalities of 2nd and 3rd instar larvae increased 50.00% and 30.31% in the treatment of Bt+PuGV-Ps compared with that of Bt respectively, but there were no significant improvement in that of 1st and 4th instar larvae. Much higher synergistic effect was observed when oral inoculation with PuGV-Ps 2 h prior to Bt treatment. Comparing with the treatment of oral inoculation with Bt and PuGV-Ps simultaneously, The mortality at oral inoculation with PuGV-Ps 2 h prior to Bt increased 66.67% 48 h after treatment .
     4 Effect of P. unipuncta Granulovirus-Ps on the Degradation ofδ-endotoxin from B. thuringiensis: Total proteolysis of PuGV-Ps was measured by using azocasein under different pH condition from value 7.38 to 10.38, and the protease activity was improved with the rising of pH value. All the four kinds of inhibitors tested inhibited the activity of PuGV-Ps proteolysis, among which soybean trypsin inhibitor (STI) made the greatest affect. That indicated the proteolytic activity of PuGV-Ps was due to several proteases, mainly from trypsin-like enzyme. SDS-PAGE analysis showed that large amounts of activated toxin proteins were yielded fromδ-endotoxin of B. thringiensis incubated with PuGV-Ps under alkaline condition. Theδ-endotoxin of 130 kD degraded into toxic protein fragments with molecular weights from 47 kD to 110 kD. PH value influenced the degradation effect greatly, which elevated along with the increase of pH value. In buffer of 0.1mol Na2CO3 pH value 10.7, theδ-endotoxin completely cleaved into 47 kD, 60 kD and 61 kD activated toxins and resisted further degradation. The amount of PuGV-Ps and the time of incubation influenced the degree of degradation. STI also inhibited the degradation ofδ-endotoxin by PuGV-Ps.
     5 Elucidation of Inhibition Further Degradation ofδ-endotoxin in Midgut Juice from S. exigua by P. unipuncta Granulovirus-Ps: The proteolytic activity of midgut juice from S. exigua was influenced by PuGV-Ps. Under the suitable pH value, the total proteolysis activity of midgut juice reduced for some degree by PuGV-Ps, but there were some difference between in vitro and in vivo test. SDS-PAGE analysis showed that PuGV-Ps also affected the degradation ofδ-endotoxin of B. thuringiensis in midgut juice from S. exigua. The yield of active toxin proteins molecular weight from 60 kD to 87 kD was not influenced obviously by PuGV-Ps, but the further degradation of activated toxin was inhibited. The inhibiting effect was getting more notable with the degradation time and the rising of incubating temperature. Degradations ofδ-endotoxin by midgut juice in different buffers were disagreed, indicating that the saline of Na2CO3 was an important factor to increase the further degradation ofδ-endotoxin.
     6 Verification of the Damage of P. unipuncta Granulovirus-Ps and B. thuringiensis to Peritrophic Membrane of S. exigua: Using scanning electron microscope and SDS-PAGE gel, impact of B. thuringiensis, P. unipuncta granulovirus-Ps and enhancin from PuGV-Ps on peritrophic membrane of S. exigua was studied. Scanning electron microscope pictures indicated that exterior PM wall of normal S. exigua was smoothness and few rumple, while inner PM wall texture was thick and with some granulation. There were no hole and crack in the membrane. When insect feed PuGV-Ps or enhancin, the exterior PM wall turned to crimple and inner PM wall to thin and smoothness. When treated with Bt alone, the structure of PM was also changed in some degree. No hole or crack was found in all the treatments. SDS-PAGE gel analysis showed that the proteins in PM, which molecular weights was from 80 kD-200 kD, were partly degraded to small proteins under 78 kD, and a 28 kD protein was degraded completely. This 28 kD protein was also dismissed in the treatment of feeding Bt alone. In vitro tests gave more evidence that several different protiens in PM of S. exigua were degraded by enhancin of PuGV-Ps, and the 28 kD small molecular protein also degraded by PuGV-Ps enhancin andδ-endotoxin from Bt.
     7 Molecular Cloning and Sequence Analysis of Enhancin Gene from P. unipuncta Granulovirus-Ps: Using the DNA from PuGV-Ps as template and the nucleotide sequences of the enhancin genes from H. armigera granulovirus and Trichoplusia ni granulovirus for reference, we designed a primer for PCR and amplified a 2.7 kb specific fragment by PCR reaction. Purified PCR product was cloned into plasmid pEASY-E2 and a recombinant plasmid pEASY-En was constructed. The PCR product was proved to be the full long fragment of the gene encoding enhancin of PuGV-Ps by DNA sequencing. Sequence analysis revealed that enhancin gene from PuGV-Ps had 99.56% identity to enhancing gene from PuGV, which was reported previously. The different nucleotides were mostly concentrated in 5’terminal half and shared 98.60% identity from 1 to 500 nt, while in 3’terminal half only one nucleotide was changed from 1 to 500 nt, indicating that the 3’terminal half had the greater conservation.
     8 Expression and bioassay of P. unipuncta granulovirus-Ps Enhancin Gene in Escherichia coli: A 2.7kb enhancin gene of PuGV-Ps cloned into pEASY-E2 vector was recombinanted into Escherichia coli BL21(DE3). When induced by IPTG at 37℃, the target protein with molecular weight of 108kD was expressed successfully. The target protein was linked with 6×His tags and purified by Ni2+ column, indicating the target protein was enhancin, which was expressed by the inserted foreign gene. It was in favor of the expressing of enhancin gene by adding 0.2 percent of glucose. The extracted expressing protein showed synergistic activity to Bt. In the treatment of 600μg/g Bt, the mortality of S. exigua was increased 10.00 percent by adding 300μg/g extracted enhancin. When treating larvae of H. armigera, the mortality was elevated to 38.67 percent from 23.67 percent by adding 400μg/g extracted protein into 400μg/g Bt. The synergistic effect was advanced with the increasing of extracted protein.
     9 Producing and Application of Preparation of B. thuringiensis Enhanced by P. unipuncta Granulovirus-Ps: According to the toxicity of B. thuringiensis to the larvae of Lepidoptera enhanced by PuGV-Ps, a preparation of Bt+PuGV-Ps was prepared. This preparation was a water powder formulation and produced through the process of propagated PuGV-Ps in cultured P. separata, fermented Bt in liquid substrate and spray drying. It was composed by 3.0×109 OB/g PuGV-Ps and 1.0×1010 spores/g Bt, and the CTC was 162.57. PuGV+Bt almost had no virulence to vertebrate and did no harm to fish, bird and bee. Field trial showed, at the concentration of 2000μg/mL, Bt+PuGV-Ps got control effects of 86.74 percent and 61.22 percent to P. xylostella and S. exigua respectively, exceeding effects by Bt remarkablely. When used to control Canphalocrocis medinalis at dosage of 1500g/ha, the efficacy was up to 80 percent, while efficacy of Bt was 71.15 percent. PuGV-Ps+Bt only reduced 3.92 percent of the amounts of spiders, while Abamactin killed spiders up to 34.39 percent.
引文
Angus T A. 1954. A bacterial toxin paralyzing silkworm larvae. Nature, 173: 255-261.
    Applebaum S W. 1985. Biochemistry of digestion. In: Kerkut et al. eds. Comparative physiology, biochemistry and pharmacology of insects. Oxford: Pergamon Press, 279-311.
    Arthur I. Aronson, Yechiel S. 2001. Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action. FEMS Microbiol. Letters. 195(1): 1-8
    Avital R, Menachem K, Nicolai S, et al. 1996. Synergistic activity of a Bacillus thuringiensisδ-endotoxin and a bacterial endochitinase against Spodoptera Littoralis larvae. Applied and Environment Microbiology, 62: 3581-3586.
    Ayyed A H, Crickmore N, Wright D J. 2001. Cyt1Aa from Bacillus thuringiensis subsp. israelensis is toxic to the diamondback moth, Plutella xylostella, and synergizes the activity of Cry1Ac towards a resistant strain. Appl Environ Microbiol. 67(12):5859-5861.
    Bauce E, Kumbasli M, Van Frankenhuyzen K. et al. 2006. Interactions among white spruce tannins, Bacillus thuringiensis subsp. kurstaki, and spruce budworm (Lepidoptera: Tortricidae), on larval survival, growth, and development. J. Econ. Entomol., 99(6):2038-2047.
    Beegle C C, Dulmage H T, Wolferbarger D A, et al. 1981. Persistance of Bacillus-thuringiensis var. kurstaki insecticidal activity of cotton foliage. Environ. Entomol, 10: 400-401.
    Bell M R, Romin C L. 1986. Heliothis virescens (Lepidoptera:Notuide): Dosage effects of feeding mixtures of Bacillus thuringiensis and nuclear polyhedrosis virus on mortality and growth. Environ. Entomol., 15(6): 1161-1165.
    Bischoff D S, Slavicek J M. 1997. Molecular analysis of an enhancin gene in the Lymantria dispar nuclear polyhedrosis virus. Virol., 71: 8133-8140.
    Blissard G W, Granados R R. 1990. Baculovirus diversity and molecular biology. Annu. Rev. Entomol., 35: 127-155
    Bond B P M, Boyce C B C. 1971. The thermostable exotoxin of Bacillus thuringiensis. In: Burges H D. ed. Microbial control of insects and mites. Lindon, New York: Acad. Press, 275-303.
    Bravo A, Gill S S, Soberon M. 2005. Bacillus thuringiensis mechanisms and use. In: Comprehensive molecular insect science. Elsevier B.V., 175-206.
    Brigges J D. 1960. Reduction of adoult house-fly emergence by the effects of bacillus spp. On the development of immature forms. J. Insect Pathol., 2(4): 418-432.
    Bruce E T. 1992. Evaluation of synergism among Bacillus thuringiensis toxins. Appl. Environ. Microbiol., 58(10): 3343-3346
    Burgenjon A, Martouret D. 1971. Determination and significaton of the host spectrum of Bacillus thruingiensis. In: Burges H D. ed. Microbial control of insects and mites. Lindon, New York: Acad Press, 305-325.
    Burges H D. 1982. Control of insects by bacteria. Parasitology. 84: 79-117. Canadian forest insects. Can. J. Zool. 34:210-212.
    Burton S L, Ellar D J, Li J, et al. 1999. Nacetylgalactosamine on the putative insect receptor aminopeptidase N is recognized by a site on the domain III lectin-like fold of a Bacillus thuringiensis insecticidal toxin. J Mol. Biol., 287: 1011-1022.
    Butko P, Huang F, Pusztai-Carey M, Surewicz W K. 1997. Interaction of the delta-endotoxin CytA from Bacillus thuringiensis var israelensis with lipid membranes. Biochemistry, 36:12862-8.
    Camila Ochoa-Campuzano, M. Dolores Real, Amparo C, et al. 2007. Biochemical and Biophysical Research Communications, An ADAM metalloprotease is a Cry3Aa Bacillus thuringiensis toxin receptor. 362: 437-442
    Chiang A S, Yen D F, Peng W K. 1987. Mode of action of Bacillus thuringiensis to different types of hosts: In midgut cellular defense reaction and gut fluid pH changes of infected rice moth(Corcyra, cephalonica) larvae sapects. Plant Prot. Bull. 28(2):179-190.
    Choma C T, Kaplan H. 1994. Folding and unfolding of the protoxin from Bacillus thuringiensis: evidence that the toxic moiety is present in an active comfirmation. Biochem., 29:10971-10977.
    Corsaro B G, Guzen M R, Wang P, et al. 1993. Baculovirus enhancing proteins as determinants of viral pathogenesis. In: Parasites and pathogens of insects. Pathogens: Academic Press, 2: 127-145.
    Dai S M, Gill M G. 1993. In vitro and in vivo proteolysis of the Bacillus thuringiensis subsp. Israelensis cry IVD protein by Culex quinquefasciatus larval midgut proteases. Insect Biol. Chem., Mol. Biol., 23: 273-283.
    Daniel A, Sangadala S, Dean D H, et al. 2002. Denaturation of either Manduca sexta aminopeptidase N or Bacillus thuringiensis Cry1A toxins exposes binding epitopes hidden under nondenaturing conditions. Appl. Environ. Microbiol., 68(5): 2106-2112.
    David J P, Daly J C. 1996. Toxicty of mixtures of Bacillus thruingiensis with endosulfan and other insectides to the cotton bollworm Heliothis armigera. Pestic. Sci., 48: 199-204.
    Derksen A C G, Granados R R. 1988. Alteration of lepidopteran peritrophic membrane by baculovirus and enhancement of viral infectivity. Virol., 167(1): 242-250.
    Donovan E J, Brenda O, William H M. 1998. Spore coat protein synergizes Bacillus thuringiensis crystal toxicity for indianmeal moth (Plodia interpunctella). Curr. Microbiol., 36: 278-282.
    El-Moursy A, Aboul-Ela R, Salama H S, et al. 1992. Chemical additives that affect the potency of endotoxin of Bacillus thruingiensis against Plodia interpunctella. Insect Sci. Appl., 15(6): 775-779.
    English L H, Slatin S L. 1992. Mode of action of delta-endotoxins from Bacillus thuringiensis: a comparison with other bacterial toxins. Insect Biochem. Molec.Biol., 22(1):1-7.
    Eric V S. 1994. Zwittermicin A-Producing Strains of Bacillus thuringiensis from diverse soil. Appl. Environ. Microbiol., 60: 4404-4412.
    Estruch J J, Warren G W, Mullins M A, et al. 1996. Vip3A a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Pro. Natl. Acad. Sci. USA, 93: 5389-5394.
    Estruch J J, Yu C G, Warren G W. 2000. Class of proteins for the control of plant pests. World Intellectual Property Organization Patent. 6, 107-279
    Fast P G. 1981. The crystal toxin of Bacillus thuringiensis. In: Burges H D. ed. Microbial control of pesrs and plant diseases 1970-1980. London, Nexyork, Toronte, sydney, San francisco: Acda. Press. 223-248.
    Felton G W, Dahlman D L. 1984. Allelochemical induced stress: Effects of L-Canavanine on the pathogenicity of Bacillus thuringiensis in Manduca Sexta. J. Invertbr. Pathol., 44: 187-191.
    Felton G W, Donato K, Del Vecchio R J, et al., 1989. Activation of plant polyphenol oxidases by insect feeding reduces the mutritive quality of foliage for nictuid herbivores. J Chem. Ecol. 15: 2667-2694.
    Fluer F S, Ivinskene V L, Zayachkauskas, P A. 1981. Detection of thermllabile Bacillus thuringiensis exotoxin and its separations from phospholipase. C Zh. Microbiol Epodemiol immunobiol. 8: 81-85.
    Gibson DM, Gallo L G, Krasnoff S B, et al. 1995. Increased efficacy of Bacillus thuringiensis subsp. kurstaki in combination with tannic acid. J. Econ. Entomol., 88(2):270-7.
    Gill S S, Cowles E A, Poetrantonio P V. 1992. The mode of action of Bacillus thuringiensis endotoxin. Ann. Rev. Entomol., 37: 615-636.
    Goto C. 1990. Enhancement of a nuclear polyhedrosis virus infection by a granulosis virus isolated from the spotted cutworm, Xestia cnigrum L. Appl. Ent. Zool., 25(1): 135-137.
    Granados R R, Corsaro B C. 1990. Baculoviurs enhacin proteins and their implication for insect control. Prceedings of the Fifth international colloquium on invertebrate pathology and microbial control, 174-178.
    Granados R R, Fu Y, Corsaro B, et al. 2001. Enhancement of Bacillus thuringiensis toxicity to Lepidopterous species with enhancin from Trichoplusia ni Granulovirus. Bollogical Control, 20: 153-159.
    Griffits J S, Haslam S M, Yang T, et al. 2005. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307:922–5.
    Hannay C L, Fitzjames P. 1953. The protein crystals of Bacillus thuringiensis Berliner. Microbiol, 1: 694-709.
    Hara S. 1976. Isolation and chanracterization of a synergistic enzyme from the capsule of a granulosis virus of the armyeorm, Pseudaletia unipucta . Journal of invertebrate pathology, 27: 115-124
    Hashimoto Y, Corsaro B G, Granados R R. 1991. Location and nucleotide sequence of the gene encoding the viral enhancing factor of the Trichoplusia ni granulosis virus. Gen Virol, 72 (11):2645-2651.
    Hayakawa T, Shimojo E, Mori M et al. 2000. Enhancement of baculovirus infection in Spodoptera exigua (Lepidoptera: Noctuidae) larvae with Autographa californica nucleopolyhedrovirus or Nicotiana tabacum engineered with a granulovirus enhancin gene . Appl Entomol Zool. 35: 163–170.
    Heimpel A M. 1967. A critical review of Bacillus thuringiensis Var. thuringiensis Berliner and other crystalliferous bacteria. Ann. Rev. Entomol. 12: 287-322.
    Hofmann C, Vanderbrugen H, Hofte H, et al. 1988. Specificity of Bacillus thuringiensis deta-endotoxins is correlated with the presence of high affinity binding sites in the brush border membrane of target insect midguts. Proc Natl. Acad. Sci., USA, 85: 7844-7848.
    Hofte H, Whiteley H R. 1989.Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev., 53:242-255.
    Honee G, Visser B. 1993. The mode of action of Bacillus thuringiensis crystal proteins. Entomol. Exp.Appl., 69:145-155.
    Hua G, Jurat- Fuentes JL , Adang MJ. 2004. Bt-R1a extracellular cadherin repeat 12 mediates Bacillus thuringiensis Cry1Ab binding and cytotoxicity. J. Biol. Chem., 279(27): 28051-28056.
    Huber H E, Luthy P, Ebersold H R, et al. 1981. The subunits of the parasporal crystal of Bacillus thuringiensis: size, linkage and toxicity. Arch. Microbiol., 129:14-18.
    Hukuhara T, Hayakawa T, Wijonarko A. 1999. Increased baculovirus susceptibility of armyworm larvae feeding on transgenic rice plants expressing an entomopoxvirus gene. Nat. Biotechnol., 17(11): 1122-1124.
    Hukuhara T, Tamura K, Zhu Y, et al. 1987. Synergistic factor shows specificity in inhancing nuclear polyhedrosis virus infections. Appl. Ent. Zool. 22: 235-236.
    Hukuhara T, Zhu Y F. 1989. Enhancemen to the in vitro infectivity of a nuclearpolyhedrosis virus by a factor in the capsule of agranulosis virus. J. Invertebr. Pathol., 54:71-78.
    Huang D F, Zhang J, Song F P, et al. 2007. Microbial control and biotechnology research on Bacillus thuringiensis in China. Journal of Invertebrate Pathology, 95: 175-180
    Jianxin P, Jiang Z, Robert R. et al. 1999. A baculovirus enhancin alters the permeability of a mucosal midgut peritrophic matrix from lepidopteran larvae. Journal of Insect Physiology. 45: 159-166.
    Johnson D E, McGauhey W H. 1996. Contribution of Bacillus thuringiensis spores to purified cry proteins towards indianmeal moth larvae. Curr.Microbiol., 33(1): 54-59.
    Johnson D E, Oppert B, McGaughey W H. 1998. Spore coat protein synergizes Bacillus thuringiensis crystal toxicity for the indianmeal moth. Curr Microbiol. 36(5): 278-282
    Jurat- Fuentes J L, Adang M J, 2004. Characterization of a Cry1Ac- receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae. Eur. J. Biochem., 271(15): 3127-3135.
    Jurat-Fuentes J L, Adang M J, 2006.Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae. J. Invertebr. Pathol., 92:166-171
    J萨姆布鲁克, D W拉塞尔著,黄培堂等译. 2006.分子克隆试验指南(第三版). 27-30
    Klier A, Bourgouin C, Rapoport F et al. 1983. Mating between Bacillus subtilis and Baicllus thuringiensis and transfer of cloned crystal genes. Mol. Gen. Genet., 191: 156-262
    Knowles B H. 1994. Mechanism of action of Bacillus thuringiensis insecticidalδ-endotoxins. Adv. Insect Physiol., 24: 275-308.
    Kozuma K, Hukuhara T. 1994. Fusion characteristics of a nuclear polyhedrosis virus in cultured cell: Time course and ettect of a synergistic factor and pH. J. Invertebr. Pathol., 63(1): 63-67.
    Kozuma K, Hukuhara T. 1992. A synergistic factor of an armyworm granulosos virus contains phoshpatidylcholine. J. Invertebr. Pathol. 59: 328-329
    Lepore L S, Roelvink P R, Granados R R. 1996. Enhancin, the granulosis virus protein that facilitates nucleopolyhedrovirus (NPV) infections, is a metalloprotease. Invertebr Pathol. 68(2):131-40.
    Li J, Carroll J, Ellar D J. 1991. Crystal structure of insectcidalδ-endotoxin from Bacillus thuringiensis at 2.5? resolution. Nature, 353: 815-821.
    Liu X, Zhang Q, Xu B, Li J. 2006. Effects of Cry1Ac toxin of Bacillus thuringiensis and nuclear polyhedrosis virus of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on larval mortality and pupation. Pest Manag. Sci., 62(8):729-37.
    Liu X. Yang G, Qin B, et al. 2001. Expression of two truncated enhancin gene from Helicoverpa armigera granulosis virus in E. coli and its preliminary biosaaay. Wei Sheng Wu Xu Bao. 41(2): 167-172.
    Liu Y B, Bruce E Tabashnik, William J Moar, et al. 1998. Synergism between Bacillus thuringiensis spores and toxins against resistant and susceptible diamondback moths (Plutella xylostella). Appl. Environ. Microbiol., 64(4): 1385-1389.
    Loseva O, Ibrahim M, Candas M, et al. 2002. Changes in protease activity and Cry3A toxin binding in the Colorado potato beetle: implications for insect resistance to Bacillus thuringiensis toxins, Insect Biochem. Mol. Biol. 32: 567-577.
    Marce F, Matha V. Weiser J. 1989. Analysis of the genotoxic activity of Bacillus thuringiensis β-exotoxin by means of the Drosophila wing spot test. J. Invertebr. Pathol. 53: 347-353.
    Martignoni M E and Iwai P J A. 1986. A catalog of viral diseases of insects, mites, and ticks. US Dept. Agric. for Serv. Pub. Washington D C, PNW-195.
    Masson L, Moar W J, Van Reankenhuyzen K, et al. 1992. Insecticidal properties of a crystal protein gene product isolated from Bacillus thruingiensis aubsp. Kenyae. Appl. Environ. Microbiol., 56: 2764-2770.
    Mesrati L A, Tounsi S, Jaoua S. 2005. Characterization of a novel vip3-type gene from Bacillus thuringiensis and evidence of its presence on a large plasmid. FEMS Microbiol Lett. 244(2): 353-358.
    Milne R, Kaplan H. 1993. Purification and characterization of a trypsin-like digestive enzyme from spruce budworm (Choristoneura fumiferana) responsible for the activation of delta-endotoxin from Bacillus thuringiensis. Insect Biochem. Mol. Biol., 23(6): 663-673.
    Miyasono M, Inagaki S, Yamamoto M, et al. 1994. Enhancement ofδ–endotoxin activity by toxin-free sopre of Bacillus thuringiensis against the Dimondback moth, Plutella xylostella. J. Inverteb. Pathol. 63: 111-112
    Morris O N, Converse V, Kanagaratnam P. 1995. Chemical additive effects on the efficacy of Bacillus thuringiensis berliner subsp. kurstaki Against Mamestra configurata (Lepidoptera: Noctuidae). Biological and Microbial Control, 88(4): 815-823
    Morris O N. 1977. Compatibility of 27 chemical insecticides with Bacillus thuringiensis Var. kurstaki. Can. Entomol. 109: 855-864.
    Morris O N. 1983. Effect of some chemical insecticides in the germination and replication of commercial Bacillus thuringiensis. J. Iinvertebr. Pathol., 26: 199-204.
    Narayanan K. 2004. Insect defence: its impact on microbial control of insect Pests. Cur. Sci., 86(6): 800-814.
    Ogiwara K, Indrasith L, Asano A, et al. 1992. Processing ofδ-endotoxin from Bacillus thuringiensis subsp. kurtaki HD-1 and HD-73 by gut juices of various insect larvae. J. Invertebr. Pathol., 60: 121-126.
    Ohba M, Tanada Y. 1984. A synergistic factor of an insect granulosis virus agglutinates insect cells. Experientia, 40: 742-744.
    Oppert B. Protease interactions with Bacillus thuringiensis insecticidal toxins, Arch. Insect Biochem. Physiol. 1999, 42:1-12.
    Pang A S, Gringorten J L, Frankenhuyen K. 2002. Interaction between Cry9Ca and two Cry1A deta-endotoxins from Bacillus thuringiensis in Larval toxicity and binding to Brush border membrane vesicles of the spruce budworm, Choristoneura fumiferana Clemens. FEMS Microbiol Lett. 215(1): 109-114.
    Parker M W, Pattus F. 1993. Rendering a membrane protein soluble in water: a common packing motif in bacterial protein toxins. Trends Biochem. Sci., 18: 391-395.
    Promdomkoy B, Promdomkoy P, Panyim S. 2005. Co-expression Between Bacillus thuringiensis Cry-4Ba and Cyt2Aa2 in Escherichia coli revealed high synergism against Aedes aegypti and Culex quinquefasciatus larvae. FEMS Microbiol Lett. 252(1): 121-126
    Promdonkoy B, Ellar D J. 2003. Investigation of the pore forming mechanism of a cytolytic d-endotoxin from Bacillus thuringiensis. Biochem. J, 374:255-259.
    Qi F, Becktel W. 1994. pH-induced confirmation transitions of Cry1A(a), Cry1A(c), Cry3A endotoxin in Bacillus thuringiensis. Biochem. J, 33: 8521-8526.
    Rajagopal R, Agrawal N, Selvapandiyan A, et al. 2003. Recombinantly expressed isoenzymic aminopeptidases from Helicoverpa armigera (American cotton bollworm) midgut display differential interaction with closely related Bacillus thuringiensis insecticidal proteins. Biochem. J., 370(3): 971-978.
    Rajagopal R, Sivakumar S, Agrawal N, et al. 2002. Silencing of midgut aminopeptidase N of Spodoptera litura by doublestranded RNA establishes its role as Bacillus thuringiensis toxin receptor. J. Biol. Chem., 277(49): 46849-46851.
    Rang C, Lacey LA, Frutos R. 2000. The crystal proteins from Bacillus thuringiensis subsp. thompsoni display a synergistic activity against the codling moth, Cydia pomonella. Curr. Microbiol., 40(3):200-4. Raymond B, Sayyed A H, Wright D J. 2006. The compatibility of a nucleopolyhedrosis virus control with resistance management for Bacillus thuringiensis: co-infection and cross-resistance studies with the diamondback moth, Plutella xylostella. J Invertebr Pathol. 93(2): 114-120.
    Roelvink P W, Corsaro B G, Granados R R 1995. Characterization of the Helicoverpa armigera and Pseudaletia unipuncta granulovirus enhancin genes . Gen Virol., 76 (11): 2693-2705.
    Salama H S, Foda M S, Sharaby A. 1984. Novel biochemical Bacillus thuringiensis edotoxin potency against Spadoptera littoralis.Entomophaga, 29: 171-178.
    Salama H S, Saleh M R, Moawad S, et al. 1990a. Spray and dust applications of Bacillus thuringiensis Nerliner and Lanuate against Apodoptera Littoralis (Boisd) (Lep., Noctuidae) on soybean plants in Egypt. J. Appl. Entomol., 109: 194-199.
    Salama H S, Salem S, Zaki F N, et al. 1990b. Control of Agrotis ypsilon (Hufn.) (Lep., Noctuidae) on some vegetable crops in Egypt using the microbial agent Bacillus thuringiensis. Anz. Schadlingskde Pfanzenchutz Umwelzschuz, 63:147-151.
    Satinder K,Brar M,Verma R D, et al. 2006. Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochemistry, 41: 323-342
    Schnepf E, Crickmore N, Van Rie J, et al. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Review, 62(3): 755-806.
    Schnepf H E, Whiteley H R. 1981a. Cloning and expression of the baicllus thuringiensis crystal proteins gene in Escherichia coli. Proc Natl Scad sci. USA, 78:2893-2897
    Schnepf H E, Whiteley H R. 1981b. Delineation of a toxin-encoding segment of the Bacillus thuringiensis crystal proteins gene. J. Biol. chem. , 260: 6273-6280
    Sebesta K, Farks J, Horsk A K, et al. 1981. Thuringiensis, the Beta-exotixin of Bacillus thuringiensis.In: Burges H D. ed. Microbial control of pests and plant diseases 1970-1980. London, Nexyork, Toronte, sydney, San francisco: Acda. Press. 249-281.
    Shao Z Z , Cui Y L , Liu X L , et al. The processing ofδ-endotoxin of Bacillus thuringiensis subsp. kurstaki HD-1 in Heliothis armigera midgut juice and the effects of protease inhibitors. J Invertebr Pathol, 1998, 72 : 73-81.
    Shim C B, Hyung H L, Hee M L. 1985. Purification and partial characterization of Bacillus thuringiensis var. thuringiensis exotixin. Korean J. Microbiol. 23(4):271-282.
    Soberón M, Fernández L E, Pérez C, et al. 2007. A Mode of action of mosquitocidal Bacillus thuringiensis toxins. Toxicon. 49(5): 597-600.
    Sun, Y. P. Johnson E. R. 1960. Analysis of joint action of insecticides against house flies. J. Econ. Ent., 53: 887~892
    Tabanshnik B E. 1992. Evaluation of synergism among Bacillus thuringiensis and Bacillus cereus. J. General Microbiol., 87: 359-369
    Tanada Y, Hess R T, Omi E M, et al. 1983. Localization of a synergistic factor of a granulosis virus by its esterase activity in the larval midgut of the armyworm, Pseudaletia unipuncta. Microbios, 37: 87-93
    Tanada Y, Himenom M, Omi E M. 1973. Isolation of a factor from the capsule of a granulosis virus, synergistic for nuclear polyhedrosis virus of the armyworm. Invertebr Pathol, 21: 31-90.
    Tanada Y, Inoue H, Hess R T, et al. 1980. Site of action of a synergistic factor of a granulosis virus of the armyworm, Pseudaletia unipuncta. Invertebr Pathol, 35: 249-255.
    Tanada Y. 1959. Synergism between two viruses of the armyworm Pseudaletia unipuncta (Haworth) (Lepidoptera: Noctuidac). Invertebr Pathol, 1: 215-231.
    Tanada Y. 1985. A synopsis of studies on the synergistic property of an insect baculovirus. Atribute to Edward A Strinhaus. J. Invertebr. Pathol. 45: 125-138.
    Tang J D, Sheltlu A M, Van R J, et al. 1996. Toxicty of Bacillus thuringiensis spore and crystal protoxin to resistant Damoudback moth (Platella xylostella). Appl. Environ. Microbiol. 62: 564-569.
    Thamthiankul S, Moar W J, Miller M E, et al. 2004. Improving the insecticidal activity of Bacillus thuringiensis subsp. aizawai against Spodoptera exigua by chromosomal expression of a chitinase gene. Appl. Microbiol. Biotechnol., 65(2): 183-192.
    Tsuda Y, Nakatani F, Hashimoto K, et al. 2003. Cytotoxic activity of Bacillus thuringiensis Cry proteins on mammalian cells transfected with cadherin like Cry receptor gene of Bombyx mori (silkworm). Biochem.J., 369(3): 697-703.
    Uchima K, Egerter DE, Tanada Y. 1989. Synergistic factor of a granulosis virus of the armyworm, Pseudaletia unipuncta: Its uptake and enhancement of virus infection in vitro. J. Invertebr. Pathol., 54: 156-164
    Uchima K, Harvey J P, Omi E M, et al. 1988. Binding sites on the midgut cell membrane for the synergistic factor of a granulosis virus of the armyworm (Pseudaletia unipuncta). Insect Biochem., 18(7): 645-650.
    Vadlamudi RK, Ji TH , Bulla LA Jr. 1993. A specific binding protein from Manduca sexta for the insecticidal toxin of Bacillus thuringiensis subsp. berliner. J. Biol. Chem., 268 (17): 12334-12340.
    Van Rie J, McGaughey W H, Johnson D E, et al. 1990. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science 247: 72-74.
    Wang P, Granados R R. 1997. An intestinal mucin is the target for a baculovirus enhancin. Proc. Natl. Acad. Sci. USA, 94(14): 6977-6982.
    Wang P, Granados R R. 2001. Molecular structure of the peritrophic membrane (PM): identification of potential PM target sites for insect control. Archives of Insect Biochemistry and Physiology, 47:110-118.
    Wang P, Hammer D A, Granados R R. 1994. Interaction of Trichoplusia ni Granulosis encoded enhancin with the midgut epithelium and peritropic membrane of four Lipidopteran insects. J. Gen. Virol., 75(8): 1961-1967.
    Wang P, Zhang X, Zhang J. 2005. Molecular characterization of four midgut aminopeptidase N isozymes from the cabbage looper, Trichoplusia ni. Insect Biochem. Mol. Biol., 35(6): 611-620.
    Wang P, Granados R R. 1997. An intestinal mucin is the target substrate for a baculovirus enhancin. Proc. Natl. Acad. Sci. USA, 94: 6977-6982
    Ward E S, Ellar D J.1988. Bacillus thuringiensis var. israelensisδ–endotoxin: Nucleotide sequence and characterization of the transcripts in Bacillus thuringiensis and Escherichia coli. J. Mol. Biol., 191:1-11
    Warren G W, Koziel M G, Mullins M A. 1998. Pesticidal proteins and strains. World Intellectual Property Organization Patent WO 5, 846-870.
    Warren G W. 1997. The VIPs: Novel proteins for control of pests. In: Advances in insect control: The role of transgenic plant. Taylor and Francis, 109-122.
    Wijonarko Arman, Hukuhara Tosihiko. 1998. Detection of a virus enhancing factor in the spheroid, spindle and virion of an entomopoxvirus. J. Invertebr. Pathol, 72: 82-86.
    Wirth M C, Jiannino J A, Federici B A, et al. 2004. Synergy of toxins of Bacillus thuringiensis subsp. Israelensis and Bacillus sphaericus. J Med Entomol., 41(5): 935-941
    Xu J, Hukuhara T. 1994. Biochemical properties of an enhancing factor of an entomopoxvirus . J. Invertebr. Pathol., 63: 14-18
    Xu X J, Yu L Y, Wu Y D, 2005. Disruption of a cadherin gene associated with resistance to Cry1Ac-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Appl. Environ. Microbio., 71(2): 948-954.
    Xue J L, Cai Q X, Zheng D S, et al. 2005. The synergistic activity between Cry1Aa and Cry1c from Bacillus thuringiensis against Spodoptera exigua and Helicoverpa armigera. Lett Appl Microbiol. 40(6): 460-465.
    Yamamoto T, Tanada Y. 1978. Phospholipid, an enhancin component in the synergetic factor of a granulosis virus of the armyworm, Pseudaletia unipuncta. J. Invertebr. Pathol., 31: 48-56.
    Yang Y K, Cai Q X, Cai Y J, et al. 2007. The synergism between Mtx1 from Bacillus sphaericus and Cyt1Aa from Bacillus thuringiensis to Culex quinquefasciatus. Wei Sheng Wu Xue Bao, 47(3): 456-460
    Zhang J H, Wang C Z, Qin J D. 2000. The interactions between soybean trypsin inhibitor and delta-endotoxin of Bacillus thuringiensis in Helicoverpa armigera larva. J. Invertebr Pathol., 75(4): 259-266
    Zhong J, Wang P, Granados R R. 1997. Studies on the possible effect of Trchoplusia ni granulosis virus enhancin on the binding and fusion of AcNPV with insect cells. Proceeding of 30th Annual Meeting of Society for Invertebrate Pathology, 71.
    Zhu C, Ruan L, Peng D, Yu Z, Sun M.Vegetative insecticidal protein enhancing the toxicity of Bacillus thuringiensis subsp kurstaki against Spodoptera exigua. Lett Appl Microbiol. 2006, 42(2): 109-14.
    曹琼. 2004.苏云金杆菌杀虫增效作用研究进展.武汉科技学院学报, 17(2) : 44-47.
    陈建武,余健秀,胡晓晖等. 2002.苏云金杆菌营养期杀虫蛋白的研究.中国生物工程杂志, 22(3): 33-36.
    陈涛. 1995.有害生物的微生物防治原理和技术.武汉:湖北科学技术出版社.
    陈涛,张友清,孙传柏,等. 1993.生物农药检测及其原理.北京:农业出版社. 208-210.
    陈在佴,吴继星,张志刚. 2003.蜡质芽孢杆菌12-14对苏云金杆菌增效作用的研究.湖北农业科学, (4): 49-51.
    崔云龙,田明,邵宗泽. 1993.紫外线使苏云金杆菌伴孢晶体失活机理的研究.微生物学报,20(4): 10-12.
    丁翠,邓塔,蔡秀玉. 1995.粘虫颗粒体病毒的增效因子提高杆状病毒的感染.昆虫学报, 38(4): 407-412.
    顾奇伟,林建国,王芳,等. 2005. BmNPV几丁质酶基因的表达及其产物对Bt杀虫剂的增效作用农业生物技术学报. 13(1): 96-101
    郭慧芳,方继朝,罗伟杰,等. 2003.不同昆虫病毒对斜纹夜蛾和甜菜夜蛾的联合增效作用.中国生物防治, 19(1): 23-26
    胡光辉,陈尔厚,陈世维,等. 2002. Bt-DCPV复合微生物杀虫剂防治文山松毛虫试验.云南林业科技, 98(1): 56-60
    黄大昉,林敏. 2001.农业微生物基因工程.北京:科学出版社.
    李国清,陈长琨,严焯辉. 2001b.苏云金杆菌与敌百虫混用对棉铃虫乙酰胆碱酯酶的影响.南京农业大学学报, 24(1): 51-54
    李国清,慕莉莉,陈长琨,等. 2001a. Bt与硫丹、氟铃脲对棉铃虫的联合作用.植物保护学报, 28(1): 61-66.
    李国清,慕莉莉,严焯辉,等. 2000. Bt与敌百虫、氰戊菊酯对棉铃虫的联合作用.农药, 39(2): 23-25.
    李荣森,罗绍彬,张用酶等. 1983.微生物防治害虫.北京:科学出版社. 164-175
    李荣森,罗成. 1989.苏云金杆菌伴孢晶体和芽孢孢衣的蛋白组成及其与毒力的关系.昆虫学报, 32(2): 149-156.
    李雪雁,李照会,许维岸. 2003.苏云金芽孢杆菌cry基因研究进展.昆虫知识, 40(1): 9-11.
    李志广,尹隽,钟江. 2002. TnGV增强蛋白在AcMNPV中的表达和活性分析.中国病毒学, 17(4): 326-330
    林开春. 1995.苏云金素与苏云金杆菌芽孢晶体混剂对小菜蛾的增效作用.植物保护学报, 22(1): 27-32
    刘强,丁翠, 1999.粘虫颗粒体病毒及其增效因子对粘虫核型多角体病毒的增效作用.应用与环境生物学报1999, 5(3): 300-304.
    刘相国,杨恭,邱并生,等. 2001.棉铃虫颗粒体病毒增效蛋白基因5-端截短片段的表达及增效活性测定. 41(2): 167-171
    龙綮新,庞义. 1994.昆虫细菌病.见:蒲蛰龙主编.昆虫病理学.广州:广东科技出版社. 219-342.
    陆秀君,王勤英,李国勋. 2003.昆虫围食膜的研究进展.河北农业大学学报. 26: 205-207
    吕颂雅,孟小林,徐进平,等. 1998.小菜蛾颗粒体病毒增效基因的初步研究.中国生物防治, 15(2):86-87
    马永平,欧阳,盂小林,等. 1999.杆状病毒增效蛋白研究进展.中国病毒学, 14(3): 185-l 89.
    孟小林,叶林柏, Chen Chiju,等. 1996.小菜蛾颗粒体病毒增效因子研究.武汉大学学报(自然科学版), 42(4) : 519-522.
    彭建新. 2000.杆状病毒分子生物学.武汉:华中师范大学出版社. 1-67
    邱德文,杨秀芬,芮昌辉,等. 2004.真菌新型激活蛋白对Bt制剂的增效作用,微生物学报, 44(5): 647-649
    邱思鑫,黄志鹏,黄必旺,等. 2002.添加剂对苏云金杆菌发酵液杀虫效果的影响.中国生物防治, 18(2): 62-66
    邵宗泽,崔云龙. 1995.两种鳞翅目幼虫对Bt敏感性的差异及其机理的探讨.中国生物防治. 11(2): 75-79.
    申继忠,钱存范. 1994.苏云金杆菌杀虫剂增效途径研究进展.生物防治通报. 10(3): 135-140.
    王立娟. 2002.粉纹夜蛾颗粒体病毒增强蛋白结构与功能的初步研究.复旦大学硕士学位论文, 12-33
    王琛柱,钦俊德. 1996.棉铃虫幼虫中肠主要蛋白酶活性的鉴定.昆虫学报, 39(1): 7-14.
    邬开朗,尹宜农,胡远扬,等. 2001.松毛虫质型多角体病毒对苏云金杆菌的增效作用,中国生物防治,17(3):141-142.
    徐健,刘琴,殷向东,等. 2006.苏云金杆菌ICP重组工程菌研究进展,华东昆虫学报,15(1): 53-58
    徐健,刘琴,祝树德. 2005.昆虫颗粒体病毒增效蛋白研究进展.华东昆虫学报, 14(4): 343-347.
    徐健,肖强,刘琴,等. 2006.苏云金杆菌与EoNPV混用的增效作用.江苏农业学报, 22(3): 243-247
    徐健,殷向东,朱锦磊,等. 2003a.苏云金杆菌毒力活性影响因子研究.江苏农业科学, (3): 41-42
    徐健,殷向东,朱锦磊,等. 2003b.粘虫颗粒体病毒对苏云金杆菌增效作用初探.江苏农业科学, (1): 30-31.
    殷向东,徐健,刘琴,等. 2004. Bt与PuGV-Ps复配最佳增效配比筛选方法.植物保护学报, 31(2): 319-320.
    殷向东,徐健,刘琴,等. 2006. Bt与EoNPV混用配比优劣性图谱分析.生态学报, 26(7): 2133-2138
    喻子牛.苏云金杆菌.北京:科学出版社, 1990, 1-117.
    袁哲明,陈浩涛,梁晨彩. 2006.重组增效蛋白对Bt和氯氰菊酯防治棉铃虫的增效作用.中国生物防治, 22 (3): 194- 97
    张继红,王琛柱,钦俊德. 2001.棉铃虫中肠类胰蛋白酶的部分纯化和性质测定及其对苏云金杆菌δ-内毒素的降解.昆虫学报,144(13): 282-289
    庄占兴,慕力义,洪淑梅. 1993.苏云金杆菌防治抗药性棉铃虫应用技术研究.农药, 32(6): 6-10.
    Tanada Y. 1959. Synergism between two viruses of the armyworm Pseudaletia unipuncta (Haworth) (Lepidoptera: Noctuidac). Invertebr Pathol, 1: 215-231.
    English L H, Readdy T L, 1992. Mode of action of delta-endotoxin from Bacillus thuringiensis: a comparison with other bacterial toxins. Insect Biochem Molec Biol. 22(1): 1-7.
    Gijzen M. et al. 1995. Characterization of viral enhancing activity from Trichoplusia ni granulosis virus. J. Invertebr. Pathol., 58: 203-210.
    Granados R R , Yan F, Bartholomew C, et al. 2001. Enhancement of Bacillus thuringiensis toxicity to Lepidopterous species with the enhancin from Trichoplusia ni granulovirus. Biological Control, 20: 153 - 1591
    Maeda S, Nagata M, Tanada Y, 1983. Ionic conditions affecting the release and absorption of an alkaline protease associated with the occlusion bodies of insect baculoviruses. J. Invertebr. Pathol., 4(3): 376-383
    Tanada Y, Himenom M, Omi E M. 1973. Isolation of a factor from the capsule of a granulosis virus, synergistic for nuclear polyhedrosis virus of the armyworm. Invertebr Pathol, 21: 31-90.
    Tanada Y. 1985. A synopsis of studies on the synergistic property of an insect baculovirus. Atribute to Edward A Strinhaus. J. Invertebr. Pathol. 45: 125-138.
    Wood H A. 1980. Protease degradation of Autographa californica nuclear polyhedrosis virus proteins. Virology, 103(2): 392-399.
    Zhu Y. et al. 1989. Location of synergistic factor in the capsule of a granulosis virus of the armyworm, Pseudaletia unipuncta. J. Invertebr. Pathol., 54: 49-56
    陈涛,张友清,孙传柏,等. 1993.生物农药检测及其原理.北京:农业出版社, 208-210
    丁翠,邓塔,蔡秀玉. 1995.粘虫颗粒体病毒的增效因子提高杆状病毒的感染.昆虫学报, 38(4): 407-413
    刘强,丁翠,蔡秀玉. 1998.粘虫颗粒体病毒增效因子的分离纯化及其生化性质.病毒学报, 14(4): 352-357
    刘相国,杨恭,邱并生,等. 2001.棉铃虫颗粒体病毒增效蛋白基因5-端截短片段的表达及增效活性测定. 41(2): 167-171
    袁哲明,陈浩涛,梁晨彩. 2006.重组增效蛋白对Bt和氯氰菊酯防治棉铃虫的增效作用.中国生物防治, 22 (3): 194- 97
    Brownbridge M. 1993. Feeding stimulation in chilo partellus (Swinhoe) (Lepidoptera: Pyralidae) larvae by some commonly available sugars and its effect on larval mortality caused by Bacillus thuringiensis (Berliner). Insect Sci. Appl. 14(4): 465-470.
    Earle SR, Gerald RS, Miguel AR. 1996. Ecological factor affecting the pathogenicity of Bacillus var. thuringiensis to the European corn borer and fall armyworm. J. Invertebr. Pathol., 8(3): 365-375.
    English L H, Readdy T L. 1992. Mode of action of delta-endotoxin from Bacillus thuringiensis: a comparison with other bacterial toxins. Insect Biochem. Molec. Biol., 22(1): 1-7.
    Granados RR, Fu Y, Corsaro B, Hughes PR. 2001. Enhancement of Bacillus thuringiensis toxicity to lepidopterous species with the enhancin from Trichoplusia ni granulovirus. Biological Control, 20: 153-159.
    Heimpel A M. 1967. A critical review of Bacillus thuringiensis vir. Thuringiensis Berliner and other crystalliferous bacteria. Ann. Rev. Entomol., 12: 287-322.
    Morris O N, Convers V, Kanagaratnam P. 1995. Chemcial additive effects on the efficacy of Bacillus thuringiensis Berliner subsp. Kurstaki against Mamestra configurata (Lepidoptera: Noctuidae). J. Econ. Entomol., 88(4): 814-824.
    Ogiwara K, Indrasith L, Asano A, Hori H. 1992. Processing ofδ-endotoxin from Bacillus thuringiensis subsp. kurtaki HD-1 and HD-73 by gut juices of various insect larvae. J. Invertebr. Pathol., 60: 121-126.
    Ruud A de Maagd, Alejandra Bravo, Neil Crickmore. 2001. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends in Genetics, 17: 193-199
    Satinder K,Brar M,Verma R D, et al. 2005. Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochemistry, 41: 323-342
    Sun YP, Johnson ER. 1960. Analysis of joint action of insecticides against house flies. J. Econ. Entomol., 53: 887-892.
    Tabashnik BE, Finson N, Groeter FR, et al. 1994. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proc. Natl. Acad. Sci. USA, 91: 4120-4124.
    Tanada Y, Hess RT, Omi EM, Yamamoto T. 1983. Localization of a synergistic factor of a granulosis virus by its esterase activity in the larval midgut of the armyworm, Pseudaletia unipuncta. Microbios, 37: 87-93.
    Tojo A, Aizawa K. 1983. Disolution and degradation of Bacillus thuringiensisδ-endotoxin by gut juice protease of the silkworm Bombyx Mori. Appl. Environ. Microbiol., 45(2): 576-580.
    Uchima K, Egerter DE, Tanada Y. 1989. Synergistic factor of a granulosis virus of the armyworm, Pseudaletia unipuncta: Its uptake and enhancement of virus infection in vitro. J. Invertebr. Pathol., 54: 156-164.
    Vicent V, Jean-Louis S, Raynald L. 2006. Influence of the biophysical and biochemical environment on the kinetic of pore formation by cry toxins. J. Invertebr. Pathol., 92: 160-165.
    Wang P, Granados RR. 1997. An intestinal mucin is the target substrate for a baculovirus enhancin. Proc. Natl. Acad. Sci. USA, 94: 6977-6982.
    Wang P, Granados RR. 1998. Observations on the presence of the peritrophic membrane in larval Trichoplusia ni. and its role in limiting baculovirus infection. J. Invertebr. Pathol., 72: 57-62.
    Wang P, Hammer DA, Granados RR. 1994. Interaction of Trichoplusia ni granulosis virus-encoded enhancin with the midgut epithelium and peritrophic membrane of four lepidopteran insects. Journal of General Virology, 75: 1961-1967.
    Washburn JO, Kirkpatrick BA, Volkman LE. 1995. Comparative pathogenesis of Autographa californica nuclear polyhedrosisvirus in larvae of Trichoplusia ni and Heliothis virescens. Virology, 209: 561–568.
    Yunovitz H, Sneh B, Yawetz A. 1986. A new sensitive method for determining the toxicity of a highly purified fraction fromδ-endotoxin produced by Bacillus thuringiensis var. entomocidus on isolated larval midgut of Spodoptera littoralis (Lepidoptera, Noetuidae). J. Invertebr. Pathol., 48: 223-231.
    阿地力沙塔尔,张永安,王玉珠. 2005.低温条件下苏云金杆菌增效剂的研究.林业科学研究, 18(1): 70-73.
    陈涛,张友清,孙传柏.等. 1993.生物农药检测及其原理.北京:农业出版社. 208-210.
    刘强,丁翠. 1999.粘虫颗粒体病毒及其增效因子对粘虫核型多角体病毒的增效作用.应用与环境生物学报, 6(3): 300-304.
    陆秀君,王勤英,李国勋. 2003.昆虫围食膜的研究进展.河北农业大学学报, 26: 205-207.
    王瑛,白成,温洁. 1980.苏云金杆菌晶体与芽孢分离的研究.微生物学报. 20(3): 285-288.
    徐健,刘琴,祝树德. 2005.颗粒体病毒增效蛋白研究进展.华东昆虫学报, 14(4): 343-347.
    Bell M R, Romine C L. 1986. Helipthis virescens and H. zea (Lepidoptera: Noctuidae): Dosage effects of feeding mixtures of Bacillus thuringiensis and a nuclear polyhedrosis virus on mortality and growth. Environ Entomol. 15(6): 1161-1165.
    Choma C T, Kaplan H. 1990. Folding and unfolding of the protoxin from Bacillus thuringiensis: evidence that the toxic moiety is present in an active confirmation. Biochem, 29: 10971-10977.
    English L H, Readdy T L. 1992. Mode of action of delta-endotoxin from Bacillus thuringiensis: a comparison with other bacterial toxins. Insect Biochem Molec Biol. 22(1): 1-7.
    Granados R R, Fu Y, Corsaro B, et al. 2001. Enhancement of Bacillus thuringiensis toxicity to lepidopterous species with the enhancin from Trichoplusia ni granulovirus. Biological Control, 20: 153-159.
    Maeda S, Nagata M, Tanada Y. 1983. Ionic conditions affecting the release and absorption of an alkaline protease associated with the occlusion bodies of insect baculoviruses. Journal of Invertebrate Pathology, 4(3): 376-383
    Milne R , Kaplan H. 1993. Purification and characterization of a trypsin-like digestive enzyme from spruce budworm (Choristoneura fumiferana) responsible for the activation of delta2endotoxin from Bacillus thuringiensis . Insect Biochem Mol Biol, 23(6): 663-673.
    Narayanan K. 2004. Insect defence: it’s impact on microbial contral of insect pests. Current science. 86(6):800-813.
    Ogiwara K, Indrasith L, Asano A, et al. 1992. Processing ofδ-endotoxin from Bacillus thuringiensis subsp. kurtaki HD-1 and HD-73 by gut juices of various insect larvae. J. Invertebr. Pathol., 60: 121-126.
    Satinder K. Brar M, Verma R D, et al. 2007. Bacillus thuringiensis proteases: production and role in growth, sporulation and synergism. Process Biochemistry, 42: 773-790
    Tojo A ,Aizawa K. 1983. Disolution and degradation of Bacillus thuringiensisδ-endotoxin by gut juice protease of the silkworm Bombyx Mori. Appl Environ Microbiol, 45(2): 576-580.
    Wood H A. 1980. Protease degradation of Autographa californica nuclear polyhedrosis virus proteins. Virology, 103(2): 392-399.
    丁翠,邓塔,蔡秀玉. 1995.粘虫颗粒体病毒的增效因子提高杆状病毒的感染.昆虫学报, 38(4):407-413.
    刘强,丁翠,蔡秀玉. 1998.粘虫颗粒体病毒增效因子的分离纯化及其生化性质.病毒学报, 14(4): 352-357.
    王琛柱,钦俊德. 1996.棉铃虫幼虫中肠主要蛋白酶活性的鉴定.昆虫学报, 39(1): 7-14.
    王瑛,白成,温洁. 1980.苏云金杆菌晶体与芽孢分离的研究.微生物学报. 20(3): 285-288.
    邬开朗,胡建芳,尹宜农等. 2000.菜青虫颗粒体病毒对苏云金杆菌的增效作用.中南民族学院学报(自然科学版), 19(2): 78-80.
    徐健,殷向东,朱锦磊,等. 2003.粘虫颗粒体病毒对苏云金杆菌增效作用初探.江苏农业科学, (1): 30-31.
    张继红. 1998.苏云金杆菌库斯塔克变种对棉铃虫的杀虫作用机理及增效研究.中国科学院动物研究所,北京,22-24
    English L H, Readdy T L. 1992. Mode of action of delta-endotoxin from Bacillus thuringiensis: a comparison with other bacterial toxins. Insect Biochem Molec Biol., 22(1): 1-7.
    Gill S S, Cowle E A, Poetrantonio P V. 1992. The mode of actionof Bacillus thuringiensis endotoxins Annu. Rev. Entomol., 37: 651-636
    Granados R R, Corsaro B C. 1990. Baculoviurs enhacing proteins and their implication for insect control. Prceedings of the Fifth international international colloquium on invertebrate pathology and microbial control, 174-178.
    Granados R R, Fu Y, Corsaro B, et al. 2001. Enhancement of Bacillus thuringiensis toxicity to Lepidopterous species with the enhancin from Trichoplusia ni granulovirus. Biological Control, 20: 153–159.
    Hofte H, Whiteley H R. 1989. Insecticidal proteins of Bacillus thuringiensis. Microbiol. Rev., 53: 242-255.
    Milne R, Kaplan H. 1993. Purification and characterization of a trypsin-like digestive enzyme from spruce budworm (Choristoneura fumiferana) responsible for the activation of delta-endotoxin from Bacillus thuringiensis. Insect Biochem. Mol. Biol., 23(6): 663-673.
    Moar W J, Trumble J T. 1987. Biologically derived insecticides against beet armyworm, Cahf. Agric., 41(11): 13-15.
    Ogiwara K, Indrasith L, Asano A, et al. 1992. Processing ofδ-endotoxin from Bacillus thuringiensis subsp. kurstaki HD-1 and HD-73 by gut juices of various insect larvae. J. Invertebr. Pathol., 60: 121-126.
    Shao Z Z , Cui Y L , Liu X L , et al. 1998. The processing ofδ-endotoxin of Bacillus thuringiensis subsp. kurstaki HD-1 in Heliothis armigera midgut juice and the effects of protease inhibitors. J Invertebr Pathol, 72 : 73 - 81.
    Tanada Y. 1985. A synopsis of studies on the synergistic property of an insect baculovirus. Atribute to Edward A Strinhaus. J. Invertebr. Pathol., 45: 125-138.
    Tojo A, Aizawa K. 1983. Disolution and degradation of Bacillus thuringiensisδ-endotoxin by gut juice protease of the silkworm Bombyx Mori. Appl Environ Microbiol., 45(2): 576-580.
    Wang P, Granados R R. 1997. An intestinal mucin is the target substrate for a baculovirus enhancin. Proc. Natl. Acad. Sci USA., 94: 6977-6982.
    Wang P, Hammer D A, Granados R R. 1994. Interaction of Trichoplusia ni granulosis virus-encoded enhancin with the midgut epithelium and peritrophic membrane of four lepidopteran insects. Journal of General Virology, 75: 1961-1967.
    Wood H A. 1980. Protease degradation of Autographa californica nuclear polyhedrosis virus proteins. Virology, 103(2): 392-399.
    马永平,欧阳,盂小林,等. 1999.杆状病毒增效蛋白研究进展.中国病毒学, 14(3): 185-l 89.
    邵宗泽,崔云龙. 1995.两种鳞翅目昆虫对苏云金芽孢杆菌敏感性差异的机理探讨.中国生物防治, 11: 75-79.
    王琛柱,钦俊德. 1996.棉铃虫幼虫中肠主要蛋白酶活性的鉴定.昆虫学报, 39(1): 7-14.
    Avital R, Menachem K, Nicolai S, et al. 1996. Synergistic activity of a Bacillus thuringiensis δ-endotoxin and a bacterial endochitinase against Spodoptera Littoralis larvae. Appl. and Environ. Microbiol., 62: 3581-3586.
    Hayakawaa T, Shitomia Y, Miyamotob K, et al. 2004. GalNAc pretreatment inhibits trapping of Bacillus thuringiensis Cry1Ac on the peritrophic membrane of Bombyx mori. FEBS Letters 576: 33-35.
    Lehane M J, Allingham P G, Weglicki P, et al. 1996. Composition of the peritrophic matrix of the tsetse fly, Glossina morsitans. Cell Tissue Res, 283:375-384.
    Lehane M J. 1997. Peritrophic matrix structure and function. Annu. Rev. Entomol., 42: 525-550. Moskal Y A, Oo M M, Jacobs-linrena M, et al. 1996. Peritrophic matrix proteins of A nopheles gambiae and Aedes egypti. Insect Mol Biol, 5:261–268.
    Peng J X, JIANG Z, ROBERT R, et al. 1999. A baculovirus enhancin alters the permeability of a mucosal midgut peritrophic matrix from lepidopteran larvae. Journal of Insect Physiology, 45: 159–166.
    Peters W. 1992.Zoophysiology: Peritrophic Membranes. Berlin:Springer-Verlag,
    Tellam RL, Eisemann C. 2000. Chitin is only a minor component of the peritrophic matrix from larvae of Lucilia cuprina. Insect Biochemistry and Molecular Biology, 30: 1189-1201.
    Tellam RL, Wijffels G, Willadsen P, 1999. Peritrophic matrix proteins. Insect Biochemistry and Molecular Biology, 29: 87–101.
    Thamthiankul S, Moar W J, Miller M E, et al. 2004. Improving the insecticidal activity of Bacillus thuringiensis subsp. aizawai against Spodoptera exigua by chromosomal expression of a chitinase gene. Appl. Microbiol. Biotechnol., 65(2): 183-192.
    Wang P, Granados R R. 1997. An intestinal mucin is the target for a baculovirus enhancin. Proc. Natl. Acad. Sci. USA, 94(14): 6977-6982.
    Wang P, Granados R R. 2001. Molecular structure of the peritrophic membrane (PM): identification of potential PM target sites for insect control. Archives of Insect Biochemistry and Physiology, 47:110-118.
    Wang P, Granados R R. Observations on the presence of the peritrophic membrane in larval Trichoplusia ni and its role in limiting baculovirus infection. J. Invertebr. Pathol., 1998, 72: 57-62.
    Wang, P., Granados, R.R., 1997a. An intestinal mucin is the target substrate for a baculovirus enhancin. Proc. Natl. Acad. Sci. USA 94, 6977–6982.
    Wang, P., Granados, R.R., 1997b. Molecular cloning and sequencing of a novel invertebrate intestinal mucin cDNA. J. Biol. Chem.272, 16663–16669.
    Yunovitz H, Sneh B, Yawetz A, 1986. A new sensitive method for determining the toxicity of a highly purified fraction fromδ-endotoxin produced by Bacillus thuringiensis var. entomocidus on isolated larval midgut of Spodoptera littoralis (Lepidoptera, Noetuidae). J. Invertebr. Pathol., 48: 223-231.
    吉洪湖,袁哲明. 2005.围食膜:害虫生物防治的潜在靶标.昆虫学报, 48(6): 968-974.
    相静波,刘惠霞,吴文君. 2004.昆虫围食膜的研究进展.昆虫知识, 41(2):116-121.
    郭郛,忻介六. 1989.昆虫学实验技术.北京:科学出版社, 112-116.
    Hashimoto Y, Corsaro B G, Granados R R. 1991. Location and nucleotide sequence of the gene encoding the viral enhancing factorof the Trichoplusia ni granulosis virus. J. Gen. Virol., 72: 2645-2651.
    Bischoff D S, Slavicek J M. 1997. Molecular analysis of an enhancing gene in the Lymantria dispar nuclear polyhedrosis virus. J. Virol. , 71 (11):8133–8140.
    J萨姆布鲁克, D W拉塞尔著,黄培堂等译. 2006.分子克隆试验指南(第三版). 27-30
    Roelvink P W, Corsaro B G, Granados R R. 1995. Characterization of the Helicoverpa armigera and Pseudaletia unipuncta granulovirus enhancin genes. J. Gen. Virol., 76 (11): 2 693-2 705.
    Rohrmann G F, Carnegie J W, Martignoni M E, et al. 1997. Characterization of the genome of the mucleopolyhedrosis bundle virus pathogenic for Orgyia pseudotsugata. Virology, 80: 412.
    Tanada Y. 1985. A synopsis of studies on the synergistic property of an insect baculovirus: a tribute to Edward A. Steinhaus. J. Invertebr. Pathol., 45: 125-138
    Xu J H, Hukuhara T. 1992. Enhanced infection of a nuclear polyhedrosis virus in larvae of the armyworm, Pseudaletia separata, by a factor in the spheroids of an entomopoxvirus. J. Invertebr. Pathol., 60: 259-264.
    吉洪湖,袁哲明. 2005.围食膜:害虫生物防治的潜在靶标.昆虫学报, 48 (6): 968-974.
    刘强,叶寅,白小东,等. 2001.粘虫颗粒体病毒增效因子的基因定位.昆虫学报, 44(2): 148-154.
    Granados R R , Yan F, Bartholomew C, et al. 2001. Enhancement of Bacillus thuringiensis toxicity to Lepidopterous species with the enhancin from Trichoplusia ni granulovirus. Biological Control , 20: 153-1591
    Hashimoto Y, Corsaro B G, Granaos R R. 1991. Location and nucleotide sequence of the gene encoding the viral enhancing factor of the Trichoplusia ni granulosis virus. J. Gen. Virol. , 72 (11): 2645-2651
    Hayakawa T, Shimojo E, Mori M et al. 2000. Enhancement of baculovirus infection in Spodoptera exigua (Lepidoptera: Noctuidae) larvae with Autographa californica nucleopolyhedrovirus or Nicotiana tabacum engineered with a granulovirus enhancin gene . Appl Entomol Zool. 35: 163-170.
    Liu X. Yang G, Qin B, Zhang K, Tian P. 2001. Expression of two truncated enhancin gene from Helicoverpa armigera granulosis birus in E. coli and its preliminary biosaaay. Wei Sheng Wu Xu Bao. 41(2): 167-172.
    Roelvink P W, Corsaro B G, Granados R R 1995. Characterization of the Helicoverpa armigera and Pseudaletia unipuncta granulovirus enhancin genes . Gen Virol., 76 (11): 2693-705.
    李志广,尹隽,钟江. 2002. TnGV增强蛋白在AcMNPV中的表达和活性分析.中国病毒学, 17(4): 326-330
    刘平,孟小林,徐近平,等. 1999.粉纹夜蛾颗粒体病毒增效因子C-末端片段的克隆表达及其生物活性初步测定.中国生物防治, 15 (4) :188-189.
    刘强,丁翠, 1999.粘虫颗粒体病毒及其增效因子对粘虫核型多角体病毒的增效作用.应用与环境生物学报,5(3): 300-304.
    刘相国,杨恭,邱并生,等. 2001.棉铃虫颗粒体病毒增效蛋白基因5-端截短片段的表达及增效活性测定. 41(2): 167-171.
    袁哲明,陈浩涛,梁晨彩. 2006.重组增效蛋白对Bt和氯氰菊酯防治棉铃虫的增效作用.中国生物防治, 22 (3): 194- 97.
    John A G, Sharlene R M. 2003. Sustainability of insect resistance management strategies for transgenic Bt corn. Biotechnology Advances, 22: 45–69
    Narayanan K. 2004. Insect defence: It impact on microbial control of insect pests. Current Science, 86(6): 800-814.
    Morris O N. 1977. Compatibility of 27 chemical insecticides with Bacillus thuringiensis Var. kurstaki. Can. Entomol. 109: 855-864.
    Morris O N. 1983. Effect of some chemical insecticides in the germination and replication of commercial Bacillus thuringiensis. J invertebr. Pathol., 26: 199-204.
    Narayanan K. 2004. Insect defence: its impact on microbial control of insect pests. Current Science, 86(6): 800-814.
    Raymond B, Sayyed A H, Wright D J. 2006. The compatibility of a nucleopolyhedrosis virus control with resistance management for Bacillus thuringiensis: co-infection and cross-resistance studies with the diamondback moth, Plutella xylostella. J Invertebr Pathol. 93(2): 114-20.
    Satinder K,Brar M,Verma R D, et al. 2006. Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochemistry, 41: 323–342
    Sun, Y. P. Johnson E. R. 1960. Analysis of joint action of insecticides against house flies. J. Econ. Ent., 53: 887~892
    Tanada Y. 1959. Synergism between two viruses of the armyworm, Pseudaletia unipuncta (Haworth) (Lepidoptera, Noctuidae). Journal of Insect Pathology, 1: 215-231
    陈涛,张友清,孙传柏等. 1993.生物农药检测及其原理.农业出版社,北京.
    功能. 2001.生物农药的发展机遇与挑战.中国生物防治, 17(4): 184-185
    国家质量技术监督局. 2000.农药田间药效试验准则.中国标准出版社,北京.
    刘步林主编. 1998.农药剂型加工技术.化学工业出版社
    谭福杰. 1987.农业害虫抗药性鉴定方法.南京农业大学学报, 4(增):111~117
    王喜忠,于才渊,周才君. 2002.喷雾干燥.化学工业出版社
    徐健,刘琴,谭永安等. 2008.粘虫颗粒体病毒对苏云金杆菌的增效特性及对Bt蛋白的降解活化作用.昆虫学报, 55(1): 26-32
    喻子牛主编. 1990.苏云金杆菌.科学出版社,北京.
    周荣华,陈华,程贤亮,等. 2006.昆虫病毒与苏云金杆菌混用研究应用进展.湖北植保, (4):41-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700