用户名: 密码: 验证码:
西南部分玉米地方种质资源的遗传多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据西南地区玉米地方品种的主要地域分布,本研究以来自四川、重庆、云南和贵州四省(市)的玉米地方种质群体为材料,对54个玉米地方品种群体做遗传多样性的SSR分析和B染色体的细胞学鉴定;并从中选取50个品种群体进行田间实验,分析玉米地方品种农艺、经济性状的差异表现;结合室内分析,研究低磷胁迫下玉米地方种质的主要形态和生理特性,探讨耐低磷玉米地方种质的筛选指标。主要结果如下:
     1.农艺、经济性状的差异表现分析结果表明,玉米地方品种在各农艺、经济性状上存在极显著差异。分析各性状的变异幅度,农艺性状株高、穗位高、总叶片数、散粉期、抽丝期和全生育期的变幅分别为213.25~322.98、87.30~198.59、15.50~24.38、69.50~94.50、70.50~93.50和114.00~142.00;经济性状穗长、秃尖长、穗粗、轴粗、穗行数、行粒数、穗粒重、百粒重和容重的变幅分别是8.40~18.32、0.30~2.28、2.49~4.88、1.51~2.74、8.70~17.05、16.17~31.39、26.57~161.68、9.00~36.03和245.00~739.00。农艺性状与经济性状的变异系数比较表明,经济性状的变异程度较农艺性状的变异程度高。农艺性状变异程度大小排序为穗位高、总叶数、抽丝期、散粉期、株高、全生育期;经济性状变异程度的大小排序为秃尖长、穗粒重、百粒重、行粒数、穗长、穗行数、穗粗、容重、轴粗。根据“主成分”分析结果,结合玉米育种目标,分析各玉米地方品种农艺、经济性状的分量值,在供试材料中评选出综合性状优良的地方品种有DP-11、DP-44、DP-42、DP-31、DP-65、DP-19、DP-60、DP-15、DP-57和DP-13。农艺、经济性状的聚类分析表明,同一产地来源玉米地方品种的农艺、经济性状存在较大差异,而不同产地来源的玉米地方品种可能具有相似的农艺、经济性状。
     2.基于SSR标记的遗传多样性分析结果,均匀覆盖玉米染色体组的42对SSR引物,在作DNA混合取样的54个玉米地方品种中检测到256个等位基因,每个SSR标记的等位基因数为2~9个,平均6.1个,多态信息量0.30~0.85,平均0.76,说明玉米地方品种群体遗传多样性丰富。根据遗传相似系数矩阵做出的树状图,将54个玉米地方品种大致划分成4类,来源于同一地区的多数玉米地方品种划分在同一类中,其遗传相似系数在0.60以上,表明玉米地方品种的地理分布与其遗传背景存在内在联系。比较SSR聚类与农艺经济性状聚类结果,2种聚类结果差异很大,这表明SSR分子标记所揭示的DNA的结构差异与“主成分”分析所揭示的表型差异是不一致的。从54个玉米地方品种中选出11个,每个品种随机抽取15个单株,共165个DNA单株样品,分析玉米地方品种的遗传结构及其品种内的遗传多样性。对于检测玉米地方品种的遗传多样性,DNA单株样品分析优于DNA混合样品分析,42对相同的SSR引物在11个玉米地方品种中检测到330个等位基因,平均等位基因数A=7.86,有效等位基因数=3.90,平均期望杂合度H_e=0.69,实际观察杂合度H_0=0.37。据遗传结构分析结果,固定指数(F)为0.25~0.79,表明玉米地方品种是典型的混合繁育系统;由于杂合体不足,玉米地方品种群体内的遗传结构偏离了Hardy-Weinberg平衡;杂合性基因多样度比率(F_(st))平均为0.07,表明品种间和品种内的遗传变异分别占总遗传变异的7%和93%。“主成分”分析(PCA)结果与品种间遗传距离分析结果相一致,同一品种群体内的个体以及来源于同一地区不同品种群体间的个体距离较近,相邻分布;来源于不同地区品种群体间的个体距离较远,产生明显分离。品种群体内遗传多样性分析结果表明,四川玉米地方品种的遗传变异水平、等位基因频率以及基因杂合度均为最高,贵州玉米地方品种的最低,表明在我国西南地区的四省(市)中,四川的玉米地方品种具有最丰富的遗传变异。
     3.B染色体细胞学鉴定结果表明,玉米地方品种的B染色体具有常见B染色体的基本特征,B染色体在地方品种细胞中的异常分布是细胞和植株个体存在B染色体数目变化的主要原因。在检测的54个玉米地方品种中有9个存在B染色体,B染色体数目在品种间发生0B~7B的数目变化,在同一品种的不同细胞间发生0B~3B的变化;具有1B、2B和3B染色体的地方品种分别占玉米地方品种总数的12.96%、5.56%和3.70%;在对每个玉米地方品种所检测的30个细胞中,具有0B、1B、2B和3B染色体的细胞比例分别为86.81%、5.42%、4.44%和3.33%。分析含B染色体玉米地方品种的地理分布,四川的东南部地区是玉米地方品种B染色体的集中分布区。尽管本研究未发现B染色体与基于SSR的DNA多态性的相关关系。然而,综合分析B染色体的地理分布和玉米地方品种群体的遗传多样性,支持西南地区玉米地方品种的地理演变途径为最早引进到四川的假说。
     4.分析低磷胁迫在苗期对玉米地方品种的主要生物学效应,结果表明,低磷胁迫下各地方品种的根体积、总叶面积、根干重和地上部干重均显著降低,而根冠比和根毛密度明显增加;同样,土壤缺磷诱导植株体内磷利用率、酸性磷酸酯酶活性、过氧化氢酶活性、过氧化物歧化酶活性以及丙二醛和脯氨酸含量的显著提高,但显著降低磷含量和可溶性蛋白质含量。不同玉米地方品种的耐低磷性存在明显的基因型差异,与低磷敏感玉米地方品种DP-36和DP-27比,低磷胁迫对耐低磷玉米地方品种DP-60、DP-02和DP-40影响较小。分析低磷胁迫下各生物学性状的变化,干物重和植株吸磷量的变化较大,表明干物重和吸磷量是苗期筛选玉米地方品种耐低磷种质的可靠指标。此外,酸性磷酸酯酶活性可作为筛选耐低磷种质的生化指标。低磷胁迫下干物重与缺磷症状的显著相关表明以植株缺磷症状为依据对玉米地方品种耐低磷等级的划分是可行的。基于上述结果,结合低磷胁迫下玉米地方品种后期的经济性状表现,在供试的50个玉米地方品种中,筛选出3个耐低磷地方品种DP-60、DP-02和DP-41,5个中耐低磷地方品种DP-12、DP-48、DP-54、DP-59和DP-65。
     5.综合分析供试玉米地方品种的农艺、经济性状,遗传多样性及其耐低磷营养特性。西南地区玉米地方品种抗病力强,多数地方品种高抗大、小斑病和锈病;群体遗传变异水平高,42个SSR标记在54个品种群体中共检测到256个等位位点,在11个群体内的165个个体中检测到330个等位位点,有效基因杂合度达0.67;品种类型丰富多样,生育期从早熟(114 d)到晚熟(142d),粒型有硬粒、马齿和半马齿,粒色有黄、白、红、蓝;耐低磷种质丰富。从供试的50个玉米地方品种中筛选到与育种目标相关、主要农艺经济性状优良的品种10个,品种群体内遗传变异丰富(等位位点数在6.00以上)的品种7个,可供作理论研究的含B染色体的玉米地方品种9,耐低磷品种3个,中耐低磷品种5个。多数玉米地方品种植株和穗位较高,株型松散,平均株高和穗高分别高达2.64和1.38 m;植株抗倒性差,表现程度不同的倒伏和倒折。鉴于地方品种遗传上的复杂性和适应性与丰产性的矛盾,建议采用优良地方种质群体改良、地方种质与外引种质组建群体和地方种质与热带种质进行相互改良这三种方法,对玉米地方种质进行间接利用。
Based on their geographical distribution, the maize landraces from Sichuan, Chongqing, Guizhou and Yunan in southwest China were used in the study. Genetic diversity of 54 maize landraces was tested by using microsatellite (SSR) loci and their B chromosomes were observed cytologically. In addition, a field trial was conducted to analysis agronomic and economic traits, and investigate main morphological and physiological changes of different maize landraces to low-P stress at the stage of seedling. The main results as following:
     1. Variances of maize landraces in all agronomic and economic traits were significant at 0.01 level. With regard to their ranges among landraces, plant height, ear height, total leaves, flowering period, silking and growth period were 213.25~322.98, 87.30~198.59, 15.50~24.38, 69.50~94.50, 70.50~93.50 and 114.00~142.00, respectively. The ranges of ear length, sterile length, ear diameter, axis ear, rows per ear, kernels per row, kernel weight per ear, 100-kernel weight and unit weight were 8.40~18.32, 0.30~2.28, 2.49~4.88, 1.51~2.74, 8.70~17.05, 16.17~31.39, 26.57~161.68, 9.00~36.03 and 245.00~739.00, respectively. In comparison of the variation coefficients between agronomic and economic traits, the latter was higher than the former. The ranges of ear height, total leaves, silking period, flowering period, plant height and growth period were, in turns, higher. Accordingly, those of sterile length, kernel weight per ear, 100-kernel weight, kernels per row, ear length, rows per ear, ear diameter, axis ear and unit weigh, in turns, higher. On the whole, maize landraces exhibited various strains, a large phynotypic varition, high plant individuals and resistance to disease. Based on the principal component of all agronomic and economic traits by Principal Component Analysis (PCA) as well as the goals of maize breeding, 10 landraces with excellent traits DP-11, DP-44, DP-42, DP-31, DP-65, DP-19, DP-60, DP-15, DP-57 and DP-13 were chosen from the materials studied. The results of the clustering analysis indicated that obvious differences existed in agronomic and economic traits of landraces with the same geographical origin, and there maight be similar traits in landraces with the different geographical origin.
     2. Genetic diversity of 54 maize landraces was tested by using bulk DNA samples and 42 microsatellite (SSR) loci distributed uniformly on 10 chromosomes of maize. A total of 256 alleles were detected among 54 landraces. At each locus, the number of alleles varied from 2 to 9, with an average of 6.1. Mean polymorphism information content was 0.78 ranging from 0.34 to 0.78. 54 landraces could be clustered into four groups by the clustering analysis based on the genetic similarity coefficients. The landraces collected from the same region could mostly be grouped together and their genetic similar coefficients were over 0.6. Comparison of the clustering result of agronomic and economic traits and that of SSR, no consistent relationship was found. This implied that DNA differences revealed by SSR were different from those by PCA. To reveal the genetic structure and genetic diversity within landraces, 165 individuals in total from 11 out of 54 landraces were analysed on the basis of the same 42 SSR loci. The analysis of individual DNA samples was proved superior to that of bulk DNA samples to identify genetic diversity of landraces. A total of 330 alleles were found in 11 landraces. Estimates of the mean number of alleles 'A', the effective allelic number 'A_e', the observed heterozygosity 'H_o' and expected heterozygosity 'H_e' were 7.86, 3.90, 0.69 and 0.37, respectively. An obvious genetic deviation from Hardy-Weinberg expectation was observed both among and within landraces and a considerable genetic variation was revealed within rather than among landraces. The results of Principal Component Analysis (PCA) were consistent with those of the clustering analysis and the genetic distance. Individuals within a region and a landrace were grouped more closely while the individuals from the different landraces and regions were located more distantly. According to genetic diversity within landraces, the landraces from Sichuan were the highest genetic variation, allelic frequency and gene heterozygosity. It indicated genetic diversity of landraces was more plentiful in Sichuan than in other 3 regions.
     3. B chromosomes (Bs) in 54 maize landraces from the four regions was tested by means of cytological observations. General B characteristics was found in the B chromosome of maize landraces. The aberrant distribution and separation of B chromosome might result in their differences in plant individuals and cells. Out of 54 maize landraces, 9 landraces with Bs were observed. the number of Bs was found variable. The number of Bs in the landraces ranged from 0 to 7 and varied from 0 to 3 in a single cell. The 12.96, 5.56 and 3.70% of the total landraces were found with 1B, 2B and 3Bs. It was indicated that southeastern Sichuan was the main distribution area of the landraces with Bs in southwest China. The relationship between B chromosomes and DNA polymorphism based on SSRs was not found in the study. However, the geographical distribution of B chromosomes, together with the genetic diversity of the maize landraces, supported that maize landraces in southwest China were firstly introduced to Sichuan from India via Tibet to a certain degree.
     4. Using two P treatment, a randomized complete block design with two replications was designed to investigate biological changes of different maize landraces. The results showed that P-deficiency significantly decreased root volume, total leaf area, and plant dry weight, but greatly increased density of root hairs and root top ratio. In addition, P-deficiency induced the significant enhancement of phosphorus utilization efficiency and the amount of proline, malondialdehye (MDA), acid phosphatase (APase), peroxidase ( POD) and superoxide dismutase (SOD), but the significant reduction of P uptake and soluable protein content. Since P-deficiency had smaller effects on the P-tolerant maize landraces DP-60, DP-02 and DP-40 as compared with P-sensitive landraces DP-36 and DP-27, it was demonstrated that differences of tolerance to P-deficiency existed among different maize landraces. Dry matter weight and P uptake were suggested as reliable screening standards to identify low-P intolerant germplasm in landraces and Apase activity as physiological one. The results based on correlation analysis also indicated that it was feasible to rate low-P intolerant levels by P-deficiency symptoms. According to the effects of low-P stress on economic traits and the results discussed above, low-P intolerant landraces DP-60, DP-02, and DP-41 were found. At the same time, medium-P intolerant DP-12, DP-48, DP-54, DP-59 and DP-65 were also selected.
     5. On the whole, maize landraces exhibited a large phynotypic varition and resistance to leaf blight, leaf spot as well as brown spot of corn. Using 42 SSR loci, high genetic variation was found among landraces with a total of 256 alleles being detected. At the same SSR loci, 330 alleles in total were found in 11 landraces with a high expected heterozygosity 'H_e' (0.67). There were various strains in landraces. Their growth period varied from the early to late maturing and the kernels had yellow, red, white and blue flint, as well as yellow, red, white and blue dent. Rich low-P intolerant germplasm was also found. 10, 7, 9, 3 and 5 landraces with excellent traits, high genetic variation, B chromosomes, low-P intolerant and medium-P intolerant, respectively, were chosen from the materials studied. However, most landraces exhibited poor in plant height and resistance to lodging. Their plant and ear height were 2.64 and 1.38 m, respectively. Since direct utilization on maize landrace germplasm is difficult in maize breeding, it is suggested that the germplasm is utilized indirectly by using genetic innovation of landrace populations, mass selection between landrace and exotic germplasm, and recurrent selection between the landrace and tropic germplasm.
引文
[1]胡延吉等.植物育种学[M].北京:高等教育出版社,2003:21-23.
    [2]王晓等.作物品种资源研究方法[M].北京:农业出版社,1985:4-5.
    [3]陈灵芝.中国的生物多样性-现状及其保护对策[M].北京:科学出版社,1993:100-106.
    [4]陈灵芝.生物多样性保护现状及其对策[M].北京:科技出版社,1994:13-35.
    [5]施立明.遗传多样性及其保护层[J].生命科学信息,1990,(2):158-164.
    [6]葛颂,洪德元.遗传多样性及其检测方法[M].北京:中国科学技术出版社,1994:123-140.
    [7]胡志昂,王洪新.北京地区野生大豆天然群体遗传结构[J].植物学报,1985,27(6):599-604.
    [8]王雅平等.小麦对赤霉病抗性不同品种SOD活性[J].植物生理学报,1993,19(4):353-358.
    [9]Mortiz C.Defining evolutionarily significant units for conservation[J].Trends Ecol.Evol.,1994,(2):373-375.
    [10]Plante Y,Schmutz S M,Lang K,et al.Detection of leucochimates in bovine twins by DNA fingerprinting[J].Anim.Genet.,1991,(23):295-302.
    [11]Nei M.Molecular evolutionary genetics[M].New York:Columbia University Press,1987.
    [12]Avise J C.The use of restriclion endonuclease to measure mtDNA sequnence relatedness in natural population[J].Gennetics,1979,(92):279-295.
    [13]Brown W M.Rapid evolution of animal mitochondrial DNA[J].PN.AS.USA,1979,(76):1967-1971
    [14]Cann R M,Wilson A C.Mitochondrial DNA and human evolution[J].Nature,1987,(325):31-36.
    [15]Cardle L,Ramsay L,Milbourne D,et al.Computational and experimental characterization of physically clustered simple sequence repeats in plants[J].Genetics,2000,156(2):847-854.
    [16]Subramanian S,Mishra R K,Singh L.Genome-wide analysis of microsatellite repeats in humans:their abundance and density in specific genomic regions[J].Genome Biol.,2003,4(2):13.
    [17]Levinson G,Gutman G A.Slipped-strand mispairing:a major mechanism for DNA sequence evolution[J].Mol.Biol.Evol.,1987,(4):203-221.
    [18]Katti M V,Ranjekar P K,Gupta V S.Differential distribution of simple sequence repeats in eukaryotic genome sequences[J].Mol.Biol.Evol.,2001,18(7):1161-1167.
    [19]Varshney R K,Thiel T,Stein N,et al.In silico,analysis on frequency and distribution of microsatellites in ESTs of some cereal species[J].Cell Mol.Biol.Lett,2002,7(2A):537-546.
    [20]Ammiraju J S S,Dholakia B B,Santra D K,et al.Identification of inter simple sequence repeat (ISSR)markers associated with seed size in wheat[J].Theor.Appl.Genet.,2001,(102):726-732.
    [21]Chambercian J S,Gibbs R A,Ranier J E,et al.Detection screening of the ducherme muscular dystrophy locus via mutiplex DNA amplification[J].Nucl.Acids Res.,1988(16):1141-1156.
    [22]况少青,王建民,黄薇,等.应用多重PCR进行微卫星荧光标记-半自动基因组扫描[J].中华医学遗传学杂志,1998,15(2):104-107.
    [23]黄银花,胡晓汀,徐慰倬,等.影响多重PCR扩增效果的因素[J].遗传,2003,25(1):65-68.
    [24]庄启南,张静,熊晓燕,等.应用毛细管电泳技术进行高效准确的微卫星位点自动基因级扫描[J].中华医学遗传学杂志,2002,19(3):235-256.
    [25]Nei M.Estimation of average heterozygosity and genetic distance from a small number of individual[J].Genetics,1978,(89):583-590.
    [26]Rogers J S.Measure of genetic similarity and genetic distance.Studies in genetics Vll[M].Univ.of Tex.Publ.,1972:145-153.
    [27]Goodman M M,Stuber C W.lsozyme variation among races of maize in Bolivia[J].Maydica,1983,(28):169-187.
    [28]Link W C,Dixkens M,Schwall M A E.Genetic diversity in European and Mediterranean faba bean germplasm revealed by RAPD makers[J].Theor.Appl.Genet.,1995,(90):27-32.
    [29]Rohlf F J.NTSYS-PC version 1.80,Distribution by Exeter Software,Setanket.New York,1993.
    [30]Mei M,Syed N H,Gao W,et al.Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium)[J].Theor.Appl.Genet.,2004,108(2):280-291.
    [31]Jiang G H,He Y Q,Xu C G,et al.The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross[J].Theor.App.l Genet.,2004,108(4):688-698.
    [32]Sharopova N,McMullen M D,Schultz L,et al.Development and mapping of SSR markers for maize[J].Plant Mol.Biol.,2002,48(56):463-481.
    [33]Andaya V C,Mackill D J.QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica x indica cross[J].Theor.Appl.Genet.,2003,106(6):1084-1090.
    [34]WU J Y,TANG J H,Xia Z,et al.Molecular tagging of a new resistance gene to maize dwarf mosaic virus using microsatellite markers[J].Acta Botanica Sinica,2002,44(2):177-180.
    [35]Yu S B,Xu W J,Vijayakumar C H,et al.Molecular diversity and multilocus organization of the parental lines used in the international rice molecular breeding Program[J].Theor.Appl.Genet.,2003,108(1):131-140.
    [36]Nagaraju J,Kathirvel M,Kumar R R,et al.Genetic analysis of traditional and evolved Basmati and non-Basmati rice varieties by using fluorescence-based ISSR-PCR and SSR markers.Proc.Nat.Acad.Sci.,2002,99(9):5836-5841.
    [37]Akagi H,Yokozeki Y,Inagaki A,et al.Highly polymorphic microsatellites of rice consist of AT repeats,and a classification of closely related cultivars with these microsatellite loci[J].Theor.Appl.Genet.,1997,(94):61-67.
    [38]Donald A B,Seltzer J D,Xie C Q,et al.Assessing probability of ancestry using simple sequence repeat pro~iles:applications to maize hybrids and inbreds[J].Genetics,2002,(161):813-824.
    [39]番兴明,张世煌,谭静,等.根据SSR标记划分优质蛋白玉米自交系的杂种优势群[J].作物学报,2003,29(1):105-110.
    [40]朱作峰,孙传清,姜廷波,等.水稻品种SSR与RFLP及其与杂种优势的关系比较研究[J].遗传学报,2001,28(8):738-745.
    [41]Reif J C,Melchinger A E,Xia X C,et al.Use of SSRs for establishing heterotic groups in subtropical maize[J].Theor.Appl.Genet.,2003,107(5):947-957.
    [42]Plaschke J,Ganal M W,Roder M S.SSR detection of genetic diversity in closely related bread wheat using microsatellite markers[J].Theor.Appl.Genet.,1995,(38):715-723.
    [43]张志清,郑有良,魏育明,等.四川主栽小麦品种遗传多样性的SSR标记研究[J].麦类作物学报,2002,22(2):5-9.
    [44]郭小丽,刘冬成,罗静,等.我国部分优质小麦品种遗传差异的SSR标记分析[J].麦类作物学报,2004,24(1):1-5.
    [45]刘纪麟等.玉米育种学[M].北京:农业出版社,2001:15-16.
    [46]Anderson E,Cutler H G..Races of Zea mays:I.Their recognition and classification[J].Ann.Missouri Bot.Gard.,1942,(29):69-89.
    [47]Hallauer A R,Miranda J B.Quantitative genetics in maize breeding[M].New York:The Iowa State Univ.Press,1981.
    [48]吴绍骙,汪茂华.玉米品种资源的重要作用及对其利用问题的意见.作物品种资源研究[M].北京:农业出版社,1984:174-180.
    [49]张世煌,赵琦.CIMMYT玉米项目的种质改良研究[J].世界农业,1996,(4):17-20.
    [50]陈彦惠等.玉米遗传育种学[M].郑州:河南科技出版社,1996:176-192.
    [51]中国农业科学院作物品种资源研究所,山东省农业科学院玉米研究所.全国玉米品种资源目录(第一集)[M].北京:农业出版社,1988.1-433.
    [52]中国农业科学院作物品种资源研究所,山东省农业科学院玉米研究所.全国玉米品种资源目录(第二集)[M].北京:农业出版社,1990:1-193.
    [53]中国农业科学院作物品种资源研究所,山东省农业科学院玉米研究所.全国玉米品种资源目录(第三集)[M].北京:农业出版社,1996:1-240.
    [54]佟屏亚.中国玉米种质资源的整理与成就[J].中国种业,2001,(3):16-18.
    [55]荣廷昭,李晚忱,杨克诚.西南生态区玉米育种[M].北京:农业出版社,2003:38-64.
    [56]柏光晓,任洪.贵州省玉米地方种质资源利用潜力[J].作物杂志(增刊),1998.47-49.
    [57]柏光晓,任洪,兰仲模.贵州玉米优良种质资源鉴评初报[J].山地农业生物学报,2000(3):156-159.
    [58]杨武云,罗大刚,杨淑筠.四川主要作物种质资源的研究进展[J].西南农业学报,1998(11):23-26.
    [59]韦国能.外来玉米种质资源在广西的利用潜力[J].作物杂志(增刊),1998:33-36.
    [60]吴启坤.昭通不同生态区的玉米育种[J].云南农业科技,1999(3):13-16.
    [61]刘学玲,姜立雁,高惠林,等.美国玉米种质类群分析与评价.农业与技术,1999,19(1):25-27.
    [62]Yves V,Sharon M,Yoshihiro M,et al.An analysis of genetic diversity across the maize genome using microsatellites[J].Genetics,2005,(169):1617-1631.
    [63]亢伟民,王永晋,卢超.温热带玉米种质改良的现状与趋势分析[J].种子,2004,(4):34-36.
    [64]Jennifer M T,Rex B.Diverse adapted populations for improving northern maize inbreds[J].Crop Sci.,2004,(44):1444-1450.
    [65]Marilyn L W,Xia X C,Jose C,et al.Genetic characterization of CIMMYT inbred maize lines and open pollinated populations using large scale fingerprinting methods[J].Crop Sci.,2002,(42):1832-1941.
    [66]彭泽斌,张世煌,刘新芝.我国玉米种质的改良创新与利用[J].玉米科学,1997,5(2):5-8.
    [67]沈浩,刘登义.遗传多样性概述[J].生物学杂志,2001,18(3):5-7.
    [68]刘勋甲,郑用链,刘纪麟.玉米轮回选择群体遗传多样性RAPD分子标记评估[J].中国农业科学,1999,32(3):14-20.
    [69]李高科,潘光堂.西南玉米区种质利用现状及研究进展[J].玉米科学,2005,13(2):3-7.
    [70]潘光堂 三重测交法在玉米群体改良中的应用研究[J].四川农业大学学报,1986,4(1):129-138.
    [71]张建辉,杨克诚.5个玉米人工合成群体主要性状育种潜势分析[J].2005,四川农业大学硕士学位论文.
    [72]夏九成,杨克诚,张怀渝.控制双亲的混合选择对热带玉米群体墨白964的改良效应[J].作物学报,2004,30(10):980-989.
    [73]马燕斌,杨克诚.6个玉米人工合成群体的遗传潜势分析.2006,四川农业大学硕士论文.
    [74]张晓芳.“九五”期间玉米种质资源品质分析研究报告[J].植物遗传资源科学,2005,2(1):52-53.
    [75]Hang L,Zheng Y L.Investigation and evaluation of local varieties of maize from southwest China[J].Genetic Engineering and Crop Improvement,1994,(32):327-338.
    [76]袁力行,Warbu M.利用RFLP,SSR,AFLP和RAPD标记分析玉米自效系遗传多样性的比较研究[J].遗传学报,2000,27(8):725-733.
    [77]James G G,Joanne A,Labate K,et al.SSR variation in important U.S.maize inbred lines[J].Crop Sci.,2002,(42):951-958.
    [78]吴渝生,郑用琏,孙荣,等.基于SSR标记的云南糯玉米、爆裂玉米地方种质遗传多样性研究[J].作物学报,2004,30(1):36-42.
    [79]杜金友,王海波,等.SSR和AFLP分析玉米遗传多样性的研究[J].华北农学报,2003,18(1):59-63.
    [80]Xia X C,Reif J C,Hoisington D A,et al.Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers[J].Lowland Tropical Maize.Crop Science,2004,(4):2230-2237.
    [81]高世斌,荣廷昭,李晚忱,等.19个玉米自交系的数量性状和AFLPs的遗传差异比较研究[J].华北农学报,2004,19(2):24-27.
    [82]陶刚,刘作易,朱英,等.利用RAPD分子标记对优良玉米种质的遗传分析和鉴定[J].西南农业学报,2004,17(6):681-684.
    [83]郭彦,杨洪双,周国利,等.RAPD技术在黑糯玉米亲缘关系划分上的应用[J].生物技术,2005,15(1):39-41.
    [84]聂永心,张丽,潘光堂,等.四川省常用玉米自交系SSR遗传多样性分析[J].分子植物育种,2005,3(1):43-51.
    [85]Melchinger A E,Lee M,Lamkey K R,et al.Genetic diversity for restriction length polymorphisms and heterosis for two diallele sets of maize inbreds[J].Theor.Appl.Genet.,1990,(6):221-228.
    [86]Mumm M M,Dudley J W.A classification of 148 U.S maize inbreds:I.Cluster analysis based on RFLPs[J].Crops Sci.,1994,(34):842-851.
    [87]Messmer M M,Melchiner A E,Hermann R,et al.Relationships among early European maize inbreds[J].Crops Sci.,1993,(33):944-950.
    [88]Dubreuil P,Dufour K E,Causse M,et al.Organization of RFLP diversity among inbred lines of maize representing the most significant heterotic groups[J].Crops Sci.,1996,36(3):790-799.
    [89]Smith J S C,Chin E C L,Shu H,et al.An evalution of the utility of SSR loci as molecular markers in maize(Zea mays L.):Comparison with data from RFLPs and pedigree[J].Theor.Appl.Genet.,1997,(95):163-173.
    [90]Warburton M L,Xia X C,Crossa J,et al.Genetic characterization of CIMMYT inbred maize lines and open pollinated populations using large scale finger printing methods[J].Crop Sci.,2002,(42):1832-1840.
    [91]戴景瑞.我国玉米遗传育种的回顾和展望玉米遗传育种国际学术讨论会文集.长春,2000,9:1-7.
    [92]吴景锋.我国主要玉米杂交种种质基础评述[J].中国农业科学,1983,2:1-8.
    [93]曾三省.中国玉米杂交种的种质基础[J].中国农业科学,1990,23(4):1-9.
    [94]王懿波,王振华,王永普,等.中国玉米主要种质杂种优势利用模式的研究[J].中国农业科学,1997,30(4):16-24.
    [95]刘新芝,彭泽斌,傅骏骅,等.RAPD在玉米类群划分研究中的应用[J].中国农业科学,1997,30:44-51_
    [96]袁力行,傅骏骅,刘新芝,等.用分子标记预测玉米杂种优势的研究[J].中国农业科学,2000,33(6):6-12.
    [97]黄益勤,李建生.利用RFLP标记划分45份玉米自交系杂种优势群的研究[J].中国农业科学,2001,34(3):244-250
    [98]Li Y,Du J,Wang T,et al.Genetic diversity and relationships among Chinese maize inbred lines revealed by SSR markers[J].Maydica,2002,(47):93-101.
    [99]曹永国,向道权,黄烈健,等.SSR分了标记与玉米杂种优势关系的研究[J].农业生物技术学报,2002,10(2):120-123.
    [100]滕丈涛.十年来中国玉米杂种优势群及其模式变化的分析[J].中国农业科学2004,37(12):1804-1811.
    [101]Sprague G F.General vs specific combining ability in single crosses of corn[J].Am.Soc.Agrom,1942,(34):923-932.
    [102]Griffing B.Concept of general and specific combining ability in relation to diallel crossing systems[J],Biol.Sci.,1956,(9):463-493.
    [103]Griffing B.A generalized treatment of the use of diallel crosses in quantitative inheritance[J],Heredity,1956,(10):31-45.
    [104]何海军,寇思荣,周玉乾,等.含热带亚热带种质玉米自交系的杂优潜势研究[J].甘肃农业科技,2005,7:10-15.
    [105]王国强,蔡一林,王久光,等.10个玉米自交系株型性状的配合力分析[J].西南农业大学学报,2005,27(3):374-377
    [106]刘志新,姜敏,王金君,等.国内几个主要玉米群体材料配合力分析及利用价值评价[J].杂粮作物,2005,25(3):125-128.
    [107]番兴明,陈洪梅,谭静等.利用配合力和SSR标记对热带和温带玉米自交系进行杂种优势群划分[J].云南农业科技,2003,(B06):20-28.
    [108]吴连成,陈彦惠,张世煌,等.14个热带、亚热带玉米群体杂交优势组合模式分析,河南农业大学学报,2003,37(4):322-325.
    [109]张祖新,郑用琏,立建生,等.三峡地区玉米地方品种的遗传潜势[J].华中农业大学报,1994,13(15):450-455.
    [110]卢洪,郑用琏,李建生,等.27个玉米地方品种的配合力和杂种优势群的研究[J].华中农业大学学报,1994,13(6):545-552.
    [111]魏国才,南元涛,唐跃文,等.黑龙江省玉米地方种质资源的筛选分析利用研究[J].玉米科学,2001,9(3):32-33.
    [112]陈庆华.玉米群体改良在创造新种质资源和选系中的效应与方法探讨[J].辽宁农业科学,1998,2:16-18.
    [113]胡学安,吴凤兰,魏良明,等.热带、亚热带玉米种质的研究与利用[J].国外农学—杂粮作物,1999,19(3):4-9.
    [114]檀国庆,刘兴贰,王玉贞,等.玉米外来种质研究和利用及其进展[J].吉林农业科学,2002,27(5):8-13.
    [115]霍仕平.中国西南山区玉米杂交种的种质基础[J].玉米科学,2002,10(2):3-6.
    [116]铁双贵,刘丁良,郑用琏.玉米人工合成群体配合力效应及遗传潜势的研究[J].作物学报,2000,26(1):28-34.
    [117]Humberto M,Valdes R.A model for marker based selection in gene introgression breeding programs[J].Crop Sci.,2000,(40):91-98.
    [118]唐祈林.用玉米近缘材料创造玉米新种质[J].中国农业科学(增刊),2000,33:62-66.
    [119]李冬郁,郭乐群,张忠,等.玉米野生近缘种类玉米的研究和利用[J].玉米科学,2001,9(2):11-13.
    [120]姜明月.辽宁省玉米种质资源研究存在的问题及解决方法初探[J].国外农学-杂粮作物,1999,19(6):4-5.
    [121]李新海,徐尚忠,李建生.CIMMIYT群体与中国骨千玉米自交系杂种优势关系的研究[J].作物学报,2001,27(5):575-581.
    [122]凌浩儒.玉米自交系M9的选育及应用[J].广西农业科学,1999,(1):4-6.
    [123]黄素华,滕文涛,王玉娟,等.利用SSR标记分析玉米轮回选择群体的遗传多样性[J].遗传学报,2004,31(1):73-80.
    [124]滕海涛,赵久然,郭景伦,等.玉米种质创新的技术途径[J].玉米科学,2000,8(3):23-25.
    [125]李旬.染色体遗传导论[M].长沙:湖南科学技术出版社,1991:189-190.
    [126]Beukeboom L W.Bewildering Bs:an impression of the frist B Chromosome conference[J].Heredity,1994,(73):328-336.
    [127]Jamilena M M.Characterization of repeated sequenes from microdissected B chromosome of Cropis Capillarid[J].Chromosome,1995,(104):113-120.
    [128]王玉元.染色体遗传中的一个不解之谜-B染色体[J].武汉植物学研究,1997,15(1):73-79.
    [129]罗鹏.植物细胞遗传学[M].北京:高等教育出版社,1991:189-190.
    [130]齐克森.玉米B染色体的细胞遗传学研究[J].贵州农学院学报,1994,13(3):1-5.
    [131]夏泉.B染色体及其属性[J].生物科学动态,1987,(4):9-14.
    [132]Staub W S.Leaf striping correlated with the presence of B chromosomes in maize[J].Heredity,1987,(78):71-74.
    [133]Chilton M D,Mccarthy B J.DNA from maize with and without B chromosomes:A comparative study[J].Genetics,1973,(74):605-614.
    [134]郭歌.黑麦B染色体端粒相关序列的克隆[J].植物学报,1998,40(12):109-116.
    [135]Jin W W,Jonathan C L,Juan M V.Molecular and functional dissection of the maize B chromosome centromere[J].The Plant Cell,2005,(17):1412-1423.
    [136]Zhong X Q,Hui Z,Xiu L L,Cheng B C,Wen Q S,Rui Y C.The molecular characterization of maize B chromosome specific AFLPs[J].Cell Research,2002,12(1):63-68.
    [137]Alfenito M R,Birchler J A.Molecular characterization of a maize B chromosome centric sequence[J].Genetics,1993,(135):189-197.
    [138]祁仲夏.玉米B染色体特异RAPD分子标记的染色体定位[J].植物学报,2002,44(4):123-129.
    [139]Cheng Y M,Lin B Y.Cloning and characterization of maize B chromosome sequences derived from microdissection[J].Genetics,2003,(164):299-310
    [140]祁促夏.B染色体分子生物学研究进展[J].细胞生物学杂志,2002,24(4):199-202.
    [141]吕忠贵,扬圆.浅析氮磷化肥的使用及对农业生态环境污染[J].农业环境与发展,1997,(3):30-34.
    [142]向春阳,关义新,凌碧莹.玉米氮素效率基因型差异的研究进展[J].玉米科学,2002,10(1):75-77.
    [143]陆欣.土壤肥料学[M].北京:中国农业大学出版社,2002:26-38.
    [144]黄绍文.氮、磷和钾营养对优质玉米子粒产量和营养品质的影响[J].植物营养与肥料学报,2004,10(3):225-230.
    [145]严小龙,张福锁.植物营养遗传学[M].中国农业出版社,1997:315-328.
    [139]李绍长,白萍,龚江.作物磷效率研究进展[J].石河子大学学报,2002,6(3):112-119.
    [146]刘景辉,刘克礼.玉米需磷规律的研究[J].内蒙古农牧学院学报,2003,16(6):129-137.
    [147]王艳,孙杰.玉米自交系苗期生物学性状与磷效率的相关性[J].山西农业大学学报,2003,(1):170-178.
    [148]刘世强.高产玉米苗期对磷素营养的需要[J].国外农学,1990,(1):36-40.
    [149]龚江,白治新,陈强,等.供磷水平对不同磷效率玉米根系的生长及磷营养的影响[J].新疆农业科学,2004,41(2):118-120.
    [150]王艳,李晓林,张福锁.不同基因型植物耐低磷胁迫适应机理的研究进展[J].生态农业研究,2000,6(4):34-36.
    [151]李绍长,龚江,王军.玉米自交系苗期耐低磷基因型的筛选[J].玉米科学,2003,11(3):85-89.
    [152]Reiter H G,Dawn A B,Robert G M.Phosphorus starvation inducible metabolism in lycopersicon esculentum[J].Phant Physiology,1991,87:711-715.
    [153]邱化蛟,许秀美.植物磷素利用效率[J].莱阳农学院学报,2001,18(2):116-120.
    [154]Bunya H.Phosphate deficiency in maize.V.Mobilization of nitrogen and phosphorus within shoots of young p/ants and its relationship to senescence[J].Plant cell physiology,1995,36(6):1041-1049.
    [155]张凤路,杨志良.耐旱性玉米筛选的形态指标研究[J].河北农业大学学报,2003,26(3):312-321.
    [156]李志洪,陈丹.磷水平对不同基因型玉米根系形态和磷吸收动力学的影响[J].吉林农业大学学报,1995,17(4):40-43.
    [157]张福锁.土壤与植物营养研究新动态[M].北京:北京农业大学出版社,1992.
    [158]刘向生,陈范骏,春亮,等.玉米自交系耐低磷胁迫的基因型差异[J].玉米科学,2003,11(3):23-27.
    [159]杨丽娟,李贵琴.玉米缺素症状的研究[J].玉米科学,2000,8(2):75-79.
    [160]黄亚群,刘社平,王激清,等.春小麦品种磷营养效率研究性状相关与筛选指标的确定[J]. 麦类作物学报,2000,20(1):39-43.
    [161]邢宏燕,王二明.有效利用土壤磷的小麦种质筛选方法研究[J].作物学报,2002,26(6):213-220.
    [162]王晋,强继业.玉米吸收磷素营养的代谢及分布[J].西南农业大学学报,2001,24(2):226-232.
    [163]张凤路.耐旱和低氮胁迫玉米种质筛选技术.玉米科学,2001,9(2):14-17.
    [164]曹翠玲,郝红梅,李生秀.氮素水平对作物膜透性等生理特性的影响.西北植物学报,2002,22(6):1343-1347.
    [165]向春阳,常强,马兴林,等.玉米不同基因型对氮营养胁迫的反应.黑龙江八一农垦大学学报,2002,14(4):5-7.
    [166]汤继华,谢惠敏,胡彦民,等.缺氮条件下玉米自交系叶绿素含量与光合效率的变化.华北农学报,2005,20(5):10-12.
    [167]曹敏建,衣莹,佟占星,等.耐低氮胁迫玉米的筛选与评价.玉米科学,2000,8(4):64-69.
    [168]闫洪奎,曹敏建,胡兴波,等.玉米耐低钾胁迫鉴定指标的筛选.玉米科学,2003,11(3):70-73.
    [169]刘蓓,曹敏建,闫洪奎.低钾胁迫下不同耐性玉米自交系生理差异的研究.玉米科学,2006,14(3):90-92.
    [170]曹敏建,王淑琴,松本英明.玉米自交系对低钾胁迫耐性的差异.作物学报,1999,25(2):224-259.
    [171]付凤玲,潘光堂,荣廷昭,等.玉米耐旱系数的多元回归分析[J].作物学报,2003,5(3):468-472.
    [172]路贵和,戴景瑞,张书奎,等.不同干旱胁迫条件下我国玉米骨干自交系的抗旱性比较研究[J].作物学报,2005,10(10):1284-1288.
    [173]高玉华.玉米抗旱品系的筛选及其种质资源的改良和创新的研究[J].玉米科学(增刊),2003,(11):20-21.
    [174]李德华,贺立源,刘武定.玉米自交系耐铝性评价及根系形态解剖特征[J].作物学报,2004,9(9):947-952.
    [175]钱晓刚.玉米耐瘠种质资源的研究[J].种子,2002,6(6):217-223.
    [176]赵君.玉米弯孢菌叶斑病抗性的ADAA遗传模型的分析[J].作物学报,2002,1(1):127-130.
    [177]杨典洱.禾谷镰刀菌引起玉米青枯病的抗性基因遗传分析[J].作物学报,2002,5(3):389-392.
    [178]邓德祥,蒋思霞,卞云龙.玉米对黄曲霉菌抗性种质资源的筛选[J].作物品种资源,1999,3(2):30-33.
    [179]宋淑云.玉米种质资源抗丝黑穗病鉴定[J].吉林农业科学,2000,25(3):32-33
    [180]赵宝荣.玉米自交系资源对大斑病抗病性鉴定[J].玉米科学,2000,8(1):91-92.
    [181]何康来,王振营,周大荣.玉米抗螟性鉴定方法与评价标准[J].沈阳农业大学学报,2000,10(5):439-43.
    [182]于永涛.玉米种质资源H_(12)和Mol7抗亚洲玉米螟的QTL分析[J].植物遗传资源学报,2003,4(2):94-98.
    [183]陈英杰,张蕊,王丹恕.玉米自交系对粉茎螟的抗性研究.杂粮作物,2001,21(1):35-37.
    [184]刘宗华.玉米转Bt基因自交系的抗玉米螟特性鉴定初报[J].作物学报,2003,7(4):621-625.
    [185]南京农业大学.土壤农化分析[M].北京:农业出版社,1996:216-219.
    [186]Mclachlan K D.Effects of drought,aging and phosphorus status on leaf acid phosphatase activity in wheat[J].Australia Agriculture,1987,35:777-787.
    [187]张自良.植物生理学实验指导[M].北京:高等教育出版社,1990:141-158.
    [188]段运平,陈卫国,李明顺,等.利用SSR标记分析27个个群体的遗传关系[J].中国农业科学,2006,39(6):1102-1113.
    [189]李丹.国外引进玉米种质资源的改良与利用[J].作物品种资源(增刊),1993,(25):75-79.
    [190]刘世建,荣廷昭,杨俊品,等.四川玉米地方种质的SSR聚类分析[J].作物学报,2004,30(3):221-226.
    [191]Liu Y J,Huang Y B,Rong T Z,et al.Comparative analysis of genetic diversity in landraces of waxy maize from Yunnan and Guizhou using SSR markers[J].Agricultural Sciences in China,2005,4(9):648-653.
    [192]Dreisigacker S,Zhang M L,Warburton B,et al.Genetic diversity among and within CIMMYT wheat landrace accessions investigated with SSRs and implications for plant genetic resources management[J].Crop sci.,2005,45(2):653-661.
    [193]郭庆法,高新学,汪黎明,等.玉米核心种质的构建与有效利用[J].中国农业科学(增刊),2000,(32):49-56.
    [194]Carlson R W,Rosemon R.A new property of the maize B chromosome[J].Genetics,1992,(131):211-223.
    [195]Puertas M J.Nature and evolution of B chromosomes in plant:A non-coding but information-rich part of plants genomes[J].Cytogenet Genome Res.,2002,(96):198-205.
    [196]Carlson R W.The B chromosome of maize[J].CRC.Crit.Rev.Plant Sci.,1986,(3):201-226.
    [197]Langdon T,Seago C,Jones R N,et al.De novo evolution of satellite DNA on the rye B chromosome[J].Genetics,2000,(154):869-884.
    [198]Shi L,Zhu T,Mogensen L,et al.Sperm identification in maize by fluorescence in situ hybridization[J].Plant Cell,1996,(8):815-821.
    [199]Akagi H,Yokozeki Y,Inagaki A,et al.Highly Poplymorphic microsatellites of rice consist of AT repeats,and a classification of closely related cultivars with these microsatellite loci[J].Theor.Appl.Genet.,1997,(94):61-67.
    [200]刘永安,冯海生,陈志国,等.植物染色体核型分析常用方法概述[J].贵州农业科学,2006,34(1):98-102.
    [201]Mangelsdorf P C.The origin of com.Scientific American[J].1986,255:72-78.
    [202]Zhang L M,He L Y,Li J S,et al.Phosphorus nutrient characteristics of different maize(Zea mays L.)inbreds for tolerance to Low-P Stress[J].Agricultural Sciences in China,2005,4(4):281-287.
    [203]Hajabbasi M A,Schumacher T E.Phosphorus effects on root growth and development in two maize genotypes[J].Plant and Soil,1994,(158):39-46.
    [204]张丽梅,贺立源,李建生,等.玉米自交系耐低磷材料苗期筛选研究[J].中国农业科学,2004,37(12):1955-1959.
    [205]Baylis G T S.Root hairs and phycomycetous mycorrhizas in phosphorus deficient soil[J].Plant and Soil,(33):713-716.
    [206]Barry D A J,Miller M H.Phosphorus nutritional requirement of maize seedlings for maximum yield[J].Agronomy Journal,1989,(81):95-99.
    [207]梁秀兰,林英春,年海,等.低磷胁迫对不同基因型玉米主要生理生化特性的影响[J].作物学报,2005,31(5):667-669.
    [208]曹黎明,潘晓华.水稻耐低磷基因型种质的筛选与鉴定[J].江西农业大学学报,2000,22(2):162-168.
    [209]Gourley J P,Allan D L,Russelle M P.Plant nutrient efficiency:A comprison of definitions and suggested improvement[J].Plant and Soil,1994,158:29-37.
    [210]Alvaro eleuerio da silva,Gabelman W H.Sereening maize inbred lines for tolerance to low-P stress condition[J].Plant and Soil,1992,146:181-187.
    [211]丁洪,李生秀,郭庆元,等.酸性磷酸酯酶活性与大豆耐低磷能力的相关研究[J].植物营养与肥料学报,1997,3(20):123-127.
    [212]廖星,李志玉,王江薇,等.甘蓝型油菜耐缺磷种质筛选指标的研究[J].中国农业科学(增刊),1999,(32):107-111.
    [213]Marshall D R,Brown A H D.Optimum sampling strategies in genetic conservation[M].Cambridge,England:Cambridge Univ.Press,1975:53-80.
    [214]Reif F C,Melchinger A E,Xia X C,et al.Genetic distance based on simple sequence repeats and heterosis in tropical maize populations[J].Crop Sci,2003,43(4):1275-1282.
    [215]Dubreuil P,Dufour P,Krejci E,et al.Organization of RFLP diversity among inbred lines of maize representing the most significant heterotic groups[J].Crop Sci,1996,36(3):790-799.
    [216]Dubreuil P,Rebourg C,Merlino M,et al.Evaluation of a DNA pool-sampling strategy for estimating the RFLP diversity of maize populations[J].Plant Molecular Biology Reporter,1999,(17):123-138.
    [217]Virs P S,Ford B V,Jackson M T,et al.Use of RAPD for the study of diversity within plant germplasm collections[J].Heredity,1995,(74):170-179.
    [218]Gilbert J E,Lewis R V,Wilkinson M J,et al.Developing an appropriate strategy to assess genetic variability in plant geraplasm collections[J].Theor.Appl.Genet.,1999,(98):1125-1131.
    [219]Divaret I,Margale E,Thomas G.RAPD markers on seed bulks efficiently assess the genetic diversity of a Brassica oleracea L.collection[J].Theor.Appl.Genet.,1999,(98):1029-1035.
    [220]刘雪,李明顺,李新海,等.利用SSR标记分析玉米群体遗传变异的取样方法[J].作物学报,2005,31(7):858-863.
    [221]Rebourg C,Dubreuil P,Charcosset A.Genetic diversity among maiz populations:Bulk RFLP analysis of 65 accession[J].Maydica,1999,(44):237-249.
    [222]黎裕,王天宇,田松杰,等.利用分子标记分析遗传多样性时的玉米群体取样策略研究[J].植物遗传资源学报,2003,(4):314-317.
    [223]李懋学,张赞平.作物染色及其研究技术[M].北京:中国农业出版社,1996,1-60.
    [224]张贵友.普通遗传学实验指导[M].北京:清华大学出版社,2003,1-8.
    [225]Regina E,Martins F,Calligaris K P.Chromosomal studies on neotropical Limnocharitaceae (Alismatales)[J].Aquatic Botany,2002(74):33-41.
    [226]Fride B M,Cermeno C,Zeller F J.C banding polymorphism and analysis of nucleolar activity in Dasypyrum villosum(L.)Candargy,and its added chromosomes to hexaploid wheat and the amphidploid Triticum diccocum D.villosum[J].Theor.Appl.Genet.,1987,73:337-342.
    [227]Gill B S,Gimber G.Giemsa C banding and evolution of wheat[J].Proc.Natl.Acad.Sci.,1974,71:4086-4090.
    [228]Jiang J,Gill B S.Sequential chromosome banding and in situ hybridization analysis[J].Genome,1993,36:792-795.
    [229]黄东益,郑成木,庄南生,等.甘蔗染色体组构成系统演化的研究[J].热带作物学报,2000,20(1):43-51.
    [230]隆有庆,傅华龙,苏静娟.春兰的核型分析[J].四川大学学报,2000,37(4):578-581.
    [231]邱爱军,魏凌基,吴玲,等.粗柄独尾草染色体核型分析[J].石子河大学学报,2004,22(5):415-416.
    [232]刘文献,陈佩度,刘大钧.将大赖草种植转移给普通小麦的研究.V.三个普通小麦2大赖草二体异附加系的选育与鉴定[J].南京农业大学报,1997,20(2):6-10.
    [233]王晶,向风宁,夏光敏,等.普通小麦与高冰草体细胞杂种F5代株系的核型分析[J].麦类作物学报,2003,23(1):12-16.
    [234]孙彦,周禾,史得宽。新麦草有丝分裂及核型分析[J].草地学报,2000,8(3):193-197.
    [235]戴秀梅,傅大雄,徐如宏,等.硬粒小麦-偏凹凸山羊草6倍体的核型分析[J].麦类作物学报,2000,20(2):8-12.
    [236]伍玲,张霞,马淼,等.新疆独尾草属植物核型分析[A].全国第二届甘草学术讨论会第二届植物资源开发利用与保护讨论学术会会议论文摘要集[C].北京:中国植物学会,2004,72-78.
    [237]吴景锋.玉米育种研究进展.北京:科学出版社,1992,54-61.
    [238]刘树朋,刘艳岩,王永柱,等.对玉米地方种质利用的建议[J].辽宁学业科学,2005,(3): 43-44.
    [239]晏庆九,张健,许明陆,等.三峡库区72份玉米地方品种产量性状的评价[J].植物遗传资源学报,2001,2(1):12-17.
    [240]程伟东,周文亮,谭贤杰,等.中国玉米分子标记技术研究进展[J].中国农学通报,2005,21(2):49-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700