用户名: 密码: 验证码:
逆境应答基因OsHSP81和OsCaMBP的克隆与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱、低温和土壤盐渍化等逆境胁迫将严重影响作物的生长和发育,降低产量。为了保障粮食安全,改善和提高作物对环境胁迫的抗性一直是农业生产的主要目标之一。随着植物分子生物学的发展,发掘与抗逆相关的新基因,将对耐逆作物品种的选育开辟新的途径。
     水稻作为最主要的作物之一,提高其抗逆能力将对粮食稳产具有重要的意义。在改善水稻的抗逆方面,定向的基因调控技术具有非常广阔的发展前景。近十年来已经有许多抗逆相关基因被转入水稻中,并获得了一些提高抗逆性的转基因植株。但是,水稻中仍然有许多未知抗逆基因没有被发现和利用。因此,本文将运用分子生物学技术,期望从水稻中找到在抗逆过程中具有重要意义的共调节因子,拟通过基因调节技术最终提高水稻的抗逆能力。为此,本文主要进行了以下三个方面的研究:
     1.利用荧光差异显示技术克隆逆境(低温)相关基因
     本实验采用mRNA荧光差异显示(Fluorescence Differential Display,FDD)技术,结合大矩阵筛选,对水稻抗低温的差异片段进行了大规模的分离筛选。获得了954个低温条件下的差异表达片段。其中,受低温特异诱导表达的片段200余个,在低温下表达增加的片段300余个,表达降低的片段400余个。通过亚克隆技术及测序分析,我们从中选取了2个在逆境条件下发生选择性剪接现象的基因进行了分析。通过半定量RT-PCR技术、蛋白质功能分析、蛋白质相互作用等技术,进一步探讨了这两个基因在水稻抗逆中的功能。
     2.水稻选择性剪接基因OsHSP81的功能研究
     (1)利用RT-PCR技术,我们克隆到了一个具有HSP90家族典型结构的新基因。该基因cDNA全长3395bp,包含919bp的5′端非编码区,376bp的3′端非编码区和2100bp的开放阅读框,推测编码一个699个氨基酸的蛋白质,其预测分子量是80.2kD,等电点为4.85,命名为OsHSP81。在克隆OsHSP81基因时还发现了它在转录过程中出现选择性剪接现象,产生了另一个转录文本OsHSP81-S。OsHSP81-S与OsHSP81位于同一基因座位上,只是ATPase功能域完全缺失。
     (2)利用半定量RT-PCR方法对OsHSP81和OsHSP81-S在低温、高温、干旱、高盐和激素等胁迫下进行表达分析,发现OsHSP81和OsHSP81-S在未经逆境胁迫处理时,均出现不同程度的表达;在低温、干旱、GA_3和ABA胁迫下,OsHSP81和OsHSP81-S的表达量都是由降低到升高;高温、高盐和IAA胁迫下,OsHSP81表达量由升高到降低,而OsHSP81-S在这三种胁迫下,其表达量变化不显著,基本维持在一个相对稳定的表达水平下。此外,研究还发现OsHSP81和OsHSP81-S在相同逆境胁迫不同时间段存在着表达量差异。
     (3)使用GST融合蛋白技术,在大肠杆菌中诱导出OsHSP81和OsHSP81-S两种融合蛋白。融合蛋白经过纯化定量后进行ATPase酶活性分析,结果表明OsHSP81具有比较高的ATPase酶活性,而OsHSP81-S蛋白由于ATPase功能域的缺失不具有ATPase酶活性。同时,HSP90特异抑制物格尔德霉素(geldanamycin)的加入明显抑制了OsHSP81的ATPase酶活性,进一步证实了OsHSP81具有ATPase酶活性。
     (4)从酵母双杂交(Y2H)实验中筛选出与OsHSP81相互作用的蛋白OsPRP1、RBB13-3、P450,以及含ZIM domain的未知蛋白和一些水稻未知基因。其中OsHSP81和OsHSP81-S均与OsPRP1相互作用,可以确定OsPRP1与HSP81结合的部位不在ATPase酶活性区。另外,在AD和BD载体互换验证实验中,分别把OsPRP1的部分和全长序列构建到BD载体中,结果显示OsPRP1的PRR中间区域与OsHSP81和OsHSP 81-S的C端相结合。
     3.水稻选择性剪接基因OsCaMBP在不同逆境下的表达分析
     (1)经RT-PCR扩增后测序得到2094 bp的cDNA序列。该序列的编码区位于115 bp到1824 bp,编码569个氨基酸残基,预测分子量为63.2 kD。第133~162氨基酸构成IQ基序,140~150氨基酸为典型的IQ钙调素结合基序,属于钙不依赖型钙调素结合蛋白。因此,将此基因编码的氨基酸命名为水稻钙调素结合蛋白OsCaMBP。同时,在热激和低温处理时,OsCaMBP还发现了选择性剪接现象。
     (2)通过半定量RT-PCR方法对OsCaMBP在低温和高温胁迫下表达进行分析,OsCaMBP均不同程度地受到低温和高温诱导。在低温胁迫处理时,30 min-4 h期间OsCaMBP开始表达并逐步上升,在8 h出现表达高峰后表达量相对稳定;而在高温胁迫处理时,叶鞘在15 min即出现表达高峰,之后随着时间的推移表达量逐渐下降,而在根和叶中均为30 min~2 h表达量不断增加,并在2 h出现表达高峰,随后逐渐下降。OsCaMBP在逆境胁迫下具有器官表达差异。
     通过FDD技术,我们从水稻中筛选出了多个可能与逆境相关的基因。本文中发现的选择性剪接基因OsHSP81和OsCaMBP均已初步证实在不同逆境胁迫下其表达量发生改变。根据它们在逆境胁迫下的表现表达特性,可以推测它们在水稻抗/耐逆过程起着重要作用。在今后的工作中,我们将从多方面对它们在抗逆方面的功能进行分析,以及更加深入地研究它们在基因网路上的作用机制。
Some abiotic stress such as drought, cold and salination can influence the crop's normal growth and development, and reduce its yield. So improve crop's abiotic stress tolerance can play a major role in the increase of yield to ensure food security. With the development of plant molecular biology, finding the new gene associate with abiotic stress has opened up a new era for crop breeding.
     As rice is considered one of the major crops, the development of new cultivars with enhanced abiotic stress-tolerance will undoubtedly have an important effect on global food production. The transgenic approach offers an attractive alternative to conventional techniques for the genetic improvement of rice cultivars. In recent years, an array of stress-related genes has already been transferred to rice to improve its resistance against abiotic stresses. Many transgenic rice plants with enhanced abiotic stress-tolerance have been obtained. But there still have many genes we do not find and isolate which can improve the rice's tolerance yet. Therefore, we focused on isolating some co-regulation factor of rice which can improve rice stress tolerance by molecular biology technology. The main results are provided as follows:
     1. Isolate the rice genes which induced by abiotic stress with fluorescent differential display.
     In order to discover a gene associated with abiotic stress, we utilize the fluorescent differential display (FDD) to screen the differential expressed gene between cold and drought stress in rice.
     We had obtained 954 differential expression gene fragment which induced by abiotic stress by subcloning and sequencing. About 200 gene fragment were induced by cold specific,~300 gene fragment over-expressed and~400 under-expressed in cold and drought stress. We choose two interesting gene fragment of them for further analysis because of the common character: alternative splicing.
     2. Function analysis of alternative splicing gene 0sHSP81
     (1) A rice HSP90 family gene, OsHSP81, was cloning from rice treated with cold-stress by the fluorescence differential display (FDD) screening method. Its cDNA sequence (3395bp) contains an ORF encoding a 699 amino acids protein (80.2 kD). Meanwhile, we found another transcript OsHSP81-S was produced by alternative splicing. OsHSP81-S and OsHSP81 were located at the same gene locus. Without the ATPase domain, the OsHSP81-S and OsHSP81 encode the same protein sequence.
     (2) Analysis the OsHSP81 and OsHSP81-S's expression under different stress (low temperature, heat shock, drought, NaCl, GA_3, IAA and ABA) by semi-quantitative RT-PCR. The OsHSP81 and OsHSP81-S mRNA was already detected in control treatment, and the decrease of OsHSP81 and OsHSP81-S mRNA were apparent when rice after being exposed to low temperature, drought, GA3 and ABA, but not sooner than 8 hour. In heat shock, NaCl and IAA treatment, the expression of OsHSP81 increase very quickly, in contrast with OsHSP81-S expression smoothly. Furthermore, the result indicated that the two genes existed different expression level at the same treatment time.
     (3) By GST fusion protein system, we induced and purified the OsHSP81 and OsHSP81-S fusion proteins. ATPaes assay showed that OsHSP81 possessed ATPase, but OsHSP81-S not to have because of the ATPase domain deletion. Meanwhile, Geldanamycin can prevent OsHSP81 ATPase activity.
     (4) Screening proteins to interact with OsHSP81 and OsHSP81-S by yeast two-hybrid system. We got three proteins which names were OsPRP1, RBBI3-3, P450, and some unknown protein in rice. The interaction between the OsHSP81, OsHSP81-S and OsPRP1 were confirmed by transfer the insert library from the AD to the DNA-BD vector and vice versa, and then repeat the two-hybrid assay. The result support that the PRR of OsPRP1 interact with OsHSP81 and OsHSP81-S C-terminal.
     3. Cloning and Tissue-specific expression of the OsCaMBP gene in response to various treatments
     (1) We isolated OsCaMBP, a rice CaM-binding protein that contains an IQ domain at the N-tenninus. Its cDNA sequence (2094 bp) contains an ORF encoding a 569 amino acids protein, the predicted molecular weight was 63.2 kD. An IQ motif was found at the position of 140-150 amino acid, and IQ calmodulin-binding motif at the position of 133-162 amino acids. These motifs were the most typical for the structures belonging to calcium-free CaM binding proteins family. In addition, we found the alternative splicing of OsCaMBP under heat shock and low temperature treatment.
     (2) Semi-quantitative RT-PCR analysis showed that the expression of OsCaMBP was remarkably inducible not only with cold treatment, but also with heat-shock treatment. OsCaMBP was undetectable under normal condition, and induced not only with 1h cold treatment (8℃, 1h), but also with heat-shock treatment (42℃, 15 min), suggesting that this gene plays important roles in the signaling pathway in rice under both cold and heat-shock stresses.
     Using fluorescent differential display, we isolated many rice gene fragments which associated with abiotic stress. In this article, their expression pattern of two new genes OsHSP81 and OsCaMBP from rice with an alternative splicing mechanism under abiotic stress had verified. Because of these two genes' important character, the thorough studies of their stress-resistant and the two genes interacting mechanism will carry on.
引文
[1] Blencowe BJ, Alternative splicing: new insights from global analyses. Cell. 2006, 126:37-47.
    
    [2] Matlin AJ. Clark F, Smith CW, Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol. 2005. 6:386-398.
    [3] Zheng CL, Kwon YS, Li HR, et al.. MAASE: an alternative splicing database designed for supporting splicing microarray applications. Rna. 2005, 11:1767-1776.
    [4] Wang BB, Brendel V, Genomewide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci U S A. 2006, 103:7175-7180.
    [5] Pan Q, Shai O, Misquitta C, et al., Revealing global regulatory features of mammalian alternative splicing using a quantitative microarray platform. Mol Cell. 2004, 16:929-941.
    [6] Sugnet CW, Srinivasan K, Clark TA, et al., Unusual intron conservation near tissue-regulated exons found by splicing microarrays. PLoS Comput Biol. 2006, 2:e4.
    [7] Johnson JM, Castle J, Garrett-Engele P, et al., Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science. 2003, 302:2141-2144.
    [8] Zhang C, Li HR, Fan JB, et al.. Profiling alternatively spliced mRNA isoforms for prostate cancer classification. BMC Bioinformatics. 2006, 7:202.
    [9] Shen Y, Yu D, Hiel H, et al.. Alternative splicing of the Ca(v)1.3 channel IQ domain, a molecular switch for Ca2+-dependent inactivation within auditory hair cells. J Neurosci. 2006, 26:10690-10699.
    [10] Miller M, Huse K, Szafranski K, et al.. Widespread occurrence of alternative splicing at NAGNAG acceptors contributes to proteome plasticity. Nat Genet. 2004, 36:1255-1257.
    [11] Chern TM, van Nimwegen E. Kai C. et al.. A simple physical model predicts small exon length variations. PLoS Genet. 2006, 2:e45.
    [12] Ohler U, Shomron N, Burge CB, Recognition of unknown conserved alternatively spliced exons. PLoS Comput Biol. 2005. 1:113-122.
    
    [13] Kornblihtt AR, Promoter usage and alternative splicing. Curr Opin Cell Biol. 2005. 17:262-268.
    [14] Kornblihtt AR, Chromatin, transcript elongation and alternative splicing. Nat Struct Mol Biol. 2006. 13:5-7.
    [15] Gromak N, Rideau A, Southby J, et al., The PTB interacting protein raverl regulates alpha-tropomyosin alternative splicing. Embo J. 2003, 22:6356-6364.
    [16] Graveley BR, Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing intronic RNA secondary structures. Cell. 2005, 123:65-73.
    [17] Chen BE. Kondo M, Gamier A, et al., The molecular diversity of Dscam is functionally required for neuronal wiring specificity in Drosophila. Cell. 2006, 125:607-620.
    [18] Bentley DL, Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr Opin Cell Biol. 2005, 17:251-256.
    [19] Dye MJ. Gromak N. Proudfoot NJ, Exon tethering in transcription by RNA polymerase II. Mol Cell. 2006, 21:849-859.
    [20] Horiuchi T, Aigaki T. Alternative trans-splicing: a novel mode of pre-mRNA processing. Biol Cell. 2006. 98:135-140.
    [21] Stol(?) V. Gauhar Z. Mason C. et al.. A gene expression map for the euchromatic genome of Drosophila melanogastcr. Science. 2004. 306:655-660.
    [22] Boucher L, Ouzounis CA, Enright AJ, et al., A genome-wide survey of RS domain proteins. Rna. 2001, 7:1693-1701.
    [23]Su Z,Wang J,Yu J,et al.,Evolution of alternative splicing after gene duplication.Genome Res.2006,16:182-189.
    [24]Beffert U,Weeber EJ,Durudas A,et al.,Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor Apoer2.Neuron.2005,47:567-579.
    [25]Yeo GW,Van Nostrand E,Holste D,et al.,Identification and analysis of alternative splicing events conserved in human and mouse.Proc Natl Acad Sci USA.2005,102:2850-2855.
    [26]Lev-Maor G,Sorek R,Shomron N,et al.,The birth of an alternatively spliced exon:3' splice-site selection in Alu exons.Science.2003,300:1288-1291.
    [27]Resch A,Xing Y,Alekseyenko A,et al.,Evidence for a subpopulation of conserved alternative splicing events under selection pressure for protein reading frame preservation.Nucleic Acids Res.2004,32:1261-1269.
    [28]Lewis BP,Green RE,Brenner SE,Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans.Proc Natl Acad Sci USA.2003,100:189-192.
    [29]Back D,Green P,Sequence conservation,relative isoform frequencies,and nonsense-mediated decay in evolutionarily conserved alternative splicing.Proc Natl Acad Sci USA.2005,102:12813-12818.
    [30]Pan Q,Saltzman AL,Kim YK,et al.,Quantitative microarray profiling provides evidence against widespread coupling of alternative splicing with nonsense-mediated mRNA decay to control gene expression.Genes Dev.2006,20:153-158.
    [31]Xing Y,Lee C,Evidence of functional selection pressure for alternative splicing events that accelerate evolution of protein subsequences.Proc Natl Acad Sci USA.2005,102:13526-13531.
    [32]Kanadia RN,Johnstone KA,Mankodi A,et al.,A muscleblind knockout model for myotonic dystrophy.Science.2003,302:1978-1980.
    [33]Wang P,Yen B,Guo JT,et al.,Structural genomics analysis of alternative splicing and application to isoform structure modeling.Proc Natl Acad Sci USA.2005,102:18920-18925.
    [34]Kopelman NM,Lancet D,Yanai I,Alternative splicing and gene duplication are inversely correlated evolutionary mechanisms.Nat Genet.2005,37:588-589.
    [35]Hughes AL,Friedman R,Gene duplication and the properties of biological networks.J Mol Evol.2005,61:758-764.
    [36]Le K,Mitsouras K,Roy M,et al.,Detecting tissue-specific regulation of alternative splicing as a qualitative change in microarray data.Nucleic Acids Res.2004,32:e180.
    [37]Dulac C,Sex and the single splice.Cell.2005,121:664-666.
    [38]Ule J,Ule A,Spencer J,et al.,Nova regulates brain-specific splicing to shape the synapse.Nat Genet.2005,37:844-852.
    [39]Ule J,Jensen KB,Ruggiu M,et al.,CLIP identifies Nova-regulated RNA networks in the brain.Science.2003,302:1212-1215.
    [40]林鲁萍,马飞,王义权,基因选择性剪接的生物信息学研究概况,遗传,2005,27:1001-1006.
    [41]Keene JD,Lager PJ,Post-transcriptional operons and regulons co-ordinating gene expression.Chromosome Res.2005,13:327-337.
    [42]Sun H,Chasin LA,Multiple splicing defects in an intronic false exon.Mol Cell Biol.2000,20:6414-6425.
    [43]Cartegni L,Chew SL,Krainer AR,Listening to silence and understanding nonsense:exonic mutations that affect splicing.Nat Rev Genet.2002,3:285-298.
    [44]Zhang XH,Chasin LA,Computational definition of sequence motifs governing constitutive exon splicing.Genes Dev.2004,18:1241-1250.
    [45]Wang Z,Xiao X,Van Nostrand E,et al.,General and specific functions of exonic splicing silencers in splicing control.Mol Cell.2006,23:61-70.
    [46]Blanchette M,Green RE,Brenner SE,et al.,Global analysis of positive and negative pre-mRNA splicing regulators in Drosophila.Genes Dev.2005,19:1306-1314.
    [47]Brudno M,Gelfand MS,Spengler S,et al.,Computational analysis of candidate intron regulatory elements for tissue-specific alternative pre-mRNA splicing.Nucleic Acids Res.2001,29:2338-2348.
    [48]Fairbrother WG,Yeh RF,Sharp PA,et al.,Predictive identification of exonic splicing enhancers in human genes.Science.2002,297:1007-1013.
    [49]Teraoka SN,Telatar M,Becker-Catania S,et al.,Splicing defects in the ataxia-telangiectasia gene,ATM:underlying mutations and consequences.Am J Hum Genet.1999,64:1617-1631.
    [50]Carninci P,Kasukawa T,Katayama S,et al.,The transcriptional landscape of the mammalian genome.Science.2005,309:1559-1563.
    [51]Modrek B,Lee C,A genomic view of alternative splicing.Nat Genet.2002,30:13-19.
    [52]Iida K,Seki M,Sakurai T,et al.,Genome-wide analysis of alternative pre-mRNA splicing in Arabidopsis thaliana based on full-length cDNA sequences.Nucleic Acids Res.2004,32:5096-5103.
    [53]Kikuchi S,Satoh K,Nagata T,et al.,Collection,mapping,and annotation of over 28,000 cDNA clones from japonica rice.Science.2003,301:376-379.
    [54]曾纪睛,张明永,选择性剪接在植物逆境相关基因表达调控中的作用,植物生理学通讯,2006,6:1005-1014.
    155]Kazan K,Alternative splicing and proteome diversity in plants:the tip of the iceberg has just emerged.Trends Plant Sci.2003.8:468-471.
    [56]Pelisch F,Blaustein M,Kornblihtt AR,et al.,Cross-talk between signaling pathways regulates alternative splicing:a novel role for JNK.J Biol Chem.2005,280:25461-25469.
    157]Du C,McGuffin ME,Dauwalder B,et al.,Protein phosphorylation plays an essential role in the regulation of alternative splicing and sex determination in Drosophila.Mol Cell.1998,2:741-750.
    [58]Colwill K,Pawson T,Andrews B,et al.,The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution.Embo J.1996,15:265-275.
    159]Sessa G,Raz V,Savaldi S,et al.,PK12,a plant dual-specificity protein kinase of the LAMMER family,is regulated by the hormone ethylene.Plant Cell.1996,8:2223-2234.
    [60]Nishihama R,Banno H.Kawahara E,et al.,Possible involvement of differential splicing in regulation of the activity of Arabidopsis ANP1 that is related to mitogen-activated protein kinase kinase kinases(MAPKKKs).Plant J.1997,12:39-48.
    [61]Xiong L,Yang Y,Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase.Plant Cell.2003,15:745-759.
    [62]Nishiyama R,Mizuno H,Okada S,et al.,Two mRNA species encoding calcium-dependent protein kinases arc differentially expressed in sexual organs of Marchantia polymorpha through alternative splicing.Plant Cell Physiol.1999,40:205-212.
    [63]Snedden WA,Blumwald E,Alternative splicing of a novel diacylglycerol kinase in tomato leads to a calmodulin-binding isoform.Plant J.2000,24:317-326.
    [64]Topham MK,Prescott SM,Mammalian diacylglycerol kinases,a family of lipid kinases with signaling functions.J Biol Chem.1999,274:11447-11450.
    [65]Lin C,Widjaja J,Joseph SK,The interaction of calmodulin with alternatively spliced isoforms of the type-Ⅰinositol trisphosphate receptor.J Biol Chem.2000,2-75:2305-2311.
    [66]Xu XZ,Wes PD,Chen H,et al.,Retinal targets for calmodulin include proteins implicated in synaptic transmission.J Biol Chem.1998,2.73:31297-31307.
    [67]Modrek B,Resch A,Grasso C,et al.,Genome-wide detection of alternative splicing in expressed sequences of human genes.Nucleic Acids Res.2001,29:2850-2859.
    [65]Dinesh-Kumar SP,Baker BJ,Alternatively spliced N resistance gene transcripts:their possible role in tobacco mosaic virus resistance.Proc Natl Acad Sci USA.2000,97:1908-1913.
    [69]Ballvora A,Pierre M,van den Ackerveken G,et al.,Genetic mapping and functional analysis of the tomato Bs4 locus governing recognition of the Xanthomonas campestris pv.vesicatoria AvrBs4 protein.Mol Plant Microbe Interact.2001,14:629-638.
    [70]Jordan T,Schornack S,Lahaye T,Alternative splicing of transcripts encoding Toll-like plant resistance proteins-what's the functional relevance to innate immunity? Trends Plant Sci.2002,7:392-398.
    [71]Halterman DA,Wei F,Wise RP,Powdery mildew-induced Mla mRNAs are alternatively spliced and contain multiple upstream open reading frames.Plant Physiol.2003,131:558-567.
    [72]Ferrier-Cana E,Macadre C,Sevignac M,et al.,Distinct post-transcriptional modifications result into seven alternative transcripts of the CC-NBS-LRR gene JAltr of Phaseolus vulgaris.Theor Appl Genet.2005,110:895-905.
    [73]Niu X,Zheng W,Lu BR,et al.,An unusual posttranscriptional processing in two betaine aldehyde dehydrogenase loci of cereal crops directed by short,direct repeats in response to stress conditions.Plant Physiol.2007,143:1929-1942.
    [74]Shi H,Xiong L,Stevenson B,et al.,The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance.Plant Cell.2002,14:575-588.
    [75]Kong J,Gong JM,Zhang ZG,et al.,A new AOX homologous gene OsIM1 from rice(Oryza sativa L.) with an alternative splicing mechanism under salt stress.Theor Appl Genet.2003,107:326-331.
    [76]Lund As,,Rhoads DM,Lund AL,et al.,In vivo modifications of the maize mitochondrial small heat stress protein,HSP22.J Biol Chem.2001,276:29924-29929.
    [77]Haynes JG,Hartung AJ,Hendershot JD,3rd,et al.,Molecular characterization of the B' regulatory subunit gene family of Arabidopsis protein phosphatase 2A.Eur J Biochem.1999,260:127-136.
    [78]J ia Y,del Rio HS,Robbins AL,et al.,Cloning and sequence analysis of a low temperature-induced gene from trifoliate orange with unusual pre-mRNA processing.Plant Cell Rep.2004,23:159-166.
    [79]de la Fuente van Bentem S,Vossen JH,Vermeer JE,et al.,The subcellular localization of plant protein phosphatase 5 isoforms is determined by alternative splicing.Plant Physiol.2003,133:702-712.
    [80]Wegele H,Muller L,Buchner J,Hsp70 and Hsp90—a relay team for protein folding.Rev Physiol Biochem Pharmacol.2004,151:1-44.
    [81]Mayer MP,Bukau B,Molecular chaperones:the busy life of Hsp90.Curr Biol.1999,9:R322-325.
    [82]Frydman J,Folding of newly translated proteins in vivo:the role of molecular chaperones.Annu Rev Biochem.2001,70:603-647.
    [83]Picard D,Heat-shock protein 90,a chaperone for folding and regulation.Cell Mol Life Sci.2002,59:1640-1648.
    [84]Krishna P,Gloor G,The Hsp90 family of proteins in Arabidopsis thaliana.Cell Stress Chaperones.2001,6:238-246.
    [85]Kwiatkowski AP,McGill JM,Alternative splice variant of gamma-calmodulin-dependent protein kinase Ⅱalters activation by calmodulin.Arch Biochem Biophys.2000,378:377-383.
    [86]Hubert DA,Tornero P,Belkhadir Y,et al.,Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein.Embo J.2003,22:5679-5689.
    [87]Lin Y,Cheng CL,A chlorate-resistant mutant defective in the regulation of nitrate reductase gene expression in Arabidopsis defines a new HY locus.Plant Cell.1997,9:21-35.
    [88]Queitsch C,Sangster TA,Lindquist S,Hsp90 as a capacitor of phenotypic variation.Nature.2002,417:618-624.
    [89]Doerner P,Plant meristems:a merry-go-round of siguals.Curr Biol.2003,13:R368-374.
    [90]Ishiguro S,Watanabe Y,Ito N,et al.,SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins.Embo J.2002,21:898-908.
    [91] Zhang Z, Quick MK, Kanelakis KC, et al., Characterization of a plant homolog of hop, a cochaperone of hsp90. Plant Physiol. 2003,131:525-535.
    [92] Berardini TZ, Bollman K, Sun H, et al., Regulation of vegetative phase change in Arabidopsis thaliana by cyclophilin 40. Science. 2001,291:2405-2407.
    [93] Harrar Y, Bellec Y, Bellini C, et al., Hormonal control of cell proliferation requires PASTICCINO genes. Plant Physiol. 2003,132:1217-1227.
    [94] Kamphausen T, Fanghanel J, Neumann D, et al., Characterization of Arabidopsis thaliana AtFKBP42 that is membrane-bound and interacts with Hsp90. Plant J. 2002,32:263-276.
    
    [95] Schulze-Lefert P, Plant immunity: the origami of receptor activation. Curr Biol. 2004,14:R22-24.
    [96] Takahashi A, Casais C, Ichimura K, et al., HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc Natl Acad Sci U S A. 2003,100:11777-11782.
    [97] Liu Y, Burch-Smith T, Schiff M, et al., Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rarl to modulate an innate immune response in plants. J Biol Chem. 2004, 279:2101-2108.
    [98] Muskett P, Parker J, Role of SGT1 in the regulation of plant R gene signalling. Microbes Infect. 2003, 5:969-976.
    [99] Shirasu K, Schulze-Lefert P, Complex formation, promiscuity and multi-functionality: protein interactions in disease-resistance pathways. Trends Plant Sci. 2003,8:252-258.
    [100] Moffett P. Farnham G, Peart J, et al., Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. EmboJ. 2002,21:4511-4519.
    [101] Mackey D, Holt BF, 3rd, Wiig A, et al., RFN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell. 2002,108:743-754.
    [102] Belkhadir Y, Nimchuk Z, Hubert DA, et al., Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1. Plant Cell. 2004, 16:2822-2835.
    [103] Kitagawa K, Skowyra D, Elledge SJ, et al., SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol Cell. 1999,4:21-33.
    [104] Rose LE, Bittner-Eddy PD, Langley CH, et al., The maintenance of extreme amino acid diversity at the disease resistance gene, RPP13, in Arabidopsis thaliana. Genetics. 2004,166:1517-1527.
    [105] Bergelson J, Kreitman M, Stanl EA, et al., Evolutionary dynamics of plant R-genes. Science. 2001, 292:2281-2285.
    [106] Sangster TA, Lindquist S, Queitsch C, Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance. Bioessays. 2004, 26:348-362.
    [107] Zhang Y, Dorey S, Swiderski M, et al., Expression of RPS4 in tobacco induces an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90. Plant J. 2004,40:213-224.
    [108] Milton CC, Huynh B, Batterham P, et al., Quantitative trait symmetry independent of Hsp90 buffering: distinct modes of genetic canalization and developmental stability. Proc Natl Acad Sci U S A. 2003, 100:13396-13401.
    
    [109] Bothwell JH, Brownlee C, Hetherington AM, et al., Biolistic delivery of Ca2+ dyes into plant and algal cells. Plant J. 2006,46:327-335.
    
    [110] Baekgaard L, Luoni L, De Michelis MI, et al., The plant plasma membrane Ca2+ pump ACA8 contains overlapping as well as physically separated autoinhibitory and calmodulin-binding domains. J Biol Chem. 2006,281:1038-1065.
    [111] Schiott M, Romanowsky SM, Baekgaard L, et al., A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization.Proc Natl Acad Sci USA.2004,101:9502-9507.
    [112]Reddy VS,Reddy AS,The calmodulin-binding domain from a plant kinesin functions as a modular domain in conferring Ca2+-calmodulin regulation to animal plus- and minus-end kinesins.J Biol Chem.2002,277:48058-48065.
    [113]Volotovski ID,Ca2+ and intracellular signalling in plant cells:a role in phytochrome transduction.Membr Cell Biol.1998,12:721-742.
    [114]Reddy AR,Sundar D,Gnanam A,Photosynthetic flexibility in Pedilanthus tithymaloides poit,a CAM plant.J Plant Physiol.2003,160:75-80.
    [115]Honda H,Okamoto T,Shimada H,Isolation of a cDNA for a phosphoenolpyruvate carboxylase from a monocot CAM-plant,Aloe arborescens:structure and its gene expression.Plant Cell Physiol.1996,37:881-888.
    [116]Kayyem JF,Roman JM,de la Rosa EJ,et al.,Bravo/Nr-CAM is closely related to the cell adhesion molecules L1 and Ng-CAM and has a similar heterodimer structure.J Cell Biol.1992,118:1259-1270.
    [117]毛国红.宋林霞,孙大业,植物钙调素结合蛋白研究进展,植物生理与分子生物学学报,2004,30:481-488.
    [118]Charbonneau H,Cormier MJ,Purification of plant calmodulin by flupbenazine-Sepharose affinity chromatography.Biochem Biophys Res Commun.1979,90:1039-1047.
    [119]Reddy VS,All GS,Reddy AS,Genes encoding calmodulin-binding proteins in the Arabidopsis genome.J Biol Chem.2002,277:9840-9852.
    [120]Rhoads AR,Friedberg F,Sequence motifs for calmodulin recognition.Faseb J.1997,11:331-340.
    [121]韦慧彦,郭振清,崔素娟,钙不依赖性钙调素结合蛋白的研究进展,2007,34:124-131.
    [122]Hoeflich KP,Ikura M,Calmodulin in action:diversity in target recognition and activation mechanisms.Cell.2002,108:739-742.
    [123]Zhang L,Lu YT,Calmodulin-binding protein kinases in plants.Trends Plant Sci.2003,8:123-127.
    [124]Poovaiah BW,Xia M,Liu Z,et al.,Developmental regulation of the gene for chimeric calcium/calmodulin-dependent protein kinase in anthers.Planta.1999,209:161-171.
    [125]Golovkin M,Reddy AS,A calmodulin-binding protein from Arabidopsis has an essential role in pollen germination.Proc Natl Acad Sci U S A.2003,100:10558-10563.
    [126]Steinebrunner I,Wu J,Sun Y,et al.,Disruption of apyrases inhibits pollen germination in Arabidopsis.Plant Physiol.2003,131:1638-1647.
    [127]Snedden WA,Koutsia N,Baum G,et al.,Activation of a recombinant petunia glutamate decarboxylase by calcium/calmodulin or by a monoclonal antibody which recognizes the calmodulin binding domain.J Biol Chem.1996,271:4148-4153.
    [128]Baum G,Lev-Yadun S,Fridmann Y,et al.,Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GARA metabolism and normal development in plants.Embo J.1996,15:2988-2996.
    [129]Zik M,Arazi T,Snedden WA,et al.,Two isoforms of glutamate decarboxylase in Arabidopsis are regulated by calcium/calmodulin and differ in organ distribution.Plant Mol Biol.1998,37:967-975.
    [130]Turano FJ,Fang TK,Characterization of two glutamate decarboxylase cDNA clones from Arabidopsis.Plant Physiol.1998,117:1411-1421.
    [131]Reddy AS,Narasimhulu SB,Safadi F,et al.,A plant kinesin heavy chain-like protein is a calmodulin-binding protein.Plant J.1996,10:9-21.
    [132]Deavours BE,Reddy AS,Walker RA,Ca2+/calmodulin regulation of the Arabidopsis kinesin-like calmodulin-binding protein.Cell Motil Cytoskeleton.1998,40:408-416.
    [133]Vos JW,Safadi F,Reddy AS,et al.,The kinesin-like calmodulin binding protein is differentially involved in cell division. Plant Cell. 2000,12:979-990.
    [134] Oppenheimer DG, Pollock MA, Vacik J, et al., Essential role of a kinesin-like protein in Arabidopsis trichome morphogenesis. Proc Natl Acad Sci U S A. 1997,94:6261-6266.
    [135] Yang T, Poovaiah BW, Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc NatlAcadSci U S A. 2002,99:4097-4102.
    [136] Reddy AS, Reddy VS, Golovkin M, A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif. Biochem Biophys Res Commun. 2000,279:762-769.
    [137] Liu HT, Li B, Shang ZL, et al., Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol. 2003,132:1186-1195.
    [138] Chung WS, Lee SH, Kim JC, et al., Identification of a calmodulin-regulated soybean Ca(2+)-ATPase (SCA1) that is located in the plasma membrane. Plant Cell. 2000,12:1393-1407.
    [139] Geisler M, Frangne N, Gomes E, et al., The ACA4 gene of Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast. Plant Physiol. 2000,124:1814-1827.
    [140] Arazi T, Sunkar R, Kaplan B, et al., A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J. 1999,20:171-182.
    [141] Sunkar R, Kaplan B, Bouche N, et al., Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J. 2000, 24:533-542.
    [142] Schuurink RC, Shartzer SF, Fath A, et al., Characterization of a calmodulin-binding transporter from the plasma membrane of barley aleurone. Proc Natl Acad Sci U S A. 1998,95:1944-1949.
    [143] Kohler C, Merkle T, Neuhaus G, Characterisation of a novel gene family of putative cyclic nucleotide- and calmodulin-regulated ion channels in Arabidopsis thaliana. Plant J. 1999,18:97-104.
    [144] Harding SA, Oh SH, Roberts DM, Transgenic tobacco expressing a foreign calmodulin gene shows an enhanced production of active oxygen species. Embo J. 1997,16:1137-1144.
    [145] Kim MC, Lee SH, Kim JK, et al., Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein. Isolation and characterization of a rice Mlo homologue. J Biol Chem. 2002, 277:19304-19314.
    [146] Ali GS, Reddy VS, Lindgren PB, et al.. Differential expression of genes encoding calmodulin-binding proteins in response to bacterial pathogens and inducers of defense responses. Plant Mol Biol. 2003, 51:803-815.
    [147] Szymanski DB, Liao B, Zielinski RE, Calmodulin isoforms differentially enhance the binding of cauliflower nuclear proteins and recombinant TGA3 to a region derived from the Arabidopsis Cam-3 promoter. Plant Cell. 1996,8:1069-1077.
    [148] Bouche N, Scharlat A, Snedden W, et al., A novel family of calmodulin-binding transcription activators in multicellular organisms. J Biol Chem. 2002,277:21851-21861.
    [149] Edlich F, Erdmann F, Jarczowski F, et al., The Bcl-2 regulator FKBP38-calmodulin-Ca2+ is inhibited by Hsp90. J Biol Chem. 2007, 282:15341-15348.
    [150] Erdmann F, Jarczowski F, Weiwad M, et al., Hsp90-mediated inhibition of FKBP38 regulates apoptosis in neuroblastoma cells. FEBS Lett. 2007, 581:5709-5714.
    [151] Liu HT. Li GL, Chang H, et al., Calmodulin-binding protein phosphatase PP7 is involved in thermotolerance in Arabidopsis. Plant Cell Environ. 2007,30:156-164.
    [152] Heinen RC, Diniz-Mendes L, Silva JT, et al., Identification of the divergent calmodulin binding motif in yeast Ssb1/Hsp75 protein and in other HSP70 family members. Braz J Med Biol Res. 2006, 39:1399-1408.
    [153] Song KJ, Song KH, Na BK, et al., Molecular cloning and characterization of a cytosolic heat shock protein 70 fromNaegleria fowleri. Parasitol Res. 2007,100:1083-1089.
    [154] Burdon JJ, Thrall PH, Ericson AL, The current and future dynamics of disease in plant communities. Annu Rev Phytopathol. 2006,44:19-39.
    [155] Garrett KA, Dendy SP, Frank EE, et al., Climate change effects on plant disease: genomes to ecosystems. Annu Rev Phytopathol. 2006,44:489-509.
    
    [156] The map-based sequence of the rice genome. Nature. 2005,436:793-800.
    [157] Liang P, Pardee AB, Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992,257:967-971.
    [158] Liu J, Yu J, Mclntosh L, et al., Isolation of a CONSTANS ortholog from Pharbitis nil and its role in flowering. Plant Physiol. 2001,125:1821-1830.
    [159] Takayama I, Daigo Y, Ward SM, et al., Differential gene expression in the small intestines of wildtype and W/W(V) mice. Neurogastroenterol Motil. 2001,13:163-168.
    [160] Tissieres A, Mitchell HK, Tracy UM, Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol. 1974,84:389-398.
    [161] Horwitz J, Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A. 1992, 89:10449-10453.
    [162] Csermely P, Schnaider T, Soti C, et al., The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther. 1998,79:129-168.
    [163] Gupta RS, Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol Biol Evol. 1995,12:1063-1073.
    [164] Vierling E: The Roles of Heat Shock Proteins in Plants. Edited by: Annual Reviews; 1991:579-620. vol 42.]
    [165] Mayor A, Martinon F, De Smedt T, et al., A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat Immunol. 2007,8:497-503.
    [166] Pearl LH, Prodromou C: Structure and mechanism of the hsp90 molecular chaperone machinery. Edited by: Annual Reviews; 2006:271-294. vol 75.]
    [167] McLaughlin SH, Sobott F, Yao ZP, et al., The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins. J Mol Biol. 2006,356:746-758.
    [168] McLaughlin SH, Ventouras LA, Lobbezoo B, et al., Independent ATPase activity of Hsp90 subunits creates a flexible assembly platform. J Mol Biol. 2004,344:813-826.
    [169] Mardon HJ, Sebastio G, Regulation of alternative splicing in the IIICS region of human fibronectin pre-mRNA encoding ceil binding sites CS1 and CS5. J Cell Sci. 1992,103 (Pt 2):423-433.
    [170] Zhou DX, Kim YJ, Li YF, et al., COP1b, an isoform of COP1 generated by alternative splicing, has a negative effect on COP1 function in regulating light-dependent seedling development in Arabidopsis. Mol Gen Genet. 1998,257:387-391.
    [171] Kappe G, Franck E, Verschuure P, et al., The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones. 2003,8:53-61.
    [172] Shimizu S, Nomura K, Ujihara M, et al., An additional exon of stress-inducible heat shock protein 70 gene (HSP70-1). Biochem Biophys Res Commun. 1999,257:193-198.
    [173] Yasuda K, Nakai A, Hatayama T, et al., Cloning and expression of murine high molecular mass heat shock proteins, HSP105. J Biol Chem. 1995,270:29718-29723.
    [174] Krishna P, Sacco M, Cherutti JF, et al., Cold-Induced Accumulation of hsp90 Transcripts in Brassica napus. Plant Physiol. 1995,107:915-923.
    [175] Marrs KA, Casey ES, Capitant SA, et al., Characterization of two maize HSP90 heat shock protein genes: expression during heat shock, embryogenesis, and pollen development. Dev Genet. 1993,14:27-41.
    [176] Schmitz G, Schmidt M, Feierabend J, Characterization of a plastid-specific HSP90 homologue: identification of a cDNA sequence, phylogenetic descendence and analysis of its mRNA and protein expression. Plant Mol Biol. 1996,30:479-492.
    [177] Macknight R, Duroux M, Laurie R, et al., Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA. Plant Cell. 2002,14:877-888.
    [178] Sullivan W, Stensgard B, Caucutt G, et al., Nucleotides and two functional states of hsp90. J Biol Chem. 1997, 272:8007-8012.
    [179] Nadeau K, Sullivan MA, Bradley M, et al., 83-kilodalton heat shock proteins of trypanosomes are potent peptide-stimulated ATPases. Protein Sci. 1992,1:970-979.
    [180] Jakob U, Scheibel T, Bose S, et al., Assessment of the ATP binding properties of Hsp90. J Biol Chem. 1996, 271:10035-10041.
    
    [181] Buchner J, Supervising the fold: functional principles of molecular chaperones. Faseb J. 1996,10:10-19.
    [182] Schneider C, Sepp-Lorenzino L, Nimmesgern E, et al., Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90. Proc Natl Acad Sci U S A. 1996,93:14536-14541.
    [183] Prodromou C, Roe SM, O'Brien R, et al., Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell. 1997, 90:65-75.
    [184] Bergerat A, de Massy B, Gadelle D, et al., An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature. 1997, 386:414-417.
    [185] Sato S, Fujita N, Tsuruo T, Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci U S A. 2000,97:10832-10837.
    [186] Ali JA, Jackson AP, Howells AJ, et al., The 43-kilodalton N-terminal fragment of the DNA gyrase B protein hydrolyzes ATP and binds coumarin drugs. Biochemistry. 1993, 32:2717-2724.
    [187] Martinez-Ruiz A, Villanueva L, Gonzalez de Orduna C, et al., S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci U S A. 2005,102:8525-8530.
    [188] Panaretou B, Prodromou C, Roe SM, et al., ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. Embo J. 1998,17:4829-4836.
    [189] Pearl LH, Prodromou C, Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem. 2006, 75:271-294.
    [190] Engelender S, Kaminsky Z, Guo X, et al., Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nat Genet. 1999,22:110-114.
    [191] Kawamata H, McLean PJ, Sharma N, et al., Interaction of alpha-synuclein and synphilin-1: effect of Parkinson's disease-associated mutations. J Neurochem. 2001, 77:929-934.
    [192] Cooper B, Clarke JD, Budworth P, et al., A network of rice genes associated with stress response and seed development. Proc Natl Acad Sci U S A. 2003,100:4945-4950.
    [193] Bohlmann H, Clausen S, Behnke S, et al., Leaf-specific thionins of barley-a novel class of cell wall proteins toxic to plant-pathogenic fungi and possibly involved in the defence mechanism of plants. Embo J. 1988, 7:1559-1565.
    [194] Arumugam Pillai M, Lihuang Z, Akiyama T, Molecular cloning, characterization, expression and chromosomal location of OsGAPDH, a submergence responsive gene in rice ( Oryza sativa L.). Theor Appl Genet. 2002, 105:34-42.
    [195] Akiyama T, Pillai MA: Isolation and characterization of a gene for a repetitive proline rich protein(OsPRP) down-regulated during submergence in rice(Oryza sativa). Edited by: Blackwell Synergy; 2003:507-513. vol 118.]
    
    [196] Zambryski P, Joos H, Genetello C, et al., Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. Embo J. 1983,2:2143-2150.
    
    [197] Uch(?)mlya H, Fushimi T, Hashimoto H, et al.: Expression of a foreign gene in callus derived from DNA-treated protoplasts of rice(Oryza sativa L.).Edited by:Springer;1986:204-207.vol204.]
    [198]Kyozuka J,Shimamoto K,[Gene transfer in rice].Tanpakushitsu Kakusan Koso.1989,34:1873-1878.
    [199]Datta SK,Peterhans A,Datta K,et al.:Genetically Engineered Fertile lndica-Rice Recovered from Protoplasts.Edited by;1990:736-740.vol 8.]
    [200]Hiei Y,Ohta S,Komari T,et al.,Efficient transformation of rice(Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA.Plant J.1994,6:271-282.
    [201]Blume B,Nurnberger T,Nass N,et al.Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in petsley.Plant Cell,2000,12:1425-1440.
    [202]Luan S,Kudla J,Rodriguez-Concepcion M,et al.Calmodulins and calcineurin B-like proteins:Calcium sensors for specific signal-response coupling in plants.Plant Cell,2002,14(Suppl):389-400.
    [203]Snedden W A,Fromm H.Calmpdulin as a versatile calcium signal transducer in plants.New Phytol,2001,151:35-66.
    [204]Yang T,Poovaiah B W.Hydrogen peroxide homeostasis:Activation of plant catalase by calcium/calmodulin.Proc Natl Acad SciUSA,2002,99:4097-4102.
    [205]Charbonneau H,Cormier M J.Purification of plant calmodulin by fluphenazine-sepharose affinity chromatography.Biochem Biophys Res Comm,1979,90:1039-1047.
    [206]Zielinski R E.Calmodulin and calmodulin-binding proteins in plants.Annu RevPplant Physiol Plant Mol Boil,1998,49:697-727.
    [207]Jurado LA,Chockalingam P S,Jarrctt H W.Apocalmodulin.Physiol Rev,1999,79(3):661-682.
    [208]Golovkin M,Reddy A S N.A calmodulin-binding protein from Arabidopsis has an essential role in pollen germination.Proc Natl Acad SciUSA,2003,100:10558-10563.
    [209]Reddy V S,Reddy A S N.The calmodulinn-binding domain from a plant kinesin functions as a modular domain in conferring Ca2+/calmodulin regulation to animal plus- and minus-end kinesins.J Biol Chem.2002,277:48058-48065.
    [210]Geisler M,Frangne N,Gomes E,et al.The ACA4 gene of Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast.Plant Physiol,2000,124:1814-1827.
    [211]Kim M C,Lee S H,Kim J K,et al.MIo,a modulator of plant defense and cell death,is a novel calmodulin-binding protein.J Biol Chem,2002,277:19304-19314.
    [212]Kang C H,Jung W Y,Kang Y H,et al.AtBAG6,a novel calmodulin-binding protein,induces programmed cell death in yeast and plants.Cell Death Diff,2006,13:84-95.
    [213]Katou S,Kuroda K,Seo S,et al.A calmodulin-binding mitogen-activated protein kinase phosphatase is induced by wounding and regulates the activities of stress-related mitogen-activated protein kinases in rice.Plant Cell Physiol,2007,48(2):332-344.
    [214]Abel S,Savchenko T,Levy M,Genome-wide comparative analysis of the IQD gene families in Arabidopsis thaliana and Oryza saliva.BMC Evol Biol.2005,5:72.
    [215]Jurado LA,Chockalingam PS,Jarrett HW,Apocalmodulin.Physiol Rev.1999,79:661-682.
    [216]Bahler M,Rhoads A,Calmodulin signaling via the IQ motif.FEBS Lett.2002,513:107-113.
    [217]Zhang BM,Kohli V,Adachi R,et al.,Calmodulin binding to the C-terminus of the small-conductance Ca2+-activated K+ channel hSK1 is affected by alternative splicing.Biochemistry.2001,40:3189-3195.
    [218]Bahler M,Rhoads A.Minireview:Calmodulin signaling via the IQ motif.FEBS letters,2002,513(1):107-113.
    [219]Lu B,Ding R,Zhang L,et al.Molecular cloning and characterization of a novel calcium-dependent protein kinase gene IiCPK2 responsive to polyploidy from tetraploid Isatis indigotica.J Biochem Mol Biol,2006,39(5):607-6 17.
    [220]Liu H T,Li G L,Chang H,et al.Calmodulin-binding protein pbosphatase PP7 is involved in thermotolerance in Arabidopsis. Plant Cell Environ, 2007,30(2): 156-164.
    [221] Lu Y T, Dharmasiri M A N, Harrington H M. Characterization of a cDNA encoding a novel heat-shock protein that binds to calmodulin. Plant Physiol, 1995,108:1197-1202.
    [222] Liu H T, Li B, Shang Z L, et al. Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol, 2003, 132:1186-1195.
    [223] Liu H T, Li G L, Chang H, et al. Calmodulin-binding protein phosphatase PP7 is involved in thermotolerance in Arabidopsis. Plant Cell Environ, 2007,30(2): 156-164.
    [224] Lu Y T, Dharmasiri M A N, Harrington H M. Characterization of a cDNA encoding a novel heat-shock protein that binds to calmodulin. Plant Physiol, 1995,108:1197-1202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700