用户名: 密码: 验证码:
鸡IL-18变构基因与新城疫病毒HN基因融合表达载体的构建及体外抗马立克病肿瘤细胞的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新城疫病毒(Newcastle disease virus,NDV)是一种溶癌病毒,可在肿瘤细胞内增殖、抑制并裂解肿瘤细胞。研究发现,NDV的包膜糖蛋白血凝素-神经氨酸酶(hemagglutinin-neuraminidase,HN)基因是NDV抗肿瘤的功能性基因,是NDV抗肿瘤作用的重要分子基础。IL-18具有明显的抗肿瘤作用,在肿瘤治疗和肿瘤基因治疗方面具有潜在的应用前景。为探讨HN基因及IL-18基因融合后抗肿瘤作用及其机制,本研究分别构建了HN基因、ChMIL-18基因及HN基因和ChMIL-18基因融合后的重组表达载体pPICZαA-HN、pPICZαA-ChMIL18和pPICZαA-HN-ChMIL18,经诱导表达后,其目的蛋白均具生物学活性,进而以鸡马立克病肿瘤细胞系-MSB-1为体外研究对象,对MSB-1细胞的增殖抑制作用及其机制等方面进行了初步研究,结果表明,HN蛋白、HN-ChMIL18融合蛋白均可抑制肿瘤细胞生长,HN-ChMIL18融合蛋白对细胞抑制作用明显强与HN蛋白,其原因可能是ChMIL-18蛋白对HN蛋白致肿瘤细胞凋亡有增强作用,而ChMIL-18蛋白虽具有淋巴细胞增殖活性,但对肿瘤细胞无明显的抑制作用,其为进一步研究HN基因和ChMIL-18基因融合蛋白体内抗马立克肿瘤奠定了基础,具有重要的理论和实际意义。
     1目的基因的获得及生物信息学分析
     1.1 ChMIL-18目的基因的获得
     根据Genbank中鸡IL-18成熟蛋白基因序列设计一对特异性引物,利用RT-PCR技术,从外周血淋巴细胞中扩增到了鸡IL-18成熟蛋白基因全序列,将其克隆至pMD18-T载体并测序,对测序结果进行生物信息学分析,结果表明:序列全长为507bp,其理论分子量为19.5KD,等电点为6.36,无糖基化位点,具抗原性等。为提高具有生物活性的ChIL-18的表达量,应用反向长距离PCR定点突变技术对鸡IL-18成熟蛋白基因第28位和第37位的Arg密码子进行同义突变,将毕赤酵母中低频密码子CGA突变为高频密码子AGA,获得突变体pMD18-T-ChMIL18,将其转化至E.coli JM109中,抽提质粒,经酶切和PCR鉴定后,进行测序,测序结果与原ChIL18比对表明突变成功,获得了目的突变基因。
     1.2 HN基因的获得
     应用RT-PCR方法对NDV LaSota株HN基因进行了扩增与克隆,得到大小约为1.7Kb的LaSota株HN基因,与Genbank中登录的HN基因大小一致:扩增序列经PCR、酶切鉴定及序列测定证实与预计结果相符:用DNAStar及在线分析软件对HN基因的生物信息学进行分析,其结果为:HN基因共577个氨基酸,理论分子量为63.0KD,等电点为7.54,12个半胱氨酸残基,5个N-糖基化位点,与B1、Clone30、LaSota、JI1和HB92核苷酸同源性在98.8%-99.8%,氨基酸同源性分别为98.8%-99.5%。
     1.3 HN-ChMIL18融合基因的获得
     根据表达载体pPICZαA及克隆载体pBluescript SK+(pBS SK+)的多克隆位点,设计HN基因的引物(含柔性接头),在两端分别引入KpnI和BamHI酶切位点,以及变构体MIL-18引物(含柔性接头),在两端分别引入BamHI和NotI酶切位点。分别以pMD18-T-HN、pMD18-T-ChMIL18为模板扩增得到融合基因片段HN~f和ChMIL-18~f,并克隆至pMD18-T载体,构建了克隆载体pMD18-T-HN~f、pMD18-T-ChMIL18~f。
     重组质粒pMD18-T-HN~f和pBS SK+分别用/KpnI/BamHI双酶切,片段回收产物按适当比例连接,转化E.coli JM109感受态细胞,重组质粒命名为pBS SK+-HN。然后,重组质粒pMD18-T-ChMIL18~f和pBS SK+-HN分别用BamHI、NotI双酶切,回收产物按适当比例连接,转化E.coli JM109感受态细胞,重组质粒鉴定正确后命名为pBS SK+-HN-ChMIL18,经酶切、PCR鉴定及序列比对表明获得了目的基因HN-ChMIL18。
     2表达载体的构建、诱导表达及表达产物的活性检测
     2.1表达载体pPICZαA-ChMIL18的构建、诱导表达及表达产物的活性检测
     质粒pMD18-T-ChMIL18和pPICZαA分别用EcoRl、KpnI双酶切,电泳回收纯化ChMIL18和pPICZαA双酶切产物,按适当比例进行连接,转化到E.coli JM109感受态细胞中,鉴定结果表明获得了重组质粒pPICZαA-ChMIL18。将重组质粒pPICZαA-ChMIL18用SacI酶切线性化,电脉冲方法克隆至Pichia Pastoris(P.Pastoris)X-33感受态细胞中,经高抗性筛选、PCR鉴定结果表明pPICZαA-ChMIL18已整合入P.Pastoris X-33染色体中,用1%甲醇对其进行诱导表达,SDS-PAGE结果表明目的蛋白存在于上清中,分子量约为23KD,Western blot结果表明表达产物具良好的免疫原性,淋巴细胞转化试验结果表明ChMIL18具有促淋巴细胞增殖的活性。
     2.2表达载体pPICZαA—HN的构建、诱导表达及表达产物的活性检测
     质粒pPICZαA和重组质粒pMD18-T-HN分别用KpnI/NotI双酶切,电泳回收纯化HN和pPICZαA片段,按适当的比例进行连接,克隆至E.coli JM109感受态细胞中,经酶切及PCR鉴定,结果表明获得了重组质粒pPICZαA-HN。重组质粒pPICZαA-HN用SacI酶切线性化,电击转化入P.Pastoris X-33感受态细胞中,经高抗性筛选、PCR鉴定证明pPICZαA-HN已整合入X-33的染色体上,对其进行诱导表达,SDS-PAGE、Western-blot及血凝试验结果表明上清中有目的蛋白,其分子量约为97KD,且具良好的免疫原性和凝集红细胞的活性。
     2.3表达载体pPICZαA-HN-ChMIL18的构建、诱导表达及表达产物的活性检测
     质粒pBS SK+ -HN-ChMIL18和pPICZαA分别用KpnI/NotI双酶切,电泳回收HN-ChMIL18与pPICZαA双酶切产物并纯化,按适当比例进行连接,克隆至E.coliJM109感受态细胞,酶切及PCR鉴定结果表明获得了重组质粒pPICZαA-HN-ChMIL18。重组质粒pPICZαA-HN-ChMIL18用SacI酶切线性化后,电击转化入酵母菌X-33感受态细胞中,高抗性筛选和PCR鉴定结果表明pPICZαA-HN-ChMIL18已整合入X-33染色体上,对其进行诱导表达,SDS-PAGE、Western-blot结果表明目的蛋白为分泌性表达,分子量约为103KD,具良好的免疫原性,同时,淋巴细胞转化试验、血凝试验证明表达产物具有促进淋巴细胞增殖和凝集红细胞的活性。
     3体外抗马立克肿瘤细胞系MSB-1的初步研究
     以马立克氏病肿瘤细胞系-MSB-1为体外研究对象,分别将ChMIL-18蛋白、HN蛋白、HN-ChMIL18融合蛋白与MSB-1细胞共培养后,通过增殖抑制试验、琼脂糖凝胶电泳、流式细胞仪等方法探讨其抑制机制,MTT结果表明HN蛋白、HN-ChMIL18融合蛋白对MsB-1细胞的增殖有抑制作用,并呈剂量相关性,而ChMIL-18蛋白无抑制作用;琼脂糖凝胶电泳分析发现,ChMIL-18蛋白、HN蛋白、HN-ChMIL18融合蛋白与MSB-1细胞共培养一段时间后,HN蛋白、HN-ChMIL18融合蛋白均出现DNA断裂现象;ChMIL-18蛋白、HN蛋白、HN-ChMIL18融合蛋白与MSB-1细胞共培养后,流式细胞仪检测发现HN蛋白、HN-ChMIL18融合蛋白均引起MSB-1细胞出现了凋亡,而且HN-ChMIL18融合蛋白引起的凋亡数量比HN蛋白多,而单独的ChMIL18不能引起MSB-1细胞凋亡。
Newcastle disease virus(NDV),a kind of oncolytic virus,can replicate and proliferate in the tumor cells but not in the normal cells,thus specifically kill tumor cells.With the in-depth study on anti-tumor mechanism of NDV,it has been thought that NDV hemagglutinin- neuraminidase(HN)protein plays an important role in anti-tumor activity induced by NDV.Interleukin-18(IL-18)has the potential to be used as an immunomodulator in the therapy of malignant tumors and cancer gene therapy.To discuss the effect and mechanism against cancer of ChMIL-18 protein,HN protein and HN-ChMIL18 fusion protein,in this study we constructed expression plasmids(pPICZαA-ChMIL 18,pPICZαA-HN,pPICZαA-HN-ChMIL18).Then the expression and the bioactivities of ChMIL-18 protein,HN protein and HN-ChMIL18 protein were detected in vitro.In this study we used MDCC- MSB-1(MD lymphoblastoid cell line)in vitro to explore the inhibitive effect of ChMIL-18 protein, HN protein and HN-ChMIL18 fusion protein on the growth of MSB-1 cell and its mechanism.Both HN protein and HN-ChMIL18 fusion protein could inhibit the growth of MSB-1 and the effect induced by HN-ChMIL18 fusion protein was stronger than that of HN protein.In addition,the possible mechanisms were further discussed,HN protein can induce apoptosis of tumor cells,and ChMIL-18 can enhance the non-specific anti-tumor immunoresponse.ChMIL18 protein can promote the Proliferation of lymphocytes determined by MTT(3-(4,5- dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromid)method,but no inhibitory action MSB-1.It was built foundation for the effect and mechanism against cancer of HN-ChMIL18 fusion protein in vivo,so it has theoretical as well as practical significance.
     1.Obtain target DNA and Bio-informatics Analysis
     1.1 Obtaining ChMIL18 Gene and Bio-informatics Analysis
     A pair of primers specific to chicken mature IL-18 were designed and synthesized according to GenBank,to amplify chicken mature IL-18 cDNA by reverse transcription polymerase chain reaction(RT-PCR)from peripheral blood monocyte of chicken.It was cloned into pMD18-T vector and identified by sequencing.The results showed that this gene contains 507bp encoding 169 amino acids with a predicted molecular weight of 19.5KD and pI of 6.36.Bioinformatics analysis indicated that the sequence contained antigenicity but no glycosylation sites.All the results were consistent with those of ChIL18 gene abord.It is necessary to reconstruct ChMIL18 for a high level expression of ChIL18 in Pichia pastoris.By using long-distance inverse PCR,the codon of Arg(CGA)of 28 site and 37 site of ChIL18 were mutated synonymously to Arg(AGA),which is a bias code of Yeast.The mutated pMD18-T-ChMIL18 was transformed into JM109 strain.The mutated ChIL18 gene clone was obtained successfully by digesting,PCR,sequencing and blasting.
     1.2 Obtaining HN Gene and Bio-informatics Analysis
     A cDNA fragment of hemagglutinin-neuraminidae(HN)was obtained from Newcastle disease virus(NDV)LaSota strain by RT-PCR.A 1.7 Kb fragment was amplified,which conformed to the NDV-HN gene fragment's reported in the Genbank, and cloned into the pMD18-T vector.The recombinant plasmid was proved to be true by enzyme,PCR and sequencing.The sequence and biochemical character are analyzed with Protean.This polypeptide is consist of 577 aa,63.0KD m.w..Its isoelectric point is 7.54. The structure of protein is analyzed which contained 12 Cysteine Residues,5 the potential glycosylation site.Compared HN gene sequence with the corresponding sequence of other strains B1,Clone30,LaSota and so on,the homology of the nucleotide sequencewas 98.8%-99.8%,the homology of the protein sequencewas 98.8%-99.5%
     1.3 Obtaining HN-ChMIL18 Fusion Gene
     According to MCS of pPICZαA and pBluescript SK+ vector,two pairs of primers with an adapter with were designed.Fusion protein gene of HN and ChMIL18 was separately synthesized and cloned with pMD18-HN、pMD18-ChIL18 as template.DNA fragment was respectively inserted into pMD18-T Vector,and transformed into E.coli JM109,Recombinants were grew in LB culture medium plate and screened.Plasmid DNA was amplified by using PCR and identified by sequening.The results showed that pMD 18-T-HN~f and pMD 18-T-ChMIL 18~f were constructed successfully.
     pBS SK+ and pMD 18-T-HN~f were digested separately by KpnI and BamHI enzyme, and were linked under T4 DNA Ligase,pBS SK+-HN was constructed and transformed to E.coli JM109,the recombinant was digested by KpnI and BamHI and PCR,the results showed that recombinant plasmid pBS SK+-HN was constructed.And then,pBS SK+-HN and pMD18-T-ChMIL18~f were digested separately by BamHI and NotI enzyme, and were linked under T4 DNA Ligase,pBS SK+-HN-ChMIL18 was constructed and transformed to E.coli JM109,the recombinant was digested by KpnI and NotI and PCR, the results showed that HN-ChMIL18 fusion gene fragment was inserted into pBS SK+.
     2 Construction of Expression Vector,Inducible Expression and Bioactivities Test of the Recombinant Protein
     2.1 Construction of pPICZαA-ChMIL18 Vector,Expression and Bioactivities Test of ChMIL18 Protein
     Secreted expression vector pPICZαA and pMD18-T-ChMIL18 were digested separately by EcoRI and KpnI enzyme,and were linked under T4 DNA Ligase, pPICZαA-ChMIL18 was constructed and transformed to E.coli JM109,the recombinant was digested by EcoRI and KpnI and PCR,the results showed that recombinant plasmid pPICZαA-ChMIL18 was constructed.ChMIL18 gene fragment was transformed into P.Pastoris X-33 strain by electroporation after pPICZαA-ChMIL18 was lined by SacI enzyme.High-copied transformants were obtained by Zeocin screening.P.pastoris X-33/ pPICZαA-ChMIL18 was expressed under the induction of 1%methanol.SDS-PAGE showed that after being induced with 1%methanol for 4d,the expressed products existed in supernatant and it's molecular weigh was about 23KD,Western-blot showed good antigenicity and specificity of expressed product,lymphocyte transformation test showed ChMIL18 significantly influenced increment reactivity of lymphocyte of chicken.
     2.2 Construction of pPICZαA-HN Vector,Expression and Bioactivities Test of HN Protein
     Secreted expression vector pPICZαA and pMD 18-T-HN were digested separately by KpnⅠand NotI enzyme,and were linked under T4 DNA Ligase,pPICZαA-HN was constructed and transformed to E.coli JM109,the recombinant was digested by KpnI and NotI and PCR,the results showed that recombinant plasmid pPICZαA-HN was constructed.HN gene fragment was transformed into P.Pastoris X-33 strain by electroporation after pPICZαA-HN was lined by SacI enzyme.High-copied transformants were obtained by Zeocin screening.P.pastoris X-33/pPICZαA-HN was expressed under the induction of 1%methanol.SDS-PAGE and Western-blot showed that after being induced with 1%methanol,the expressed products existed in supematant and it's molecular weigh was about 97KD,has good antigenicity and specificity of expressed product,hemagglutination test showed HN protein could absorb chicken red blood cells(RBC).
     2.3 Construction of pPICZαA-HN-ChMIL18 Vector,Expression and Bioactivities Test of HN-ChMIL18 Fusion Protein
     Secreted expression vector pPICZαA and pBS SK+-HN-ChMIL18 were digested separately by KpnI and NofI enzyme,and were linked under T4 DNA Ligase, pPICZαA-HN-ChMIL18 was constructed and transformed into E.coli JM109,the recombinant was digested by KpnⅠand NotI and PCR,the results showed that recombinant plasmid pPICZαA-HN-ChMIL18 was constructed.HN-ChMIL18 gene fragment was transformed into P.Pastoris X-33 strain by electroporation after pPICZαA- HN-ChMIL18 was lined by SacI enzyme.High-copied transformants were obtained by Zeocin screening.P.pastoris X-33/pPICZαA-HN-ChMIL18 was expressed under the induction of 1%methanol.SDS-PAGE and Western-blot showed that the expressed products existed in supematant and it's molecular weigh was about 103KD,has good antigenicity,lymphocyte transformation test and Hemagglutination test showed HN-ChMIL18 protein significantly influenced increment reactivity of lymphocyte of chicken and absorb chicken red blood cells(RBC).
     3 Study on anti-MDCC-MSB-1 in vitro
     In this study we used MDCC- MSB-1(MD lymphoblastoid cell line)in vitro to explore the inhibitive effect of ChMIL-18 protein,HN protein and HN-ChMIL18 fusion protein on the growth of MSB-1 cell and its mechanism.The inhibitive effect of ChMIL-18 protein,HN protein and HN-ChMIL18 fusion protein on MSB-1 cell by MTT assay,and explored the mechanism through agarose gel electrophoresis and flow cytometry.MTT assay showed that HN protein and HN-ChMIL18 fusion protein inhibited the growth of MSB-I cell,Agarose gel electrophoresis showed that MSB-1 cell treated with HN protein and HN-ChMIL18 fusion protein for 72 hours had DNA ladder.Flow cytometry analysis indicated that apoptotic cells appeared after MSB-1 cell treated with HN protein and HN-ChMIL18 fusion protein for some time.These results suggested that HN protein and HN-ChMIL18 fusion protein inhibited the growth of MSB-1 cell,and the mechanism was relative to inhibiting the synthesis of DNA and inducing apoptosis of some MSB-1,However,ChMIL-18 didn't so.
引文
1.Susan J.Baigent,Lorraine P.Smith,et al.Vaccinal control of Marek's disease:Current challenges,and future strategies to maximize protection [J].Veterinary Immunology and Immunopatholog,2006,112(1-2):78-86.
    2.Witter R L.Marek's disease:the continuing struggle between pathogen and host[J].Vet,2005,170(2):149-150.
    3.Nazerian K,Wit ter R L,Lee L F,et al.Protection and synergism by recombinant fowlpox vaccines expressing genes from Marek's disease virus[J].Avian Dis,1996,40(2):368-376.
    4.Hans G.Heine Adam J.Foord,Peter L.Young,et al.Recombinant fowlpox virus vaccines against Australian virulent Marek's disease virus:gene sequence analysis and comparison of vaccine efficacy in specific pathogen free and production chickens[J].Virus Res,1997,50(1):23-33.
    5.陈志琳,崔志中,秦爱建,等.表达马立克氏病病毒gI基因重组鸡痘病毒的免疫原性[J].扬州大学学报,2002,(2):13-19.
    6.Lee L E,Witter R L,Reddy S M,et al.Protection and synergism by recombinant fowl pox vaccines expressing multiple genes from Marek's disease virus[J].Avian Dis,2003,47(3):549-558.
    7.Ross L J N,Binns M M,Tyers P.Construction and properties of a turkey herpesvirus recombinant expressing the Marek's disease virus homologue of glycoprotien B of herpesimplex virus[J].GenVirol,1993,74:371-377.
    8.Morgan R W,Gelb J.Protection of chickens from Newcastle disease and Marek's disease with a recombinant herpesvirus of turkeys vaccine expressing the Newcastle disease virus fusion protein[J].Avain Dis,1992,36:858-870.
    9.Reddy S K,Sharma J M.Protective efficacy of a recombinant herpesvirus of turkeys as an in ovo vaccine against Newcastle and Marek's diseases in specific pathogen free chickens[J].Vaccine,1996,14(6):469-477.
    10.Parcells M S,Anderson A S,Cantello J L,et al.Characterization of Marek' s disease virus insertion and deletion mutants that lack US],US10,and/or US2 and neighboring short-component open reading frames[J].Journal of Virology,1994,68:8239-8253.
    11.Parcells M S,Anderson A.S.,and Morgan R.W.Retention of oncogenicity by a Marek's disease virus mutant lacking six unique short region genes[J].Journal of Virology,1995,69:7888-7898.
    12.Anderson A S,Parcells M S,and Morgan R W.The glycoprotein D(US6)homolog is not essential for oncogenicity or horizontal transmission of Marek's disease virus[J].Journal of Virology,1998,72:2548-2553.
    13.Witter RL.The changing landscape of Marek's disease.Avian Pathology,1998,27:S46-S53.
    14.胡传伟,彭大新,张如宽,等.表达鸡马立克病病毒gB基因的重组鸡痘病毒与火鸡疱疹病毒二价冻干疫苗的免疫效力[J].中国兽医学报,2006,26(1),11-13.
    15.Tischer B K,Schumacher D,Beer M,et al.A DNA vaccine containing an infectious Marek's disease virus genome can confer protection against tumorigenic Marek's disease in chickens[J].Gen Virol,2002,83(10):2367-2376.
    16.殷中琼,贾仁勇,乔波,等,鸡马立克氏病胚胎免疫的研究[J].中国预防兽医学报,2003,25(5):372-373.
    17.Wigley P,Hulme SD,Bumstead N,Barrow PA.In vivo and in vitio studies of genetic resistance to systemic salmonellosis in the chicken encoded by the SALI Iocus[J].Microbes Imnfect,2002,4(11):1111-1120.
    18.PK Rout,PK Pani.Genetic analysis of Rous sarcoma virus(subgroup A)induced tumourigenesis and performance of synthetic broiler stocks in relation to group-specic antigen shedding[J].Avian Pathology,1999,28,461-471.
    19.Kramer J,Visscher AH,Wagenaar JA,Jeurissen SH.Entry and survival of Salmonella enterica serotype Enteritidis PT4 in chicken macrophage and Iymphocyte cell lines[J].Vet Microbiol,2003,91(2-3):147-155.
    20.Witter RL.Controlstrategies for Marek's disease:a perpective for the future[J]. Poult Sci,1998, 77:1197-1203.
    
    21. Nagai H, Hara I, Horikawa T, et al. Gene transfer of secreted-type modified interleukin-18 gene to B16F10 melanoma cells suppresses in vivo tumor growth through inhibition of tumor vessel formation[J]. J Invest Dermatol, 2002, 119(3): 541-548.
    
    22. Cho D, Kim TG, Lee W, et al. Interleukin 18 and the costimulatory molecule B7-1 have a synergistic anti-tumor effect on murine and melanoma :implication of combined immunot herapy for poorly immunogenic malignancy [J]. J Invest Dermatol, 2000,114:928-934.
    
    23. Naumnik W, Chyczewska E, Kovalchuk 0, et al. Serum levels of interleukin-18 (IL-18) and soluble interleukin-2 receptor(sIL-2R) in lung cancer[J].Rocz Akad Med Bialymst, 2004, 49: 246 -251.
    
    24. Goto H, Os aki T , NishinoK, et al. Construction and analysis of new vector systems with improved interleukin-18 secretion in a xenogeneic human tumor model[J]. J Immunother, 2002, 25(Suppl 1): 35-41.
    
    25. Dian Wen Ju, Qun Tao, Guoliang Lou, et al. Interleukin-18 Transfection Enhances Antitumor Immunity Induced by Dendritic Cell-Tumor Cell Conjugates. Cancer Research , 2001 (61): 3735-3740.
    
    26. Okamura H, Nagata K, Komatsn T, et al. A novel costimulatory factor for gamma interferon induction found in the livers of mice causes endotoxic shock[J]. Infect Immun, 1995, 63(10):3966-3972.
    
    27. Ushio S, Namba M, Okura T, et al. Cloning of the cDNA for human IFN- gamma- inducing factor, expression in escherichia coli, and studies on the biologic activities of the protein[J].J Immunol,1996,156(11):4274-4279.
    
    28. Schneider K.Puchler F, bacubrle D,et al.c DNA cloning of biologically active chicken interleukin-18[J]. Interferon coytokine Res.2000, 20:879- 883.
    
    29. B Siegmund. Interleukin-1β converting enzyme (caspase-1) in intestinal inf lamination [J]. Biochemical Pharmacology, 2002, 64 (1): 1-8.
    
    30. Kalina U, Ballas K, Koyama N, et al. Genomic organization and regulation of the human interleukin-18 gene[J].Scand J Immunol,2000,52(6):525-530.
    31.Tone M,Thompson SA,Tone Y,et el.Regulation of IL-18(IFN-gamma- inducion factor)gene expression[J].J Immunol,1997:159(12):6156-6163.
    32.G Fantuzzi,DA Reed,CA Dinarello.IL-12- induced IFN-γ is dependent on caspase-1 processing of the IL-18 precursor[J].Clin Invest,1999,104(6):761-767.
    33.Muneta Y,Inumaru S,shimoji Y,et al.Effcient production of biological active porcine interleukin-18 by coexpression with porcine caspase-1 using a baculovirus expression system[J].J interferon cytokine Res,2001,21(2):125-130.
    34.Torigoe K,Ushio S,Okura T,et al.Purification and characterization of the human interleukin-18 receptor[J].J Biol Chem,1997,272:25737-25742.
    35.T Yoshimoto,K Torigoe,M Kurimoto,et al.IL-12 synergizes with IL-18or IL-1β for IFN-γ production from human T cells[J].International Immunology,2000,12(2):151-160.
    36.T Yoshimoto,K Takeda,T Tanaka,et al.IL-12 Up-Regulates IL-18 Receptor Expression on T Cells,Thl Cells,and B Cells:Synergism with IL-18 for IFN-γProduction[J].The Journal of Immunology,1998,161:3400-3407.
    37.T Osaki,JM Peron,Q Cai,et al.IFN-γ-Inducing Factor/IL-18Administration Mediates IFN-γ-and IL-12-Independent Antitumor Effects[J].J Immunoly,1998,160:1742-1749.
    38.Matsumoto S,Tsuji-Takayama K,Aizawa Y,et al.Interleukin-18 activates NFkappa B in murine T helper type cells[J].Blochem biophys Res commun,1997:234(2):454-457.
    39.Tsuji-Takayama K,Matsumoto S,Koide,et al.Interleukin-18 induces activate and assiation of p56(lck)and MAPK in a routine Th1 clone[J].Biochem Biophys Res Commun,1997,237(1):126-130.
    40.Sareneva T,Julkunen l,M atikaninen S.IFN-γ and IL-12 induce IL-18receptor gene expression in human NK and T cells[J].J Imunol,2000,165:1933-1938.
    41.Yoshimoto T, Okamura H, Tagawa Y. et al. Interleukin 18 together with Interleukin 12 inhibits IgE production by induction of interferon-gamma production from activated B cells [J]. Proc Natl Acad Sci USA, 1997, 94(8): 3948-3953.
    
    42. BR Lauwerys, N Garot, JC Renauld, et al. Cytokine production and killer activity of NK/T-NK cells derived with IL-2, IL-15, or the combination of IL-12 and IL-18[J]. J Immunol, 2000,165(4):1847-1853.
    
    43.Gracie JA, Robertson SE.McInnes IB. Interleukin-18. J Leukoc Biol, 2003, 73(2): 213-224.
    
    44. UKalina, DKauschat, NKoyama, et al. IL-18 Activates STAT3 in the Natural Killer Cell Line 92, Augments Cytotoxic Activity, and Mediates IFN-γ Production by the Stress Kinase p38 and by the Extracellular Regulated Kinases p44erk-l and p42erk-21[J]. The Journal of Immunology, 2000, 165: 1307-1313..
    
    45. Rochel N, Cowan J. A. Dependence of the lytic activity of the N-terminal domain if human perforin on membrane lipid composition:Implications for T cell self-preservation[J]. Eur J Biochem,1997,249(1):223-231.
    
    46. Hyod Y, Matsui K, Hayashi N, et al. IL-18 up-regulates perforin- mediated NK activity without increasing perforin messenger RNA expression by binding to constitutively expressed IL-18 receptor[J]. J Immunol, 1999,162: 1662-1668.
    
    47.Dao T, Mehal WZ, Crispe IN, et al. IL-18 augments perfor in-dependent cytotoxicity of liver NK-T cells[J].J Immunol,1998,161:2217-2222.
    
    48. Tomura M, Zhou XY,Maruo S, et al. A critical role for IL-18 in the proliferation and activation of Nkl. l+CD3-cells[J]. J Immunol, 1998, 160(10): 4738-4746.
    
    49.Takeda K, Tsutsui H, Yoshimoto T, et al. Defective NK cell activity and Th1 response in IL-18-deficient mice [J]. Immunity, 1998; 8(3): 383-390.
    
    50. Yoshimura K, Hazama S, L izuka N , et al. Successful immunogene therapy using colon cancer cells ( colon 26 ) transfected w ith plasm id vector containing mature interleukin-18 cDNA and the Igkappa leader sequence[J].Cancer Gene Ther,2001,8(1):9-16.
    51.Micallef M J,Yoshida K,Kawai S,et al.In vivo antitumor effects of murine interferon-gamma-inducing factor/interleukin-18 in mice bearing syngeneicM eth A sarcoma malignant ascites[J].Cancer Immunol Immunother,1997,43(6):361-367.
    52.Osaki T,Peron JM,CaiQ,et al.IFN-gamma-inducing factor/IL-18administration mediates IFN-gamma-and IL-12-independent antitumor effects [J].J Immunol,1998,160(4):1742-1749.
    53.Hara S,N agai H,M iyake H,et al.Secreted type of modified inter-leukin-18gene transduced into mouse renal cell carcinoma cells induces systemic tumor immunity[J].J U rol,2001,165(6Pt):2039-2043.
    54.Wang Q,Yu H,JuDW,et al.Intratumoral IL-18 gene transfer improves therapeutic efficacy of antibody-targeted superantigen in established murinemelanoma[J].Gene Ther,2001,8(7):542-550.
    55.Kishida T,A sada H,Satoh E,et al.In vivo electroporation-mediated transfer of interleukin-12 and interleukin-18 genes induces significant antitumor effects against melanoma in mice[J].Gene Ther,2001,8(16):1234-1240.
    56.Son YI,Dallal RM,Mailliard RB,et al.Interleukin-18(IL-18)synergizes with IL2 to enhance cytotoxicity interferon-gamma production,and expansion of natural killer cells[J].Cancer Res,2001,61(3):884-888.
    57.Ju DW,Yang Y,Tao Q,et al.Interleukin-18 gene transfer increases antitumor effects of suicide gene therapy through efficient induction of antitumor immunity[J].Gene Ther,2000,7(19):1672-1679.
    58.CN Baxevanis,AD Gritzapis,M Papamichail.In Vivo Antitumor Activity of NKT Cells Activated by the Combination of IL-12 and IL-18[J].J Immunol,2003,171:2953-2959.
    59.Tadashi Osaki,Jean-Marie Peron,et al.IFN-γ-Inducing Factor/IL-18Administration Mediates IFN-γ-and IL-12-Independent Antitumor Effects[J]. J Immunol, 1998, 160:1742-1749.
    
    60. Jakub Gob. Interleukin-18—Interferon Y Inducing Factor—A Novel Player in Tumour Immunotherapy[J]. Cytokine, 2000,12(4): 332-338.
    
    61. M Kurte, M Lopez, A Aguirre , et al.A Synthetic Peptide Homologous to Functional Domain of Human IL-10 Down-Regulates Expression of MHC Class I and Transporter Associated with Antigen Processing 1/2 in Human Melanoma Cells[J]. J Immunol, 2004, 173: 1731-1737.
    
    62. Tanaka F, Hashimoto W, Okamura H, et al. Rapid generation of potent and tumor-specific cytotoxic T lymphocyte by interleukin 18 using dendritic cells and natural killer cells[J]. Cancer Res, 2000,60: 4838 -4844.
    
    63. SONG Wen-gang, LIU Shu-xun, YU Yi-zhi, et al. The Biological Characteristics of Adenovirus-mediated IL-18 Gene-modified Murine Colorectal Adenocarcinoma cell in Vivo and in Vitro [J]. Chinese J Cancer Research, 2001,13 (3): 162-165
    
    64. FU Yi, PEI Dong-Sheng, SUN Bing, et al. Identification of Important Amino Acid Residues for Human IL-18 Function by Mutant Construction[J]. Acta Biochim Biophys Sin, 2003,35(5):409-415.
    
    65. Xiang J, Chen Z, Huang H, et al. Regression of engineered myeloma cells secreting interferon-gamma-inducing factor is mediated by both CD4(+)/CD8(+) T and natural killer cellst[J]. Leuk Res., 2001,25(10): 909-915.
    
    66. Wei Liang, Hui Wang, Tie-Mie Sun, et al. Application of autologous tumor cell vaccine and NDV vaccine in treatment of tumors of digestive traet[J]. World J Gastroenterol,2003,9(3):495-498
    
    67. Phuangsab A, Lorence RM, Reichard KW, et al. Newcastle disease virus therapy of human tumor xenografts: antitumor effects of local or systemic administration[J]. Cancer lett, 2001,172:27-36.
    
    68. Batliwalla F M, Bateman B A, Serrano D et al. A 15-year follow-up of AJCC stage Ⅲ malignant melanoma patients treated postsurgically with Newcastle disease virus (NDV) oncolysate and determination of alterations in the CD8 T cell repertorie[J].Mol Med, 1998, 4(12):783-794.
    
    69. Nicolas Mach, Glenn Dranoff. Cytokine-secreting tumor cell vaccines [J].Current Opinion in Immunology,2000,12(5):571-575.
    70.Kircher H H,Anton P,Atzpodien J.Adjuvant treatment of locally advanced renal cancer with autologous-virus-modified tumor vaccines[J].World J of Urology,1995,13(3):171-173.
    71.Tzadok-David Y,Metzkin-Eizenberg M,Zakay-Rones Z.The effect of a mesogenic and lentogenic Newcastle disease virus strain on Burkitt lymphoma Daudi cell[J].J Cancer Res Clin Oncol,1995,121(3):169-174.
    72.Lorence R M,Reichard K W,Katubig B B et al.Complete regression of human neuroblastoma xenografts in athymic mice after local Newcastle disease virus therapy[J].J Natl Cancer Inst,1994,86(16):1228-1233.
    73.Lorence R M,Katubig B B,Reichard K Wet al.Complete regression of human fibrosarcoma xenografts after local Newcastle disease virus therapy[J].Cancer Res,1994,54(23):6017-6021.
    74.Anan Phuangsab,Robert M.Lorence,Kirk W.Reichard,et al.Newcastle disease virus therapy of human tumor xenografts:antitumor effects of local or systemic administration.Cancer Letters,2001,172(1):27-36.
    75.陈英准,苏雁欣,王立峰,等.新城疫病毒对裸小鼠人肺腺癌移植瘤的抑瘤作用[J].哈尔滨医科大学学报,2001,35(1):15-16.
    76.David Kirn,Robert L.Martuza,James Zwiebel.Replication-selective virotherapy for cancer:Biological principles,risk management and future directions[J].Nature Medicine,2001,7(7):781-787.
    77.王久莉,于健,赵春源,等.新城疫病毒抗人喉癌的实验研究[J].中华耳鼻咽喉科杂志,2001,36(2):138-141.
    78.薛立娟,龚伟,葛涛,等.新城疫病毒pIRHN核酸疫苗构建和表达及对肿瘤细胞的影响[J].中国免疫学杂志,2002,18(5):338-340.
    79.Melanie C.Ruzek,Andrew H.Miller,Steven M.Opal,et al.Characterization of Early Cytokine Responses and an Interleukin(IL)- 6-dependent Pathway of Endogenous Glucocorticoid Induction during Murine Cytomegalovirus Infection[J].J.Exp.Wed.,1997,185(7):1185-1192
    80.Shannon Kenney,Joseph S Pagano.Virus as oncolytic Agents:a new age for "therapeutic" viruses[J].J Natl Cancer Inst,1994,86(16):1185-1186.
    81.岳惠芬,刘名光,梁新强,等.新城疫病毒Ⅳ系活疫苗辅助治疗鼻咽癌患者的临床效果观察研究[J].中华肿瘤防治杂志,2006,13(16):1219-1221.
    82.Schirrmacher V,Haas C,Bonifer R,et al.Human tumor cell modification by virus infection;an efficient and safe may to produce cancer vaccine with pleiotropic immune stimulatory properties when using Newcastle disease virus[J].Gene Ther,1999,6(1):63-73.
    83.Schirrmacher V,Ahlert T,Heicappell R,et al.Successful application of non-oncogenic viruses for antimetastatic cancer immuno-therapy[J].Cancer Rev,1986,5:19-49.
    84.Kagawa S,H e C,Gu J,et al.Antitumor activity and bystander effects of the tumor necrosis factor-trlated apoptosis-inducing ligand(TRAIL)gene.Cancer Res,2001,61(8):3330-3338.
    85.David H.Kirn,and Frank McCormick.Replicating viruses as selective cancer therapeutics[J].Molecular Medicine Today,1996,2(12):519-527.
    86.Z Fabian,CM Csatary,J Szeberenyi,et al.p53-Independent Endoplasmic Reticulum Stress-Mediated Cytotoxicity of a Newcastle Disease Virus Strain in Tumor Cell Lines[J].Journal of Virology,2007,81(6):2817-2830.
    87.E.Umit Bagriacik and Kenton S.Miller.Cell surface sialic acid influences tumor cell recognition in the mixed lymphocyte reaction[J].Glycobiology,1999,139(1):267-275
    88.古长庆,金宁一.鸡新城疫病毒抗肿瘤作用及其机制的研究进展.中国肿瘤生物治疗杂志,2000,7(3):238-240
    89.Millar N S,Chambers P,Emmerson P T.Nucleotide sequence analysis of the haemagglutinin-neuraminidase gene of Newcastle disease virus[J].Journal of General Virology,1986,67:1917-1927.
    90.Iorio R M,Bratt M A.Monoclonal antibodies as functional probes of the HN glycoprotein of Newcastle disease virus:anti-genic separation of the hemagglutinating and neuraminidase sites[J].Journal of Immunol,1984,133:2215-2219.
    91. Y. Umino, T. Kohama, T. A. Sato,et al. Monoclonal Antibodies to Three Structural Proteins of Newcastle Disease Virus: Biological Characterization with Particular Reference to the Conformational Change of Envelope Glycoproteins Associated with Proteolytic Cleavage [J]. J Gen Virol, 1990, 71: 1189-1197.
    
    92. Olav S. de Leeuw, Guus Koch, et al. Virulence of Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the stem region and globular head of the haemagglutinin-neuraminidase protein [J]. J Gen Virol ,2005,86:1759-1769.
    
    93. Sakagucki T , Toyoda T , Gotoh B , et al . Newcastle disease virus evolution I. Multiple lineages delined by sequence variability of the HN gene[J]. Virology, 1989,169:260-272.
    
    94.Millar N S , Chambers P , Emmerson P T. Nucleotide sequence of the fusion and haemagglutinin-neuraminidase genes of newcastle disease virus , strain Ulster: Molecular basis for variations in pathogenicity between strains [J]. Journal of General Virology, 1988, 69:613-620.
    
    95. Neil S. Millar, Philip Chambers , Peter T. Emmerson. Nucleotide Sequence of the Fusion and Haemagglutinin-Neuraminidase Glycoprotein Genes of Newcastle Disease Virus, Strain Ulster: Molecular Basis for Variations in Pathogenicity between Strains[J]. J Gen Virol, 1988,69:613-620.
    
    96. A. R. Gould, E. Hansson , K. Selleck , et al. Newcastle disease virus fusion and haemagglutinin-Neuraminidase gene motifsas markers for viral lineage[J]. Avian Pathology,2003, 32(4):361-373.
    
    97. R M Iorio, R J Syddall, J P Sheehan, et al. Neutralization map of the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus: domains recognized by monoclonal antibodies that prevent receptor recognition[J]. J Virol., 1991,65(9):4999 - 5006
    
    98. Nagai Y, Shimokata K, Yoshida T , et al . The spread of a pathogenic and an apathogenic strain of Newcastle disease virus in the chick embryo as depending on the protease sensitivity of the virus glycoproteins [J]. Journal of General Virology, 1979,45:263-272.
    
    99. Pitt JJ, Da Silva E, Gorman JJ et al. Determination of the disulfide bond arrangement of Newcastle disease virus hemagglutinin-neuraminidase [J].J boil Chem ,2000, 275(9):6469-78.
    
    100. Morrison T G, Simpson D. Synthesis , stability and cleavage of Newcastle disease virus glycoproteins in the absence of glycosylation[J]. Journal of Virology, 1980,36 :171-180.
    
    101.McGinnes L W , Morrison T G. Modulation of the activities of HN protein of Newcastle disease virus by nonconserved cysteine residues[J]. Virus Research ,1994 , 34(3):305-316.
    
    102. Gething MJ, Sambrook J. Protein folding in the cell[J].Nature, 1992, 355:33-45.
    
    103. Lori W. McGinnes, Kathryn Gravel, and Trudy G. Morrison et al. Newcastle Disease Virus HN Protein Alters the Conformation of the F Protein at Cell Surfaces[J]. Virol. 2002 ,76(24):12622 - 12633.
    
    104. Alamares JG, Li J, Iorio RM . Monoclonal antibody routinely used to identify avirulent strains of Newcastle disease virus binds to an epitope at the carboxy terminus of the hemagglutinin-neuraminidase protein and recognizes individual mesogenic and velogenic strains[J].J Clin Microbiol, 2005,43 (8):4229-4233.
    
    105. T Morrison, CMcQuain, and L McGinnes. Complementation between avirulent Newcastle disease virus and a fusion protein gene expressed from a retrovirus vector: requirements for membrane fusion[J]. J Virol, 1991, 65(2) :813 - 822.
    
    106. Chambers P , Millar N S , Emmerson P T. Nucleotide sequence of the gene encoding the fusion glycoprotein of Newcastle disease virus[J].Journal of General Virology,1986, 67:2685-2694.
    
    107. Schirrmacher V,Haas C, Bonifer R, et al.Virus potentiation of tumor vaccine T cell stimulatory capacity requires cell surface binding but not infection [J]. J Clin Cancer Res, 1997, 3:1135-1148.
    
    108. Paszkowska A .Berbec H , Cybulski M. Level of sialic acid in blood serum as a tumor maxker[J].Przegl Lek.1997,54(12):851-853.
    109.Brooks SA,Carter TM.N-acctlgalactosamine,N-acetyl-glucosamine and sialic acid expression in primary breast cancers[J].Acta Histochem.2001,103(1):37-51.
    110.F Akcay,S Taysi,C Uslu,Y Dogru,et al.Levels of Soluble Intercellular Adhesion Molecule-1 and Total Sialic Acid in Serum of Patients with Laryngeal Cancer[J].Japanese Journal of Clinical Oncology,2001,31:584-588.
    111.Sopit Wongkham,Chanchai Boonla,Supranee Kongkham,et al.Serum total sialic acid in cholangiocarcinoma patients:an ROC curve analysis[J].Clinical Biochemistry,2001,34(7):537-541.
    112.施辉,陈覃,司宪平等.脑肿瘤治疗前后血清唾液酸和脑脊液唾液酸含量变化[J].中国肿瘤临床与康复,2000,7(3):12-13.
    113.Susanne Osanto.Vaccine Trials for the Clinician:Prospects for Tumor Antigens[J].The Oncologist,1997,2(5):284-299.
    114.Bian H,Fournier P,Moormann R,et al.Selective gene transfer in vitro to tumor cells via recombinant Newcastle disease virus[J].Cancer Gene Ther,2005,12:295-303.
    115.Dziadek S,Espinola C G,Kunz H.Synthetic glycopeptides for the development of antitumor vaccines[J].Aust J Chem,2003,56:519-543.
    116.Hass C,Ertel C,Gerhards R,et al.Introduction of adhesive and costimulatory immune functions into tumor cells by infection with Newcastle disease virus[J].Int J Oncol,1998,13(6):1105-1115.
    117.H Bian,P Fournier,B Peeters,V Schirrmacher.Tumor-targeted gene transfer in vivovia recombinant Newcastle disease virus modified by a bispecific fusion protein[J].INTERNATIONAL JOURNAL OF ONCOLOGY,2005,27:377-384.
    118.T Nakaya,J Cros,MS Park,et al.Recombinant Newcastle Disease Virus as a Vaccine Vector[J].Journal of Virology,2001,75(33):11868-11873.
    119.Zeng J,Fournier P,Schirrmacher V.Induction of interferon-alpha and tumor necrosis factor-related apoptosis-inducing ligand in human blood mononuclear cells by hemagglutinin-neuraminidase but not F protein of Newcastle disease virus[J]. Virology, 2002, 297(1):19-30.
    
    120. Connaris H, Takimoto T, Russell R, et al. Probing the sialic acid binding site of the hemagglutinin-neuraminidase of Newcastle Disease Virus: Identification of key amino acids involved in cell binding, catalysis, and fusion[J]. J Virol, 2002,76(4):1816-1824.
    
    121. AR Omar, A Ideris, AM Ali, F Othman, et al. An overview on the development of Newcastle disease virus as an anti-cancer therapy [J]. Malaysian Journal of Medical Sciences, 2003, 10(1): 4-12.
    
    122. Angela P., Laura L. .Randall M. et al.Role of Tumor Necrosis Factor- Related Apoptosis-Inducing Ligand in Interferon-Induced Apoptosis in Human Bladder Cancer Cells[J].Cancer Research, 2004,64: 8973-8979.
    
    123. Umer I. Chaudhry, T. Peter Kingham, et al.Combined Stimulation with Interleukin-18 and CpG Induces Murine Natural Killer Dendritic Cells to Produce IFN-γ and Inhibit Tumor Growth[J]. Cancer Research, 2006, 66:10497- 10504.
    
    124. M. G. Alexandrakis, F. H. Passam, K. Sfiridaki, et al. Interleukin-18 in multiple myeloma patients: serum levels in relation to response to treatment and survival [J]. Leukemia Research, 2004,28(3):259-266.
    
    125.Subleski JJ, Hall VL, Back TC, et al. Enhanced antitumor response by divergent modulation of natural killer and natural killer T cells in the livert[J]. Cancer Res,2006, 66(22):11005-11012.
    
    126. Jiang DF, Liu WL, Lu YL, et al. Function of IL-18 in promoting metastasis of lung cancer[J].Zhonghua Zhong Liu Za Zhi, 2003, 25(4):348-352.
    
    127. Yong-Jie YANG, Zhao-Yuan WANG, Song-Hua CHEN, and Xi-Rui GE. Cloning and Characterization of a New Isoform of Mouse Interleukin-18 [J]. Acta Biochimica et Biophysica Sinica, 2005,37(12):826-834.
    
    128. Muneta Y., Mori Y. .Shimoji Y. ,et al. Porcine interleukin-18: cloning, characterization of the cDNA expression with the baculovirus system[J]. Cytokine, 2000, 12(6):566-572.
    129.童铁钢,刘光亮,白宇,等.马白细胞介素18成熟蛋白(mEIL-18)基因在大肠埃希氏菌中的高效表达与纯化[J].畜牧兽医学报,2007,38(3):307-312.
    130.Avinash Premraj,E.Sreekumar,Binita Nautiyal.Molecular cloning and expression profile analysis of interleukin-10 and interleukin-18 cDNA of Indian water buffalo(Bubalus bubalis)[J].Veterinary Immunology and Immunopathology,2005,107(3-4):337-347.
    131.Wen-qiang LIU,Hong-kun ZHAO,Yun-dong GAO,et al.Cloning and Expression of Goat Interleukin-18 Gene[J].Journal of Veterinary Medical Science,2005,67(2):219-221
    132.曹殿军,于立辉,闫丽辉,等.犬脾细胞白介素-18(IL-18)基因的克隆与序列分析[J].中国预防兽医学报,2004,25(4):262-264.
    133.Ishizaka T,Setoguchi A,Masuda K,et al.Molecular cloning of feline interferon-γ-inducing factor(interleukin-18)and its expression in various tissues[J].Veterinary Immunology and Immunopathology,2001,79(3-4):209-218
    134.Jun Zou,Yasutoshi Yoshiura,Johannes Martinus Dijkstra,et al.Identification of an interferon gamma homologue in Fugu,Takifugu rubripes[J].Fish & Shellfish Immunology,2004,17(4):403-409.
    135.潘蔚绮,刘胜旺,孔宪刚,等.编码鸡IL-18成熟蛋白的基因克隆[J].中国预防兽医学报,2003,25(2):114-117.
    136.刘胜旺,潘蔚绮,孔宪刚,等.鸡白介素18基因原核表达及多克隆抗血清的制备[J].中国兽医学报,2003,23(5):427-430.
    137.温纳相,黄青云,陈金顶,等.鸡IL-18基因克隆和序列测定[J].动物医学进展,2003,24(2):64-66.
    138.Okamoto I,Kohno K,Tanimoto T,et al.IL-18 prevents the development of chronic graft versus host disease in mice[J].J Immunol,2000,164(11):6067-6074.
    139.Robertson MJ,Mier JW,Logan T,et al.Clinical and biological effects of recombinant human interleukin-18 administered by intravenous infusion to patients with advanced cancer[J].Clin Cancer Res,2006,12(14):4265-4273.
    140. Bachmann M, Dragoi C,Poleganov MA, et al.Interleukin-18 directly activates T-bet expression and function via p38 mitogen-activated protein kinase and nuclear factor-kappaB in acute mycloid leukemia-derived predendritic KG-1 cells[J].Mol Cancer ther,2007,6(2):723-731.
    
    141. Yokoyama A, Mori S, Takahashi HK, et al. Effect of amodiaquine, a histamine N-methyltransferase inhibitor, on Propionibacterium acnes and lipopoly- saccharide-induced hepatitis in mice[J]. Ear J Pharmacol, 2007, 558(1-3):179-184
    
    142.Muneta Y, Shimoji Y, Yokomizo Y, et al. Molecular cloning of porcine interleukin-1 beta converting enzyme and differential gene expression of IL-1beta converting enzyme, IL-1 beta, and IL-18 in porcine alveloar macrophages[J]. J Interferon Cytokine Res,1999,19(11):1289-1296.
    
    143. Muneta Y, Mori Y, Shimoji Y, et al. Porcine interleukinl8:cloning, characterization of the cDNA and expression with the baculovirus system[J]. Cytokine, 2000,12 (6):566-572.
    
    144. YAN Y X.AN C C,LI L, et al.T-linker-specific Ligation PCR (T-linker PCR) :An Advanced PCR Technique for Chromosome Walking or for Isolation of Tagged DNA Ends[J].Nucleic Acids Res,2003,31 (12):e68.
    
    145. Hoekema A , Kastelein R A , Vasser M. Codon replacement in the PGK1 gene of Saccharomyces cerevisiae : experimental approach to study the role of biased codon usage in gene expression[J]. Mol Cell Biol , 1987, 7(8): 2914- 2924.
    
    146. Kim C H , Oh Y, Lee T H. Codon optimization for high-level expression of human erythropoietin(EPO) in mammalian cells[J]. Gene ,1997,99 (1-2): 293-301.
    
    147. Cormack B P , Bertram G, Egerton M. Yeast-enhanced green fluorescent protein (yEGFP) a reporter of gene expression in Candida albicans[J]. Microbiology, 1997,143:303-311.
    
    148. Lakey D L , Voladri R K, Edwards KM. Enhanced production of recombinant Mycobacterium tuberculosis antigens in Escherichia coli by replacement of low-usage codons[J].Infection and Immunity,2000,68(1):233-238.
    149.Uchijima M,Yoshida A,Nagata T.Optimization of codon usage of plasmid DNA vaccine is required for the effective MHC class I-restricted T cell responses against an intracellular bacterium[J].J Immunol,1998,161(10):5594-5599.
    150.Sharp PM,Tuohy TM,Mosurski KR.Codon usage in yeast:cluster analysis clearly differentiates highly and lowly expressed genes[J].Nucleic Acids Res,1986,14(13):5125-5143.
    151.Zhang SP,Zubay G,Goldman E.Low-usage codons in Escherichia coli,yeast,fruit fly and primates[J].Gene,1991,105(1):61-72.
    152.赵翔,霍克克,李育阳.毕赤酵母的密码子用法分析[J].生物工程学报,2000,16(3):308-311.
    153.时成波,吕安国,吴文芳,等.改造稀有密码子提高SEA蛋白表达量[J].生物工程学报,2002,18(4):477-480.
    154.董宇清,于昕,赵进东.一种简易的利用Pfu-DNA聚合酶进行反向长距离PCR 获得定点突变的方法[J].植物学报,2000,5:539-541.
    155.Larrick J W,Thomas D W.Producing proteins in transgenic plant and animals[J].Curr Opin Biotechnol,2001,12(4):411-418.
    156.Bruel C,Cha K,Reeves P J,et al.P,hodopsin kinase:expression in mammalian cells and a two-step purification[J].Proc Natl Acad Sci USA,2000,97(7):3004-3009.
    157.Glaxo Wellcome,Langley Court,Beckenham,et al.Advances in the use of Pichia pastoris for high-level gene expression[J].Current Opinion in Biotechnology,1995,6(5):527-533.
    158.H Aoki,Md.Nazmul Ahsan,Shugo Watabe.Heterologous expression in Pichia pastoris and single-step purification of a cysteine proteinase from northern shrimp[J].Protein Expression and Purification,2003,31(2):213-221.
    159.Vassileva A,Chugh DA,Swarninathan S,et al.Effect of copy number on the expression levels of hepatitis B Surface antigen in the methylotrophic yeast Pichia pastoris[J].Protein Expr Purif.2001,21:71-80.
    160.H.SYCHROVA.Yeast as a Model Organism to Study Transport and Homeostasis of Alkali Metal Cations[J].Physiol.Res.2004,53(Suppl.1):91-98.
    161.何诚,朱运松.甲醇营养型酵母表达系统的研究进展[J],生物工程进展,1998,18(3):7-11.
    162.Dai XY,Wang YX,Zhou J,et al.Isolation and characterization of PAOX2mutant in Pichia pastoris[J].Yi Chuan XueBao,2000,27(7):641-646.
    163.李艳,王正祥,诸葛健.酵母作为外源基因表达系统的研究进展.生物工程进展,2001,21(2):10-14.
    164.Schirrmacher V,Griesbach A,Ahlert T.Antitumor effect of Newcastle disease virus in viva:local versus systemic effects[J].Int J Oncol,2001,18:945-952.
    165.Kaminska T,Dmoszynska A,Hus I,et al.Effect of granulocyte colony stimulationg factor treatment on ex viro cytokine production by blood cells of patients after chemotherapy or radiotherapy[J].Arch Immunol Ther Exp,1999,47:61-65.
    166.Schirmacher V,Ahlert T,Probstle T,et al.Immunization with virusmodified tumor cells[J].Seminars in Oncology,1998,25:677-696.
    167.孙迎春,金宁一,米志强,等.新城疫病毒HN基因对肝癌细胞SMMc7721的细胞毒性研究[J].中国肿瘤生物治疗杂志,2005,12(3):193-196.
    168.陈立刚,迟宝荣,金宁一,等.新城疫病毒HN基因重组体对人胃癌细胞BGC-823凋亡作用机制研究[J].中国实验诊断学,2006,10(5):441-445.
    169.连海,金宁一,李霄,等.新城疫病毒HN基因诱导人肺癌细胞SPC-Al凋亡的作用机制[J].中国生物化学与分子生物学报,2006,22(3):222-227.
    170.金宁一,米志强,龚伟,等.新城疫病毒HN基因与鸡贫血病病毒VP3基因对小鼠黑色素瘤的联合抑制效应[J].中国兽医学报,2003,23(2):127-129.
    171.李雪梅,金宁一,李霄,等.表达新城疫病毒HN基因重组鸡痘病毒的构建及其抑瘤作用[J].中国肿瘤生物治疗杂志,2006,13(2):112-115.
    172.连海,金宁一,米志强,等.新城疫病毒HN基因与鸡贫血病毒VP3基因对裸鼠荷HCT肿瘤的治疗[J].中国肿瘤生物治疗杂志,2003,10(2):88-92.
    173.蒋文军,魏阳,胡锐等.新城疫病毒LaSota弱毒株对人肿瘤细胞的体外修饰作 用[J].肿瘤防治研究,2007,34(4):281-283.
    174.Wei Liang,Hui Wang,Tie-Mie Sun,et al.Application of autologous tumor cell vaccine and NDV vaccine in treatment of tumors of digestive traet[J].World J Gastroenterol,2003,9(3):495-498.
    175.John R.Yannelli,Joanne M.Wroblewski.On the road to a tumor cell vaccine:20 years of cellular immunotherapy[J].Vaccine,2004,23(1):97-113.
    176.Millar N S,Chambers P,Emmerson P T.Nucleotide sequence of the fusion and haemaglutinin-neuram inidase glycoprotein genes of Newcastle disease virus,strain Ulster molecular basis for variation in pathogenicity between strains[J].J Gen Virol,1988,69:613-620.
    177.P Chambers,NS Millar,RW Bingham,et al.Molecular Cloning of Complementary DNA to Newcastle Disease Virus,and Nucleotide Sequence Analysis of the Junction between the Genes Encoding the Haemagglutinin-Neuraminidase and the Large Protein[J].J.gen.Virol.1986,67:475-486.
    178.Takimoto T.,Taylor G.L.,Connaris,H.C.,et al.Role of the hemaggluti-nin-neuraminidase protein in the mechanism of paramyxovirus cell memebrane fusion[J].Virol,2002,76(24):13028-13033.
    179.L W McGinnes,T G Morrison.Disulfide bond formation is a determinant of glycosylation site usage in the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus[J].Virol.1997,71(4):3083-3089.
    180.E Nagy,P J Krell,R A Heckert,et al.Vaccination of chickens with a recombinant fowlpox virus containing the hemagglutinin-neuraminidase gene of Newcastle disease virus under the control of the fowlpox virus thymidine kinase promoter[J].Can J Vet Res,1994,58(4):306-308.
    181.K Karaca,JM Sharma,BJ Winslow,et al.Recombinant fowlpox viruses coexpressing chicken type Ⅰ IFN and Newcastle disease virus HN and F genes:influence of IFN on protective efficacy and humoral responses of chickens following in ovo or post-hatch administration of recombinant viruses[J].Vaccine,1998,16(6):1496-1503.
    182.Heckert R A,RivaJ,Cook S,et al.Onset of protective immunity in 11chicks after vaccination with a recombinant herpesvirus of turkeys vaccine expressing Newcastle disease virus fusionand hemagglutinin- neuraminidase antigens[J].Avian Dis,1996,40:770-777.
    183.赵军,张秀根,陈傅言,等.表达新城疫病毒HN基因的重组火鸡疱疹病毒的构建[J].畜牧兽医学报,2000,31(2):150-154.
    184.闻晓波,闫丽辉,曹殿军,等.新城疫病毒F、NP、M和HN基因在昆虫细胞中的共表达.中国预防兽医学报,2007,29(4):257-262.
    185.V A Luckow,S C Lee,G F Barry,et al.Efficient generation of infectious recombinant baculoviruses by site-specific transposon- mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli.Virol,1993,67(8):4566-4579.
    186.Ailor E,Betenbaugh MJ.Modifying secretion and post-translational processing in insect cells[J].Curr Opin Biotechnol,1999,10(2):142-145.
    187.Joshi L,Davis TR,Mattu TS,et al.Influence of baculovirus-host cell interactions on complex N-linked glycosylation of a recombinant human protein[J].Biotechnol Prog,2000,16(4):650-656.
    188.王志玉,王战勇,于修平.糖化作用对新城疫病毒HN糖蛋白功能的影响[J].病毒学报,2002,18(2):155-161.
    189.Panda A,Elankumaran S,krishnamurthy S,et al.Loss of N-linked glycosylation from the hemagglutinin-neuraminidase protein alters virulence of Newcastle disease virus[J].J Virol,2004,78:4965-4975.
    190.孙蕾,吴艳涛,张体银,等.鸡痘病毒通用高效表达载体的构建及其初步应用[J].中国兽医学报,2004,24(5):429-432.
    191.Peili Chen,Dorothy Hutter,Pinghu Liu et al.A mammalian expression system for rapid production and purification of active MAP kinase phosphatase[J].Protein Expr Purif,2002,24(3):481-488.
    192.Niikura M,Matsura Y,Hattori M.Characterization of haemagglutinin-neuramninidase glycoproteins of Newcastle disease virus expressed by a recombinant baculovirus[J].Virus Research,1991,20:331-343.
    193.Murakami Y,Kagino T,Miikura M.Characterization of Newcastle disease virus envelope glycoproteins expressed in insect cells[J].Virus Research,1994,33:123-137.
    194.Haas C,Lulei M,Fournier P,et al.A tumor vaccine containing anti-CD3and anti-CD28 bispecific antibodies triggers strong and durable antitumor activity in human lymphocytes[J].Intl J Cancer,2006,118(3):658-667.
    195.Mebatsion T,Koolen M J M,de Vaan L T C,et al.Newcastle Disease Virus (NDV)marker vaccine:An immunodominant epitope on the nucleo- protein gene of NDV can be deleted or replaced by a foreign epitope[J].J Virol,2002,76(20):10138-10146.
    196.Bian H,Fournier P,Moormann R,et al.Selective gene transfer to tumor cells by recombinant Newcastle Disease Virus via a bispecific fusion protein[J].Intl J Oncol,2005,26:431-439.
    197.李霄,金宁一,米志强,等.联合应用凋亡素基因、新城疫病毒HN基因及IL-18基因对黑色素瘤的抑制效应研究[J].高技术通讯,2004,14(12):33-36.
    198.连海,金宁一,李霄,等.鸡贫血病毒VP3基因与人IL-18基因的共表达对人肝癌细胞BEL-7402的作用[J].中国生物制品学杂志,2006,19(3):229-232.
    199.Dranoff G.Cytokines in cancer pathogenesis and cancer therapy[J].Nat Rev Cancer,2004,4(1):11-22.
    200.Okamura H,TsutsiH,Komatsu T,et al.Cloning of a new cytokine that induces IFN-gamma production by T cells[J].Nature,1995,378(6552):88-91.
    201.Ockert D,Schirrmacher V,Beck N,et al.Newcastle disease virus infected intact autologous tumor cell vaccine for adjuvant active specific immunotherapy of resected colorectal carcinoma[J].Clin Cancer Res,1996,2(1):21-28.
    202.Claudia Haas,V.Schirrmacher.Immunogenicity increase of autologous tumor cell vaccines by virus infection and attachment of bispecific antibodies[J].Cancer Immunology,lmmunotherapy,1996,43(3):190-194.
    203.Chandhry UI,Kingham TP,Plitas G,et al.Combined stimulation with interleukin-18 and CpG induces routine natural killer dendritic cells to produce IFN-γ and inhibit tumor growth[J].Cancer Res,2006,66(21):10497-10504.
    204.Tang ZH,Qiu WH,Wu GS,et al.The immunotherapeutic effect of dendritic cells vaccine modified with interleukin-18 geneand tumor cell lysate on mice with pancreatic carcinoma[J].Worle J Gastroenterol,2002,8(5):908-912.
    205.Frigerio L,Jolliffe NA,Di Cola A,et al.The Internal Propeptide of the Ricin Precursor Carries a Sequence-Specific Determinant for Vacuolar Sorting [J].Plant Physiol,2001,126:167-175.
    206.Weiguo Hu,Feng Li,Xingxiu Yang,et al.A flexible peptide linker enhances the immunoreactivity of two copies HBsAg preS1(21-47)fusion protein[J].J Biotechnology,2004,107(1):83-90.
    207.来鲁华主编.蛋白质的结构预测与分子设计[M].北京:北京大学出版社,1993.
    208.Franz S Hartner,Anton Glieder.Regulation of methanol utilisation pathway genes in yeasts[J].Microb Cell Fact,2006,5:39-50.
    209.Dah-Sheng Lin.Comparison of Three Non-Radioactive Assays for Measurement of Cell-Mediated Immunity[J].BioFormosa,2006,41(2):59-66
    210.Khun DM,Balkism,Chandra J,et al.Uses and Limitationsof the XTTA ssay in Studies of Candida Growth and Metabolism[J].J ClinMicro,2003,41(1):506-508.
    211.F Rassendren,G Buell,A Newbolt,et al.Identification of Amino Acid Residues Contributing to the Pore of a P2X Receptor[J].The EMBO Journal,1997,16(12):3446-3454.
    212.王开颜,房崇芸,彭光洁.氢化可的松诱导特发性血小板减少性紫癜淋巴细胞凋亡和增殖抑制[J].中国组织化学与细胞化学杂志,2000,19(2):149-152.
    213.Cell Proliferation Assay and Cytotoxicity Assay Cell Counting Kit-8.www.dojindo.com/tm
    214.熊建文,张镇西.基于圆孔衍射识别细胞活性状态的方法研究[J].激光生物学报,2005,14(6):447-450.
    215.熊建文,张镇西.基于形态学特征的细胞活性无损检测新方法研究[J].光电子激光,2005,16(12):1514-1519.
    216. Zhan XA., Wang M., Xu ZR., et al. Evaluation of caspase-dependent apoptosis during fluoride-induced liver lesion in pigs[J]. Arch Toxicol, 2006, 80(2): 74-80.
    
    217.B Bhushan, D. Ahuja, S. Verma, et al.Relation of cell viability and apoptosis with clinical remission following induction chemotherapy in ALL and AML[J]. J. Exp. Cancer Res., 2007,26(3):313-321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700