用户名: 密码: 验证码:
鸭瘟病毒蛋白质组二维电泳特性和UL24基因的发现、原核表达及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸭瘟(Duck Plague,DP)又称鸭病毒性肠炎(Duck Viral Enteritis,DVE),是由鸭瘟病毒(Duck Plague Virus,DPV)引起的常见于鸭、鹅等雁行目禽类的一种急性败血性的接触性传染病,具有较高的发病率和死亡率,是目前水禽养殖业的重要传染病之一。本文通过超速离心获得高纯度的鸭瘟病毒粒子免疫动物制备高免血清,特异与二维电泳分离的病毒蛋白质组印迹而获得单一病毒蛋白,辅以高效液相色谱——四极杆串联电喷雾质谱解析多肽氨基酸序列,以此设计兼并引物扩增鸭瘟病毒基因组,扩增片段进一步杂交验证、分析为鸭瘟病毒UL24(DPV-UL24)基因。通过构建DPV-UL24原核表达质粒并诱导表达,从而对表达蛋白免疫原性、表达蛋白抗体介导的免疫组化和免疫荧光检测人工感染DPV后UL24基因在体内的表达时相与蛋白定位分析、表达蛋白捕获DPV抗体和表达蛋白抗体捕获抗原ELISA方法的研究以及建立了基于DPV-UL24基因检测DPV的PCR方法,结果如下:
     1.鸭瘟病毒超微结构研究结果表明:病毒粒子具有疱疹病毒典型形态结构,剖面六角外观轮廓清楚,成熟病毒粒子直径约150~266nm,病毒囊膜、核衣壳和核心清晰可见;囊膜外层较内层着色略深,且可见尚未形成完整囊膜的柄状拖尾结构;多数病毒粒子以单核衣壳为主,一定数量的病毒粒子具有双核衣壳,偶见三核衣壳,核衣壳直径为100~150nm,呈现致密圆形、半圆形或马蹄形等类型;在核衣壳外和囊膜之间可见明显的亮晕;核心DNA电子染色较深,集中分布,直径40~65nm。并且以纯净的病毒粒子免疫成年鸭获得了抗鸭瘟病毒高免血清。
     2.鸭瘟病毒蛋白质组研究显示:样品经丙酮处理、30mMDTT水化浓度、pH5-8 IPG固相胶条、混合两性载体电解质、0.8mg的上样量,蛋白分离效果好,获1253个银染蛋白点或388个考染蛋白点,不同时期2-DE分离胶蛋白点匹配率达88%,建立鸭瘟病毒蛋白质组二维电泳模型重复性好、稳定、可靠。以此进行蛋白免疫印迹,结果表明至少可以检测到32种免疫印迹蛋白多肽点,其中有5种非特异性蛋白多肽,在27种DPV蛋白多肽中,相对分子量主要集中在20KD~120KD之间,等电点主要位于pH5.30—pH7.50范围。对选择两个病毒蛋白点高效液相色谱——四极杆串联电喷雾质谱鉴定、解析多肽序列,与病毒蛋白库比对获得了七段可信氨基酸肽段序列。
     3.鸭瘟病毒UL24基因的发现、原核表达、产物纯化及其抗体制备:以鸭瘟病毒基因组为模板,氨基酸肽段设计的兼并引物能够扩增出两条(420bp、730bp)片段,其中730bp片段能够与不同限制性内切酶酶切DPV基因组电泳片段杂交,形成大小不等杂交条带,从而验证了该片段为鸭瘟病毒基因组片段;生物信息学分析,该片段与疱疹病毒基因序列同源性最高,表明了扩增基因片段为鸭瘟病毒UL24基因;进一步研究还表明该基因全序列为具有1230bp开放阅读框核酸序列,与26株同属疱疹病毒氨基酸序列具有较高的相似性,与MDV-1亲缘性最近,该基因编码409个氨基酸残基,有16个抗原决定簇,不含有信号肽,在第56位、284位、294位、325位和383位存在5个潜在的N-糖基化位点,跨膜螺旋预测为外膜蛋白。
     根据DPV-UL24序列,设计一对特异性引物,从鸭瘟病毒基因组中扩增目标基因并将其克隆至pMD18-T载体,经PCR、酶切和DNA测序鉴定后,将鸭瘟病毒UL24基因正向插入原核表达载体pET-32a(+)的EcoRⅠ和XhoI位点间,成功构建了重组表达质粒pET32a(+)/DPV-UL24。重组表达质粒pET32a(+)/DPV-UL24转化表达宿主菌BL21(DE3),用IPTG诱导,能表达出了大小约为38kD的UL24重组蛋白,与预期表达蛋白分子量大小相符;经对不同诱导时间及诱导剂IPTG浓度等条件进行优化,确定重组质粒pET32a(+)/DPV-UL24的最佳诱导条件为0.2mmol/L IPTG、37℃条件下诱导5h。表达产物用镍柱亲和层析纯化、梯度透析复性后与等量弗氏佐剂混合制备UL24重组蛋白疫苗,四次免疫家兔,获得的兔抗UL24高免血清经辛酸-硫酸铵粗提后,High Q阴离子交换柱层析纯化抗体IgG。
     4.鸭瘟病毒UL24基因原核表达产物免疫原性研究:制备的UL24重组蛋白疫苗免疫7日龄雏鸭,并在免疫后3、5、7、10、14、21、28、35、42、49、56、70、84、98d分别血清检测ELISA效价和中和效价,并于免疫后21d将其中一半进行保护试验。结果显示:在免疫后28d重组蛋白ELISA抗体效价OD_(450nm)达到最高1:5120,弱毒疫苗组达1:10240,显著高于对照组(P≤0.05),此后两个月抗体效价均维持较高水平,其消长规律一致。中和试验也表明在免疫后21~28d,重组蛋白组和弱毒免疫组中和效价分别可达1:128、1:256以上,其抗体消长规律与ELISA检测结果相似。重组蛋白免疫保护组发病率50%、死亡率30%,较对照组鸭的发病率100%、死亡率100%明显减少,与弱毒疫苗免疫组(发病率30%、死亡率10%)比较差异不显著。表明DPV-UL24重组蛋白对鸭瘟病毒强毒感染具有一定的保护能力。
     5.UL24基因在人工感染鸭瘟病毒鸭组织中的表达时相与定位:采用鸭瘟病毒强毒CHv株(DPV-CHv)人工方法感染28日龄鸭,攻毒后于不同时间采集脾脏、胰腺、哈氏腺、法氏囊、肝脏、肠道、肾脏、肺脏、心、脑等组织或器官,经建立的DPV-UL24基因表达蛋白抗体间接免疫组化方法,检测DPV-UL24基因在感染鸭体内的表达时相、侵染过程与定位分布。结果显示:感染后2h可在脾脏、胸腺、肝脏、十二指肠中检测到DPV-UL24基因编码蛋白抗原:攻毒4h时,哈氏腺、腺胃可检测到DPV-UL24基因表达蛋白,8h时在回肠、肺脏,12h在法氏囊和肾脏,24h时在胰腺和肠道各段均呈现阳性反应。通过对鸭瘟病毒蛋白与UL24基因编码蛋白的侵染过程与定位比较发现,免疫器官与肠道黏膜既是病毒,也是UL24基因编码蛋白的靶器官或靶组织,但UL24基因编码蛋白在脑组织嗜性低,分析表明该蛋白可能是膜蛋白,具有运输核浆与引导病毒组分进入核内参与病毒复制的功能。
     同时,建立的DPV-UL24基因表达蛋白抗体介导的间接免疫荧光方法,也对UL24基因在鸭体组织中的表达时相检测,并对该基因表达蛋白侵染与定位分布进行分析。结果显示:感染鸭瘟病毒强毒2h时,UL24基因即可在脾脏、胸腺、法氏囊、哈德氏腺等免疫器官和肝脏、肺脏、腺胃及大部分肠段编码蛋白,4h时,在脑、心肌和胰腺也检测出UL24基因编码蛋白,8h时在食道粘膜层表达蛋白荧光阳性反应。研究表明:脾脏、胸腺、法氏囊、哈氏腺免疫器官和肠道粘膜也是UL24基因编码蛋白主要的靶器官或靶组织,且在靶器官的侵染与分布具有一定选择性,对粘膜上皮细胞损害严重。26份鸭瘟组织检验,检出25份阳性,阳性率为96.1%(25/26),表明免疫荧光检测石蜡切片中DPV-UL24基因编码蛋白的方法灵敏、特异性强。
     6.抗鸭瘟病毒UL24基因原核表达蛋白抗体介导的ELISA检测DPV抗原:通过包被兔抗鸭瘟病毒UL24基因原核表达蛋白抗体,以鸭抗DPV-UL24抗体作为夹心抗体,建立并优化DPV抗原捕获ELISA方法,结果表明:兔抗DPV-UL24抗体浓度为5.0μg/100μL,鸭抗DPV-UL24抗体浓度为9.0μg/100μL,酶标抗体浓度为1:2000时获得最适比例稀释度;对乙型肝炎病毒(DHBV)等非鸭瘟病毒感染其它鸭源病原体阳性血清检验均呈现阴性反应,酶标板板间、板内检测变异系数均小于10%,且可检测出46ng纯化的鸭瘟病毒含量,表明了AC-ELISA具有良好的特异、敏感、稳定性。对人工感染DPV强毒后,病毒在雏鸭肝、脾脏、脑、食道、肺、肾等各组织器官的分布与增殖检测与免疫组化、免疫荧光检测UL24基因编码蛋白结果相似。
     7.抗鸭瘟病毒UL24基因原核表达蛋白ELISA检测DP抗体:以包被重组DPV-UL24蛋白作为抗原检测DPV抗体研究表明:重组表达蛋白包被浓度为1:80(2.5μg/100μL),被检血清稀稀释倍数为1:320,酶标二抗1:2000时为最适稀释比例,建立的间接ELISA方法检测鸭乙肝、鸭疫里默氏菌病等阳性血清均为阴性,板内或板间重复试验显示变异系数均小于7%,能检出经1:2560倍稀释的鸭瘟阳性血清,对127份鸭临床疫病血清检测,阳性检出率为77.2%,与包被全病毒检测DPV试剂盒相比,符合率为92.5%。
     8.基于鸭瘟病毒UL24基因PCR方法建立和应用:根据本研究获得的DPV-UL24基因序列设计一对引物(P1/P2),对DPV基因组DNA进行扩增。结果显示:能扩增出与预期(585bp)大小一致的片段,对鸭病毒性肝炎病毒、鸭乙型肝炎病毒等病原体核酸提取物均不能扩增出任何条带;且DPV-UL24基因引物P1/P2对DPV基因组DNA检测灵敏度可达到1pg;对14份DPV强毒感染鸭病料进行检测,均扩增出大小一致的特异片段,5份未感染DPV鸭病料扩增结果均为阴性。结果表明,鸭瘟病毒UL24基因PCR方法可靠、灵敏,可应用于临床鸭瘟的诊断与监测。
     通过对建立的基于鸭瘟病毒UL24基因间接免疫组化、免疫荧光、AC-ELISA和PCR方法的特异性、敏感性和对鸭瘟病料检测结果的比较分析发现,四种方法对鸭瘟阳性病料检测为阳性,对未感染鸭瘟病毒病料、空白对照、山羊血清和鸭源性其它病原体检测均为阴性,说明了四种检测病毒抗原方法均具有良好的特异性;人工感染DPV后分别对鸭组织检测显示,感染4h在脾脏、胸腺、肝脏、十二指肠等部位均呈现阳性反应,而免疫组化方法在感染24h时几乎在全身组织中均有UL24基因蛋白表达,免疫荧光与PCR方法则需12h就呈现阳性反应;AC-ELISA在感染24h对所检测的11份样本均能检出,临床鸭瘟病料检测显示,免疫组化阳性检测率88.4%、免疫荧光阳性检测率96.1%、抗原捕获ELISA阳性检测率为84.6%,PCR阳性率则为100%。
Duck plague(DP),alternatively known as duck virus enteritis(DVE),is an acute, contagious and lethal septicemic disease of waterfowls such as ducks and geese in the group of Anseriformes,which can cause high morbidities and mortalities in birds and poses an important threat to waterfowl product industry.
     Certain DPV protein was obtained by means of two-dimensional electrophoresis and was verified by immunoblotting with the anti-DPV hyperimmune antiserum produced with the highly purified DPV preparation obtained by ultracentrifugation.The polypeptide sequences of this protein were analyzed by means of high performance liquid chromatography(HPLC) and electrospray ionization quadrupole time-of-flight tandem mass spectrometry.Duck plague virus UL24(DPV-UL24) gene was isolated from the DPV genome by degenerative PCR with primers designed according the polypeptide sequence of the protein and verified by hybridization test.DPV-UL24 gene prokaryotic expression recombinant vector was constructed and expressed after induction.Based on the above research,the following studies were undertaken:lmmunogenicity test of the expressed DPV-UL24 protein;UL24 gene dynamic distribution and localization in DPV infected ducks by the expressed DPV-UL24 protein mediated immunohistochemistry and immunofluorescence test;Antigen capture enzyme-linked immunoabsorbent assay(ELISA) for DPV specific antibody and DPV-UL24 protein antibody capture ELISA for DPV specific antigen;Establishment of PCR detection method by DPV UL24 gene.These studies are summarized as follows:
     1.Ultrastructure studies showed that DEV-CHv virions have the typical morphological characteristics of herpesvirus.The cross sections of the virions were hexagonal and the mature virus with the structure of envelope,nucleocapsid and nucleus were spherical in shape with diameter of 150nm-266nm.The outer part of the envelope was somewhat densely stained than the inner part and some virions with envelop not fully formed were also observed.Most of the DEV virions have one nuclocapsids,some DEV virions have two or three nucleocapsids.The nucleocapsid of DEV was round in shape with diameter of 100nm-150nm,some densely electron-stained vires-related structures which were circle-shaped,semicircle-shaped,or U-shaped could be observed.Between the nucleocapsid and the envelop was certain electron slightly stained part;The DNA in the nucleus which was 40nm-65nm in diameter was slightly electron stained and was in cluster in appearance.Hyperimmune antiserum against DPV was produced by hyperimmunization of the mature ducks with the highly purified DPV particles.
     2.Research on duck plague virus proteinomics demonstrated that the following conditions favored the experiment:protein sample extracted by acetone,pH 5-8 gel strip, 30mM DTT reducing agent,carder ampholytes mixturation of loading sampling buffer,0.8 mg protein sample;1253 or 388 protein spots could be obtained respectively by coomassie brilliant blue staining and silver staining.The mean matching rate of the protein spots could reach 88.%each different time.The established model of two-dimenshional electrophoresis was stable,reliable and has a good reproducibility.At least 32 polypeptide spots could be detected by immunoblotting test and five of 32 polypeptide spots were nonspecific.The molecular weights of the 27 DPV polypeptides range from 20KD to 120 KD and the isoelectfic points range from pHS.30 to pH7.50.Two viral protein spots were selected for polypeptide sequence analysis by means of high performance liquid chromatography(HPLC) and electrospray ionization quadrupole time-of-flight tandem mass spectrometry and seven reliable segments sequence were selected after aligning with the virus protein database.
     3.The discovery,prokaryotic expression,purification of products and antibody preparation of DPV UL24 gene:Two PCR products of 500 bp and 730 bp were obtained after amplifying the DPV genome with degenerative primers designed according to the polypeptide sequence.The 730 bp PCR product was verified to be duck genome specific by hybridization with DPV genome fragments processed with different restriction enzyme and forming the hybridization bands of different length.Biostatistics analysis showed that the 730 bp fragment has a maximum homology with herpesvirus genome sequence and proved that the amplified product was the DPV UL24 gene.Further analysis showed that the UL24 gene has a 1230 bp open reading flame(ORF) and is highly homologous with 11 strains of herpesvirus and is closest with Mark's virus(MDV).The UL24 protein is a conserved transmembrane protein relatively hydrophobic,with theα-helix and random coil secondary structure contents both being 46.94%.The UL24 gene with its maximum amino acids content being alanine and arginine(8.3%) encodes 409 amino acids,has 16 antigenic determinants,19 phosphorylation sites and does not have signal peptide sequence.Five potential N-glycosylation sites were spotted at the sites of 56,284,294,325 and 383 respectively.The UL24 protein is highly immunogenic,with its encoding gene amino acids codes frequency Nc value being 56.9.Twelve amino acids including alanine are of highly codon usage bias.
     DPV-UL24 gene was isolated from DPV genome by PCR with the specific primers designed according to the DPV-UL24 gene sequence.DPV-UL24 gene was subcloned into the vector of pMD18-T and after verification by means of PCR,restriction endonuclease restriction analysis and gene sequencing it was then cloned into the site between the restriction sites of EcoRⅠand XhoI of the pET-32a(+) prokaryotic expression vector and thus the recombinant expression plasmid of pET32a(+)/DPV-UL24 was constructed.The recombinant expression plasmid of pET32a(+)/DPV-UL24 was transformed into the host E.coli of BL21(DE3) and the approximately 38-kD UL24 recombinant protein was obtained after induction with isopropylβ- D -1-thiogalactopyranoside(IPTG),whose molecular weight basically conformed to what was predicted.Through optimization test it was found that the optimal condition was 0.2mmol/L 1PTG with an induction duration of 5 hours.The expressed protein was purified and concentrated by Ni-column affinity chromatography and after renaturation was emulsified with an equal volume of Freund's adjuvant.This product was used as vaccine to prepare hyperimmune sera with rabbits by immunization for four times.Purification of IgG fractions from antiserum was carried out by ion exchange chromatography on Econo-Pac high Q Cartridge after extraction through caprylic acid and equilibrium ammonium sulfate.
     4.The study on immunogenicity of prokaryotic expression product of DPV UL24 gene: The prepared UL24 recombinant vaccine was used to vaccinate 7 day old duckling and the serum collected respectively at 3,5,7,10,14,21,28,35,42,49,56,70,84 and 98 days postvaccination underwent ELISA titer and serum neutralization titer evaluation.Half of the ducks underwent challenge test 21 days postimmunization.The result demonstrated that 28 days after immunization,the greatest ELISA titer of 1:5120 at OD_(450nm) could be obtained in the group of recombinant protein group and the greatest ELISA titer of 1:10240 at OD_(450nm) could be obtained in the group of avirulent DPV vaccine group,which are both prominently higher than that of the control group(P≤0.05).Relatively high antibody levels were maintained in the two groups with a same dynamic change of decline. The antibody neutralization test showed that in the recombinant protein group and in the avirulent DPV group,neutralization antibody titer over 1:128 and 1:256 could be obtained 21 to 28 days postvaccination.The neutralization antibody and the ELISA antibody underwent a similar dynamic change in the two group.Analysis indicated that between the recombinant protein group(with its morbidity rate and mortality rate being 50%and 30% respectively) and the avirulent DPV vaccine group(with its morbidity rate and mortality rate being 30%and 10%respectively) no differences of morbidity rate and mortality rate were obtained but between the recombinant protein group and the control group(with its morbidity rate and mortality rate both being 100%) distinct differences of morbidity rate and mortality rate were obtained.All these studies demonstrated that the DPV-UL24 recombinant protein could confer duckling certain protect effects after immunization.
     5.The phase and location of UL24 gene express in artificial infected ducklings:The dynamic expression,infection process and distribution of DPV-UL24 gene in infected ducklings were studied by the established DPV-UL24 recombinant protein indirect immunohistochemistry method with the specimens of spleen,pancreas,harderian glands, bursa of Fabricius,liver,intestine,kidney,lung,heart,encephalon of the ducklings challenged at 28 days old with duck plague virulent DPV-CHv strain.The results demonstrated that DPV-UL24 encoding protein antigens could be detected in spleen, thymus,liver and duodenum 2 hour after challenge,in harderian glands and glandular stomach 4 hours after challenge,in ileum and lung 8 hours after challenge,in bursa of Fabricius and kidney 12 hours after challenge,in pancreas each part of intestine 24 hours after challenge.All these results demonstrated that organs of the immune system and the intestinal mucosa are the target organ and target tissue of DPV-UL24 encoding protein. DPV-UL24 encoding protein brain tissue tropism is very low,indicating that this protein is probably transmembrane protein and its function mainly related with the transportation and leading of virus components into nucleus for virion assembly during the virus proliferation.
     The dynamic expression,proliferation and distribution of DPV-UL24 encoding protein in infected ducklings were studied by the established DPV-UL24 recombinant protein immunofluroscence detection method in ducks challenged with duck plague virus. The results demonstrated that DPV-UL24 encoding protein antigen could be detected in spleen,thymus,harderian glands,bursa of Fabricius,liver,lung,kidney and most parts of intestine 2 hour after challenge,in pancreas,encephalon and heart 4 hours after challenge, in esophagus 8 hours after challenge.All these results demonstrated that the immune organs of spleen,thymus,harderian glands,bursa of Fabricius and the intestinal mucosa are the target organ and target tissue of DPV-UL24 encoding protein.DPV-UL24 encoding protein was selective in the target organs in the process of virus invasion and distribution, causing serious damage to mucosal epithelium.Of the 26 specimens for inspection by this method,25 specimens were positive and positive rate was 96.1%,indicating that this method for DPV-UL24 encoding protein detection is sensitive and specific.
     6.Research on Duck Plague Virus was Detected by Antigen Capture-ELISA with Anti-Prokaryotic Expression Protein of DPV UL24:Double antibody sandwich DPV antigen captured ELISA assay method is established and optimized with the rabbit anti-DPV UL24 prokaryotic expression protein antiserum and the duck anti- DPV UL24 prokaryotic expression protein antiserum.The results demonstrated that the optimized evaluation could be obtained when the rabbit anti DPV-UL24 antibody concentration is 5.0ug/100ul,the duck anti DPV-UL24 antibody concentration is 9.0ug/1O0ul and the enzyme linked antibody dilution is 1:2000.Other duck infected pathogens like duck hepatitis virus B(DHBV) was employed as negative controls and showed negative results. The coefficient s of variation of intra-assay and inter-assay was less than 10%and the minimum DPV content detection is 46 ng DPV purified virus,showing the specific, sensitive and stable characteristics of the established ELISA method.The dynamic proliferation and distribution of DPV-UL24 encoding protein in the specimens of liver, spleen,encephalon,esophagus,lung,and kidney of the infected ducklings were studied by this established ELISA method and the results were similar with that obtained by the established immunohistochemistry and immunoflurescence method.
     7.Research on Duck Plague Virus Antibody was Detected by ELISA Using Coating Prokaryotic Expression Protein of DPV UL24:Double antibody sandwich DPV antigen captured ELISA assay method is established and optimized with DPV UL24 prokaryotic expression protein as antigen.The results demonstrated that the optimized evaluation could be obtained when the DPV-UL24 recombinant protein is 80-fold diluted with its concentration being 2.5ug/100ul,the dilution of the examined serum is 1:320 and the enzyme linked antibody dilution is 1:2000.Other duck infected pathogen specific positive antiserum like duck hepatitis virus B(DHBV) and duck Riemirella Anatipestifer(RA) were employed as negative controls and showed negative results.The coefficient s of variation of intra-assay and inter-assay was less than 7%and could detect DPV positive antiserum with a dilution of 1:2560.127 specimens from the clinically infected ducklings were studied by this established ELISA method with a positive rate of 77.2%and similar results were obtained with that obtained by the whole DPV antigen as coated antigen ELISA method.
     8.Development and Application of PCR based on UL24 gene for the Detection of Duck plague virus:One pair of primer(P1/P2) was designed according to the DPV-UL24 genes sequence for amplification of DPV genome DNA.The results demonstrated that one PCR product of 585bp was obtained with this primers for DPV genome amplification but no products could be detected with this primer for genome amplification of other pathogen such as duck hepatitis virus and duck hepatitis virus B.The sensitivity of the primer of P1/P2 is lpg and the uniform PCR product fragment could be obtained for amplification of the 14 the specimens collected from DPV virulent virus infected ducks whereas no PCR product fragment could be obtained for amplification of the 5 the specimens collected from ducks not infected with DPV.These results demonstrated that the established UL24 PCR detection method is reliable,sensitivity and could be used in 1 the clinical diagnosis and surveillance of duck plague infection.
     Comparisons and analysis of the established indirect immunohistochemistry, immunofluorescent,AC-ELISA and PCR detection methods indicates that positive results could be obtained by the four methods for examination of the DPV positive specimens, specimens not infected with DPV,whereas negative results could be obtained by the four methods for examination of blank control,goat serum and other duck pathogens.These examinations indicated that these four methods are well specific.The examinations of the specimens from the artificially infected ducks indicated that positive results could be obtained in the specimens of spleen,thymus,liver and duodenum collected 4 hours postinfection.Immunohistochemistry examination indicated that UL24 gene encoding protein could be detected in almost all the tissues 24 hours postinfection,whereas UL24 gene encoding protein could be detected by immunofluorescent and PCR detection methods 12 hours postinfection.UL24 gene encoding protein could be detected in the 11 specimens by AC-ELISA methods 24 hours postinfection.The examination of the clinically infected DPV infected specimens indicated that 88.4%positive results could be obtained by immunohistochemistry method,96.1%positive results could be obtained by immunofluorescent method,85.2%positive results could be obtained by AC-ELISA methods,100%positive results could be obtained by PCR methods.
引文
[1]Macilwain,C.Human Genome Projects:Work in Progress[J].Nature,2000,405(6790):983-984.
    [2]Nowak,R.Entering the Postgenome Era[J].Science,1995,270(5235):467-470.
    [3]Chalt,B.T.Trawling for Proteins in the Post-Genome Era[J].Nature Biotech,1996,14:1544.
    [4]Anderson NL,A.N.Proteome and Proteomics:New Technologies,New Concepts,and New Words[J].Eiectrophoresis,1998,19(11):1853-1861.
    [5]Wilkns MR,S.J.,Gppley A,et al.Progress with Proteome Projects:Why All Proteins Expressed by Genome Should Be Identified and How to Do It[J].Biotech Genet Eng Rev,1995,13:19-50.
    [6]Peng J,G,SP.Proteomics:The Move to Mixtures[J].J Mass Spectrom,2001,36:1083-1091.
    [7]Abbott,A.A Post-Genomic Challenge:Learning to Read Patterns of Protein Synthesis[J].Nature,1999,402(6763):715-720.
    [8]Haynes,P.A.,Gygi,S.P.,Figeys,D.,et al.Proteome Analysis:Biological Assay or Data Archive?[J].Electrophoresis,1998,19(11):1862-1871.
    [9]李伯良.功能蛋白质组学[J].生命的化学,1998,18(6):1-4.
    [10]O'Farrell,P.H.High Resolution Two-Dimensional Electrophoresis of Proteins[J].Journal of Biological Chernistry,1975,250(10):4007-4021.
    [11]Bjellqvist,B.,Righetti,P.G.,Gianazza,E.Isoelectric Focusing in Immobilized PH Gradient:Principle,Methodology and Some Applications[J].Biochem Biophys Methods,1982,6:317-339.
    [12]Wildgruber,R.,Harder,A.,Obermaier,C.,et al.Towards Higher Resolution:Two-Dimensional Electrophoresis of Saccharomyces Cerevisiae Proteins Using Overlapping Narrow Immobilized Ph Gradients[J].Electrophoresis,2000,21(13):2610-2616.
    [13]Corthals,G L.,Wasinger,V.C.,Hochstrasser,D.F.,et al.The Dynamic Range of Protein Expression:A Challenge for Proteomic Research[J].Electrophoresis,2000,21(6):1104-1115.
    [14]Hoving,S.,Voshol,H.,van Oostrum,J.Towards High Performance Two-Dimensional Gel Electrophoresis Using Ultrazoom Gels[J].Electrophoresis,2000,21(13):2617-2621.
    [15]Gorg,A.,Obermaler,C.,Boguth,G.,et al.Very Alkaline Immobilized PH Gradients for Two-Dimensional Electrophoresis of Ribosomal and Nuclear Proteins[J].Electrophoresis,1997,18(3-4):328-337.
    [16]Gorg,A.,Boguth,G,Obermaier,C.,et al.Two-Dimensional Electrophoresis of Proteins in an Immobilized Ph 4-12 Gradient[J].Electrophoresis,1998,19(8-9):1516-1519.
    [17]Gorg,A.,Obermaier,C.,Boguth,G,et al.Recent Developments in Two-Dimensional Gel Electrophoresis with Immobilized Ph Gradients:Wide Ph Gradients up to Ph 12,Longer Separation Distances and Simplified Procedures[J].Electrophoresis,1999,20(4-5):712-717.
    [18]Klose,J.Genotypes and Phenotypes[J].Electrophoresis,1999,20(4-5):643-652.
    [19]Cordwell,S.J.,Nouwens,A.S.,Verrilis,N.M.,et al.Subproteomics Based Upon Protein Cellular Location and Relative Solubilities in Conjunction with Composite Two-Dimensional Electrophoresis Gels[J].Electrophoresis,2000,21(6):1094-1103.
    [20]Molloy,M.P.,Herbert,B.R.,Walsh,B.J.,et al.Extraction of Membrane Proteins by Differential Solubilization for Separation Using Two-Dimensional Gel Electrophoresis[J].Electrophoresis,1998,19(5):837-844.
    [21]Zuo,X.,Speicher,D.W.A Method for Global Analysis of Complex Proteomes Using Sample Prefractionation by Solution Isoelectrofocusing Prior to Two-Dimensional Electrophoresis[J].Anal Biochem,2000,284(2):266-278.
    [22]Michel,R.Analysis of the Plant Proteome[J].Current Opinion in Bioteclmoiogy,2001,12:131-134.
    [23]Humphery-Smith,I.,Cordwell,S.J.,Blackstock,W.P.Proteome Research:Complementarity and Limitations with Respect to the Rna and DNA Worlds[J].Electrophoresis,1997,18(8):1217-1242.
    [24]Pandey,A.,Mann,M.Proteomics to Study Genes and Genomes[J].Nature,2000,405(6788):837-846.
    [25]Fields,S.Proteomics in Genomeland[T].Science,2001,291(5507):1221-1224.
    [26]Opiteck,G.J.,Ramirez,S.M.,Jorgenson,J.W.,et al.Comprehensive Two-Dimensional High-Performance Liquid Chromatography for the Isolation of Overexpressed Proteins and Proteome Mapping[J].Analytical Biochemistry,1998,258(2):349-361.
    [27]Han,D.,Eng,J.,Zhou,H.,et al.Quantitative Profiling of Differentiation-Induced Microsomal Proteins Using Isotope-Coded Afinity Tags and Mass Spectrometry[J].Nat Biotechnol,2001,19(10):946-951.
    [28]Berman,J.,Datta,M.,Kajdacsy-Balla,A.,et al.The Tissue Microarray Data Exchange Specification:Implementation by the Cooperative Prostate Cancer Tissue Resource[J].BMC Bioinformatics,2004,5(1):19.
    [29]倪晓光.,赵平.蛋白质组学在实体瘤肿瘤标志物研究中的应用[J].癌症,2003,22(6):664-667.
    [30]Paweletz,C.P.,Liotta,L.A.,Petricoin 3rd,E.F.New Technologies for Biomarker Analysis of Prostate Cancer Progression:Laser Capture Microdissection and Tissue Proteomics[J].Urology,2001,57(4 Suppl 1):160-163.
    [31]Yates,J.,3rd.,Speicher,S.,Griffin,P.,etal.Peptide Mass Maps:A Highly Informative Approach to Protein Identification[J].Anal Biochem,1993,214(2):397-408.
    [32]Gygi,S.P.,Aebersold,R.Mass Spectrometry and Proteomics[J].Current Opinion in Chemical Biology,2000,4(5):489-494.
    [33]Michael,J.,Simon,J.Advances in Mass Spectrometry for Proteome Analysis[T].Current Opinion in Biotechnology,2000,11:384-390.
    [34]Henzel,W.,Billeci,T.,Stults,J.,et al.Identifying Proteins from Two-Dimensional Gels by Molecular Mass Searching of Peptide Fragments in Protein Sequence Databases[T].Proc Natl Acad Sci USA,1993,90:5011-5015.
    [35]Mann,M.,Wilm,M.Error-Tolerant Identification of Peptides in Sequence Databases by Peptide Sequence Tags[J].Analytical Chemistry,1994,66(24):4390-4399.
    [36]Persidsky,Y.,Gendelman,H.E.Mononuclear Phagocyte Immunity and the Neuropathogenesis of Hiv-1 Infection[J].Jonrnal of Lenkocyte Biology,2003,74(5):691.
    [37]Feras,E.,Stephens,D.,Walters,C.,et al.The Role of Cholesterol in the Biosynthesis of B-Amyloid[J].Neuroreport,1999,10:1699-1705.
    [38]Ian,H.,Cordwell,S.,Blackstock,W.Proteome Research:Complementarity and Limitations with Respect to the Rna and DNA Worlds[J].Electrophoresis,1997,18:1217-1242.
    [39]Wilkins,M.R.,Gasteiger,E.,Sanchez,J.C.,et al.Protein Identification with Sequence Tags[J].Curr Biol,1996,6:1543-1544.
    [40]Wilkins,M.R.,Gasteiger,E.,Tonella,L.,et al.Protein Identification with N and C-Terminal Sequence Tags in Proteome Projects[J].Journal of Molecular Biology,1998,278(3):599-608.
    [41]Blueggel,M.,Chamrad,D.,Meyer,H.Bioinformatics in Proteomics[J].Curr Pharm Biotechnol,2004,5(1):79-88.
    [42]O'Donovan,C.,Apweiler,R.,Bairoch,A.The Human Proteomics Initiative(Hpi)[J].Trends in Biotechnology,2001,19(5):178-181.
    [43]Crawford,M.E.,Cusick,M.E.,Garrels,J.I.Databases and Knowledge Resources for Proteomics Research[J].Trends in Biotechnology,2000,18:17-21.
    [44]Kellam,P.Review Post-Genomic Vh-ology:The Impact of Bioinformatics,Microarrays and Proteomics on Investigating Host and Pathogen Interactions[J].Rev Med Virol,2001,11:313-329.
    [45]Appel,R.D.,Palagi,P.M.,Walther,D.,et al.Melanie Ii—a Third-Generation Software Package for Analysis of Two-Dimensional Electrophoresis Images:I.Features and User Interface[J].Electrophoresis,1997,18(15):2724-2734.
    [46]Appel,R.D.,Vargas,J.R.,Palagi,P.M.,et al.Melanie Ii-a Third-Generation Software Package for Analysis of Two-Dimensional Electrophoresis Images:Ii.Algorithms[J].Electrophoresis,1997,18(15):2735-2748.
    [47]冯雪萍,陈主初,肖志强,等.NM23-H1,DJ1和TIM1在低分化鼻咽鳞癌组织和CNE2细胞株中共同表达[J].生物化学与生物物理进展,2005,32(4):338-346.
    [48]Oh,P.,Li,Y.,Yu,J.,et al.Subtractive Proteomic Mapping of the Endothelial Surface in Lung and Solid Tumours for Tissue-Specific Therapy[J].Nature,2004,429:629-635.
    [49]Li,J.,Zhang,Z.,Rosenzweig,J.,et al.Proteomics and Bioinformatics Approaches for Identification of Serum Biomarkers to Detect Breast Cancer[J].Clin Chem,2002,48(8):1296-1304.
    [50]Franzen,B.,Franzen,B.,Linder,S.,et al.Analysis of Polypeptide Expression in Benign and Malignant Human Breast Lesions:Down-Regulation of Cytokeratins[J].British journal of cancer,1996,74(10):1632-1638.
    [51]Eddes,J.S.,Zugaro,L.M.,Reid,G.E.,et al.Two-Dimensional Gel Database of Human Breast Carcinoma Cell Expressed Proteins:An Update[J].Electrophoresis,1998,19:818-825.
    [52]Lim,S.O.,Park,S.J.,Kim,W.,et al.Proteome Analysis of Hepatocellular Carcinoma[J].Biochemical and Biophysical Research Communications,2002,291(4):1031-1037.
    [53]Poon,T.C.W.,Johnson,P.J.Proteome Analysis and Its Impact on the Discovery of Serological Tumor Markers[J].Clinica Chimica Acta,2001,313(1-2):231-239.
    [54]Poon,T.C.W.,Yip,T.T.,Chan,A.T.C.,et al.Comprehensive Proteomic Profiling Identifies Serum Proteomic Signatures for Detection of Hepatocellular Carcinoma and Its Subtypes[J].Clinical Chemistry,2003,49(5):752.
    [55]Kozak,K.R.,Amneus,M.W.,Pusey,S.M.,et al.Identification of Biomarkers for Ovarian Cancer Using Strong Anion-Exchange Proteinchips:Potential Use in Diagnosis and Prognosis[J].Proceedings of the National Academy of Sciences,2003,100(21):12343.
    [56]Petricoin,E.F.,Ardekani,A.M.,Hitt,B.A.,et al.Use of Proteomic Patterns in Serum to Identify Ovarian Cancer[J].The Lancet,2002,359(9306):572-577.
    [57]Ha,G.H.,Lee,S.U.,Kang,D.G.,et al.Proteome Analysis of Human Stomach Tissue:Separation of Soluble Proteins by Two-Dimensional Polyacrylamide Gel Electrophoresis and Identification by Mass Spectrometry[J].Electrophoresis,2002,23(15):2513-2524.
    [58]Spectrometry,M.Profiling Proteins from Azoxymethane-lnduced Colon Tumors at the Molecular Level by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry[J].proteomics,2001,1:1320-1326.
    [59]Jungblut,P.R.,Zimny-Amdt,U.,Zeindl-Eberhart,E.,et al.Proteomics in Human Disease:Cancer,Heart and Infectious Disease[J].Electrophoresis(Weinheim Print),1999,20(10):2100-2110.
    [60]Celis,J.E.,Celis,P.,Ostergaard,M.,et al.Proteomics and Immunohistochemistry Define Some of the Steps Involved in the Squamous Differentiation of the Bladder Transitional Epithelium a Novel Strategy for Identifying Metaplastic Lesions[J].Cancer Research,1999,59:3003-3009.
    [61]Arrell,D.K.,Neverova,I.,Van Eyk,J.E.Cardiovascular Proteomics Evolution and Potential[J].Circulation Research,2001,88(8):763-773.
    [62]Macri,J.,Rapundalo,S.T.Application of Proteomics to the Study of Cardiovascular Biology[Y].Trends Cardiovasc Med,2001,11(2):66-75.
    [63]Anderson,L.Candidate-Based Proteomics in the Search for Biomarkers of Cardiovascular Disease:Physiological Soc:23-60.
    [64]Freeman,W.M.,Hemby,S.E.Proteomics for Protein Expression Profiling in Neuroscience[J].Neurochemical Research,2004,29(6):1065-1081.
    [65]Grant,S.G.N.,Blackstock,W.P.Proteomics in Neuroscience:From Protein to Network[J].Journal of Neuroscience,2001,21(21):8315.
    [66]周世力,卫灿东,熊朝晖,等.严重急性呼吸综合征(SARS)冠状病毒核蛋白的鉴定与分析[J].病毒学报,2003,19(2):100-103.
    [67]张养军,王京兰,蔡耘,等.液相色谱-质谱联用方法用于严重急性呼吸系统综合症冠状病毒结构蛋白质的研究[J].分析化学,2004,32(4):415-420.
    [68]Zeng,K.,Yang,R.E,Shi,M.D.,et al.Characterization of the 3a Protein of Sars-Associated Coronavirus in Infected Vero E6 Cells and Sars Patients[J].Journal of Molecular Biology,2004,341(1):271-279.
    [69]Ren,Y.,He,Q.Y.,Fan,J.,et al.The Use of Proteomics in the Discovery of Sertun Biomarkers from Patients with Severe Acute Respiratory Syndrome[J].Proteomics,2004,4(11):3477-3484.
    [70]Morris,K.Proteomics Approach Could Produce Blood Test for Aids Dementia[J].Lancet Neurol,2003,2(8):455.
    [71]Doherty,R.S.,De Oliveira,T.,Seebregts,C.,et al.Bioafrica's HIV-1 Proteomics Resource:Combining Protein Data with Bioinformatics Toois[J].feedback,2005.5:97-100
    [72]Wojna,V.,Carlson,K.A.,Luo,X.,et al.Proteomic F'mgerprinting of Human Immunodeficiency Virus Type 1-Associated Dementia from Patient Monocyte-Derived Macrophages:A Case Study[J].Journal of Nenrovirology,2004,10:74-81.
    [73]Luo,X.,Carlson,K.A.,Wojna,V.,et al.Macrophage Proteomic Fingerprinting Predicts Hiv-1-Associated Cognitive Impairment[J].Neurology,2003,60(12):1931-1937.
    [74]陈主初,肖志强.疾病蛋白质组学[M].化学工业出版社,2006.147
    [75]Zhou,Y.,Yuen,S.T.,Lin,M.C.,et al.Serum Biomarkers of Hepatitis B Virus Infected Liver Inflammation:A Proteomic Study[J].Proteomics,2003,3:666-674.
    [76]Liang,R.,Neo,J.C.H.,Ling Lo,S.,et al.Proteome Database of Hepatocellular Carcinoma[J].Journal of Chromatography B,2002,771(1-2):303-328.
    [77]Le Nanur,F.,Brichory,F.,Misek,D.E.,et al.A Distinct Repertoire of Autoantibodies in Hepatocellular Carcinoma Identified by Proteomic Analysis[J].Molecular & Cellular Proteomics,2002,1(3):197-203.
    [78]殷震,刘景华.动物病毒学[M](第二版).北京:科学出版社.988,1073
    [79]AER.F,B.Mortality in Ducks in the Netherlands Caused by a Filtrable Virus;Fowl Plague[J].Tijdschr Diergeneeskd,1923,(50):455-459.
    [80]黄引贤.拟鸭瘟的研究[J].华南农学院学报,1959,1(1):67-78.
    [81]黄引贤,欧守抒,林维庆,等.鸭瘟病毒的研究[J].华南农学院学报,1980,(1):21-36.
    [82]Breese,S.S.,Dardiri,A.H.Electron Microscopic Characterization of Duck Plague Virus[J].Virology,1968,34(1):160.
    [83]余克伦,陆光进.鸭瘟病毒的某些分子生物学特性[J].病毒学报,1993,9(3):284-286.
    [84]翟中和,丁明孝.鸭瘟病毒DNA合成动态部位的电子显微镜放射自显影研究[J].中国科学(B 辑),1983,1:22-28.
    [85]翟中和,丁明孝.鸭瘟病毒的复制对核仁及其转录功能影响的的电子显微镜放射自显影研究[J].中国科学(B辑),1983,(7):617-620.
    [86]Proctor,S.J.Pathogenesis of Duck Plague in the Bursa of Fabricius Thymus and Spleen[J].American Journal of Veterinmy Research,1976,37(4):427-431.
    [87]袁桂萍,程安春,汪铭书,等.鸭病毒性肠炎病毒强毒株的形态发生学与超微病理学研究[J].病毒学报,2004,20(4):326-331.
    [88]程安春,汪铭书,刘菲,等.PCR在鸭瘟临床诊断和免疫及致病机理研究中的初步应用[J].病毒学报,2004,20(4):364-369.
    [89]Ashley,C.R.,Caul,E.O.Potassium Tartrate-Glycerol as a Density Gradient Substrate for Separation of Small,Round Viruses from Human Feces[J].Journal of Clinical Microbiology,1982,16(2):377.
    [90]Walin,L.,Tuma,R.,Thomas Jr,G.J.,et al.Purification of Viruses and Macromolecular Assemblies for Structural Investigations Using a Novel Ion Exchange Method[J].Virology,1994,201(1):1-7.
    [91]薛清刚,罗挽涛.酒石酸钾—甘油密度梯度离心法纯化对虾肝胰腺细小病毒的方法学研究[J].水产学报,1997,21(1):1-5.
    [92]Bergmann,V.,Kinder,E.Morphology Maturation and Effect of Duck Plague Virus in Host Tissue[J].Arch Exp Vet Med,1982,36(3):455-463.
    [93]Salguero,F.J.,Sanchez-Cordon,P.J.,Nuez,A.,et al.Histopathological and Ultrastructural Changes Associated with Herpesvirus Infection in Waterfowl[J].Avian Pathology,2002,31(2):133-140.
    [94]翟中和,丁明孝.一种核内DNA病毒(鸭瘟病毒)在细胞质内的发生途径[J].中国科学B辑,1982.2:121-124.
    [95]郭宇飞,程安春,汪铭书,等.鸭病毒性肠炎病毒CHv强毒株感染鸭胚成纤维细胞的超微结构观察[J].中国兽医学报,2005,25(6):632-635.
    [96]Salguero,F.J.,Sanchez-Cordon,P.J.,Nunez,A.,et al.Histopathological and Ultrastructural Changes Associated with Herpesvirus Infection in Waterfowl[J].Avian Pathol,2002,31(2):133-140.
    [97]Klose,J.Protein Mapping by Combined Isoelectric Focusing and Electrophoresis of Mouse Tissues[J].Human Genetics,1975,26(3):231-243.
    [98]Wilkins,M.R.,Pasquali,C.,Appel,R.D.,et al.From Proteins to Proteomes:Large Scale Protein Identification by Two-Dimensional Electrophoresis and Amino Acid Analysis[J].Bio/Technology,1996,14(1):61-65.
    [99]Pennington,S.R.,Wilkins,M.R.,Hochstrasser,D.F.,et al.Proteome Analysis:From Protein Characterization to Biological Function[J].Trends in Cell Biology,1997,7(4):168-173.
    [100]Anderson,N.G.,Anderson,L.The Human Protein Index[J].Clin Chem,1982,28(4):739-748.
    [101]Tyers,M.,Mann,M.From Genomics to Proteomics[J].Nature,2003,422(6928):193-197.
    [102]Wasinger,V.C.,Corthals,G.L.Proteomic Tools for Biomedicine[J].Journal of Chromatography B,2002,771(1-2):33-48.
    [103]Righetti,P.G,Bossi,A.Isoelectric Focusing in Immobilized Ph Gradients:An Update[J].Journal of Chromatography B:Biomedical Sciences and Applications,1997,699(1-2):77-89.
    [104]沈关心,周汝麟.现代免疫学实验技术[M].湖北科学技术出版社,1998,67.
    [105]汪家政,范明.蛋白质技术手册.北京:科学出版社.2004,42-47.
    [106]Towbin,H.,Staehelin,T.,Gordon,J.Electrophoretic Transfer of Proteins from Polyacrylamide Gels to Nitrocellulose Sheets:Procedure and Some Applications[J].Proceedings of the National Academy of Sciences of the United States of America,1979,76(9):4350-4354.
    [107]Lahm,H.W.,Langen,H.Mass Spectrometry:A Tool for the Identification of Proteins Separated by Gels[J].Electrophoresis,2000,21(11):2105-2114.
    [108]Spandidos,A.,Rabbitts,T.H.Sub-Proteome Differential Display:Single Gel Comparison by 2d Electrophoresis and Mass Spectrometry[J].Journal of Molecular Biology,2002,318(1):21-31.
    [109]曾蝾,俞利荣.电喷雾离子阱质谱法鉴定人肝癌细胞双向凝胶电泳胶内蛋白质[J].科学通报,2000,45(6):592-598.
    [110]Yu,L.R.,Zeng,R.,Shao,X.X.,et al.Identification of Differentially Expressed Proteins between Human Hepatoma and Normal Liver Cell Lines by Two-Dimensional Eiectrophoresis and Liquid Chromatography-Ion Trap Mass Spectrometry[J].Electrophoresis,2000,21(14):3058-3068.
    [111]Eng,J.K.,McCormack,A.L.,Yates,J.R.An Approach to Correlate Tandem Mass Spectral Data of Peptides with Amino Acid Sequences in a Protein Database[J].J Am Soc Mass Spectrom,1994,5(11):976-989.
    [112]Staudenmann,W.,Hatt,P.D.,Hoving,S.,et al.Sample Handling for Proteome Analysis[J].Electrophoresis,1998,19(6):901-908.
    [113]Sargent,M.G Fiflyfold Amplification of the Lowry Protein Assay[J].Anal Biochem,1987,163(2):476-481.
    [114]Ramirez-Boo,M.,Garrido,J.J.,Ogueta,S.,et al.Analysis of Porcine Peripheral Blood Mononuclear Cells Proteome by 2-De and Ms:Analytical and Biological Variability in the Protein Expression Level and Protein Identification[J].Proteomics,2006,6:S215-S225.
    [115]Qiu,Y.,Benet,L.Z.,Burlingame,A.L.Identification of the Hepatic Protein Targets of Reactive Metabolites of Acetaminophen in Vivo in Mice Using Two-Dimensional Gel Electrophoresis and Mass Spectrometry[J].Journal of Biological Chemistry,1998,273(28):17940-17953.
    [116]Scheler,C.,Lamer,S.,Pan,Z.,et al.Peptide Mass Fingerprint Sequence Coverage from Differently Stained Proteins on Two-Dimeusional Electrophoresis Patterns by Matrix Assisted Laser[J].Electrophoresis,1998,19:918-927.
    [117]Bjellqvist,B.,Ek,K.,Righetti,P.G,et al.Isoelectric Focusing in Immobilized Ph Gradients:Principle,Methodology and Some Applications[J].Biochem Biophys Methods,1982,6(4):317-339.
    [118]文明,程安春,汪铭书,等.鸭病毒性肠炎病毒的提纯及其结构蛋白SDS-PAGE分析[J].中国兽医学报,2006,(3):243-246.
    [119]McLafferty,F.W.Tandem Mass Spectrometry[J].Science,1981,214(4518):280-287.
    [120]Peng,J.,Gygi,S.P.Proteomics:The Move to Mixtures[J].Journal of Mass Spectrometry,2001,36(10):1083-1091.
    [121]Deng,H.M.,Lai,Z.H.,Li,J.,et al.Application of the Fragments and Structure Analysis of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry in Peptide Sequencing[J].acta biochimica et biophysica sinca,2000,32(2):179-182.
    [122]Karas,M.,Hillenkamp,F.Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10,000 Daltous[J]Analytical Chemistry,1988,60(20):2299-2301.
    [123]Fenn,J.B.,Mann,M.,Meng,C.K.,et al.Electrospray Ionization for Mass Spectrometry of Large Biomolecules[J].Science,1989,246(4926):64-71.
    [124]Chhabil,D.Principles and Practice of Biological Mass Spectrometry[M]:New York:Wiley-Interscience:175-216.
    [125]Proctor,S.J.Pathogenesis of Duck Plague in the Bursa of Fabricius,Thymus,and Spleen[J].Am J Vet Res,1976,37(4):427-431.
    [126]Yamanaka,T.,Uchida,M.,Doi,T.Innate Form of Hcv Core Protein Plays an Important Role in the Localization and the Function of Hcv Core Protein[J].Biochemical and Biophysical Research Communications,2002,294(3):521-527.
    [127]Falcon,V.,Acosta-Rivero,N.,Chinea,G.,et al.Nuclear Localization of Nucleocapsid-Like Particles and Hcv Core Protein in Hepatocytes of a Chronically HCV-Infected Patient[J].Biochemical and Biophysical Research Communications,2003,310(1):54-58.
    [125]Kaelin,K.,Dezelee,S.,Masse,M.J.,et al.The U125 Protein of Pseudorabies Virus Associates with Capsids and Localizes to the Nucleus and to Microtubules[J].Journal of Virology,2000,74(1):474.
    [129]Lukasz,K.,Lisa,K.,Nick,V.,et al.Human Herpesvirus 1 UL24 Gene Encodes a Potential Pd-(D/E)Xk Endonuclease[J].Journal of Virology,2006,80(5):2575-2577.
    [130]Davison,A.J.,Dargan,D.J.,Stow,N.D.Fundamental and Accessory Systems in Herpesviruses[J].Antiviral Res,2002,56(1):1-11.
    [131]Rajcani,J.,Vojvodova,A.The Role of Herpes Simplex Virus Glycoproteins in the Virus Replication Cycle[J].Acta Virol,1998,42(2):103-118.
    [132]J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯.分子克隆实验指南(第二版)[M].北京:科学技术出版社,1996,17-27,50-55,474-490.
    [133]刘先英,季代丽,李洁,等.黑斑蛙3个SOX基因HMG-BOX区的序列分析[J].生物学杂志,2005,22(5):27-30.
    [134]王在照,相建海.编码鹰爪虾蜕皮抑制激素基因的cDNA片段的克隆和序列分析[J].水产学报,2002,26(6):487-492.
    [135]汪晓晶,王小行.大熊猫及其近种活化素基因BA亚基成熟肽序列的克隆分析及其在分类地位上的应用[J].遗传学报,2002,29(9):782-786.
    [136]鲁照明,刘红涛,臧卫东,等.杜氏盐藻光系统Ⅰ反应中心PSAB基因cDNA克隆及系统进化分析[J].水生生物学报,2005,29(6):717-720.
    [137]沈法富,喻树迅,韩秀兰,等.棉花半胱氨酸蛋白酶基因的克隆和表达特性分析[J].科学通报,2004,49(22):2318-2323.
    [138]赵大中,陈丹英,杨澄,等.植物细胞类角蛋白的纯化、序列分析与类中间纤维cDNA的克隆[J].SCIENCE IN CHINA(Series C),2000.
    [139]赵大中,赵允,陈丹英,等.中间纤维蛋白的同源性分析研究[J].北京大学学报:自然科学版,1998,34(6):770-774.
    [140]陈宏武,徐.杜.鸭瘟病毒核酸限制性内切酶图谱[J].病毒学报,1986,2(2):184-185.
    [141]乔代蓉.限制性内切酶分析鸭瘟病毒DNA[J].四川农业大学学报,1992,10(1):172-177.
    [142]Gardner,R.,Wilkerson,J.,Johnson,J.C.Molecular Characterization of the DNA of Anatid Herpesvirus 1[J].Intervirology,1993,36(2):99-112.
    [143]Gunther,B.M.F.,Klupp,B.G,C-ravendyck,M.,et al.Comparison of the Genomes of 15 Avian Herpesvirus Isolates by Restriction Endonuclease Analysis[J].Avian Pathol,1997,26:305-316.
    [144]李衍达,孙之荣译.生物信息学:基因和蛋白质分析的实用指南[M].北京:清华大学出版社,2000,137.
    [145]Tognon,M.,Guandalini,R.,Grazia Romanelli,M.,et al.Phenotypic and Genotypic Characterization of Locus Syn 5 in Hexes Simplexvirus l[J].V'n'us research,1991,18(2-3):135-150.
    [146]Ward,P.L.,Roizman,B.Herpes Simplex Genes:The Blueprint of a Successful Human Pathogen[J].Trends Genet,1994,10(8):267-274.
    [147]Pomeranz,L.E.,Reynolds,A.E.,Hengartner,C.J.Molecular Biology of Pseudorabies Virus:Impact on Neurovirology and Veterinary Medicine[J].Microbiology and Molecular Biology Reviews,2005,69(3):462.
    [148]于春梅,李鹏,郑其升,等.伪狂犬病病毒UL24基因的原核表达及抗UL24蛋白抗体的制备[J].西北农林科技大学学报(自然科学版),2007,35(9):10-14.
    [149]Jacobson,J.G.,Chen,S.H.,Cook,W.J.,et al.Importance of the Herpes Simplex Virus UL24gene for Productive Ganglionic Infection in Mice[J].Virology,1998,242(1):161-169.
    [150]Blakeney,S.,Kowalski,J.,Tummolo,D.,et al.Herpes Simplex Virus Type 2 UL24 Gene Is a Virulence Determinant in Murine and Guinea Pig Disease Models[J].J Virol,2005,79(16):10498-10506.
    [151]Davis,L.I.The Nuclear Pore Complex[J].Annual Review of Biochemistry,1995,64(1):865-896.
    [152]Liu.,H.,Liu.,S.,Kong.,X.Characterization of the Genes Encoding UL24,Tk and gH Proteins from Duck Enteritis Virus(DEV):A Proof for the Classification of DEV[J].Virus Genes,2006,33(2):221-227.
    [153]Garmory,H.S.,Brown,K.A.,Titball,R.W.DNA Vaccines:Improving Expression of Antigens[J].Genet Vaccines Ther,2003,1(1):2.
    [154]Thanaraj,T.A.,Argos,P.Protein Secondary Structural Types Are Differentially Coded on Messenger Rna[J].Protein Science,1996,5(10):1973-1983.
    [155]References,S.,Lobry,J.,Gaufier,C.Hydrophobicity,Expressivity and Aromaticity Are the Major Trends of Amino-Acid Usage in 999 Escherichia Coli Chromosome-Encoded Genes[J].Nucleic Acids Res,1994,22(15):3174-3180.
    [156]Nakamura,Y.,Gojobori,T.,Ikemura,T.Codon Usage Tabulated from International DNA Sequence Databases:Status for the Year 2000[J].Nucleic Acids Res,2000,28(1):292-295.
    [157]Adzhubei,A.A.,Adzhubeib,I.A.,Krasheninnikov,I.A.,et al.Non-Random Usage of 'Degenerate'codons Is Related to Protein Three-Dimensional Structure[J].FEBS Letters,1996,399(1-2):78-82.
    [158]Adzhubei,L A.,Adzhubei,A.A.Issd Version 2.0:Taxonomic Range Extended[J].Nucleic Acids Res,1999,27(1):268-271.
    [159]Tao,X.,Dafu,D.The Relationship between Synonymous Codon Usage and Protein Structure[J].FEBS Letters,1998,434(1-2):93-96.
    [160]Komar,A.A.,Lesnik,T.,Reiss,C.Synonymous Codon Substitutions Affect Ribosome Traffic and Protein Folding During in Vitro Translation[J].FEBS Letters,1999,462(3):387-391.
    [161]Haas,J.,Park,E.C.,Seed,B.Codon Usage Limitation in the Expression of Hiv-I Envelope Glycoprotein[J].Curr Biol,1996,6(3):315-324.
    [162]Andre,S.,Seed,B.,Eberle,J.,et al.Increased Immune Response Elicited by DNA Vaccination with a Synthetic Gp120 Sequence with Optimized Codon Usage[J].Journal of Virology,1998,72(2):1497.
    [163]Deml,L.,Bojak,A.,Steck,S.,et al.Multiple Effects of Codon Usage Optimization on Expression and Immunogenicity of DNA Candidate Vaccines Encoding the Human Immunodeficiency Virus Type 1 Gag Protein[J].Joumal of Virology,2001,75(22):10991.
    [164]Moore,R.A.,Santos,E.B.,Nicholls,P.K.,et al.Intraepithelial DNA Immunisation with a Plasmid Encoding a Codon Optimised Copy E1 Gene Sequence,but Not the Wild-Type Gene Sequence Completely Protects against Mucosal Challenge with Infectious Copv in Beagles[J].Virology,2002,304(2):451-459.
    [165]Gao,F.,Li,Y.,Decker,J.M.,et al.Codon Usage Optimization of Hiv Type 1 Subtype C Gag,Pol,Env,and Nef Genes:In Vitro Expression and Immune Responses in DNA-Vaccinated Mice[J].AIDS Res Hum Retroviruses,2003,19(9):817-823.
    [166]Dezelee,S.,Bras,F.,Vende,P.,et al.The Bamhi Fragment 9 of Pseudorabies Virus Contains Genes Homologous to the UL24,UL25,UL26,and UL 26.5 Genes of Herpes Simplex Virus Type 1[J].Virus research,1996,42(1-2):27-39.
    [167]Swartz,J.R.Advances in Escherichia Coli Production of Therapeutic Proteins[J].Current Opinion in Biotechnology,2001,12(2):195-201.
    [168]Chou,C.H.,Aristidou,A.A.,Meng,S.Y.,et al.Characterization of a Ph-inducible Promoter System for High-Level Expression of Recombinant Proteins in Escberichia Coli[J].Biotechnology and Bioengineering,1995,47(2):186-192.
    [169]Harwig,S.S.,Waring,A.,Yang,H.J.,et al.Intramolecular Disulfide Bonds Enhance the Antimicrobial and Lyric Activities of Protegrins at Physiological Sodium Chloride Concentrations[J].FEBS Journal,1996,240(2):352-357.
    [170]Denni Schnapp,G.D.,Smith,V.J.Purification and Characterization of a Proline-Rich Antibacterial Peptide,with Sequence Similarity to Bactenecin-7,from the Haemocytes of the Shore Crab,Carcinus Maenas[J].Eur J Biochem,1996,240:532-539.
    [171]Iwanaga,S.,Muta,T.,Shigenaga,T.,et al.Structure-Function Relationships of Tachyplesins and Their Analogues[J].Ciba Found Syrup,1994,186:160-174.
    [172]Schoepfer,R.The Prset Family of T7 Promoter Expression Vectors for Escherichia Coli[J].Gene,1993,124(I):83-85.
    [173]Marston,F.A.,Hartley,D.L.Solubilization of Protein Aggregates[J].Methods Enzymol,1990, 182:264-276.
    [174]Georgiou,G,Valax,P.Expression of Correctly Folded Proteins in Escherichia Coli[J].Current Opinion in Biotechnology,1996,7(2):19O-197.
    [175]Kroll,D.J.,Abdel-Malek Abdel-Hafiz,H.,Marcell,T.,et al.A Multifunctional Prokaryotic Protein Expression System:Overproduction,Affinity Purification,and Selective Detecfion[J].DNA Cell Biol,1993,12(5):441-453.
    [176]Hochouli,F.,Bamwarth,W.,Doebeli,H.,et al.Genetic Approach to Facilitate Purification of Recombinant Protein with a Novel Metal Chelate Adsorbant[J].Biotechnology,1988,6:1321-1325.
    [177]Oneda,H.,inouye,K.Refolding and Recovery of Recombinant Human Matrix Metalloproteinase 7(Matrilysin) from Inclusion Bodies Expressed by Escherichia Coli[J].J Biochem(Tokyo),1999,126(5):905-911.
    [178]Xie,Y.,Wetlaufer,D.B.Conlrol of Aggregation in Protein Refolding:The Temperature-Leap Tactic[J].Protein Science,1996,5(3):517.
    [179]邓瑞春.两种不同方法纯化抗血清IgG的效果比较[J].免疫学杂志,1999,15(001):64-66.
    [180]李成文.现代免疫化学技术[M].上海:科学技术出版杜,1992:182-185.
    [181]张军,李益民,李少伟,等.大肠杆菌重组颗粒性戊型肝炎疫苗对恒河猴的免疫保护[J].病毒学报,2004,20(1):1-6.
    [182]程安春,于小娜,汪铭书,等.鸭源致病性大肠杆菌Ⅰ型菌毛PilA基因的原核表达及重组蛋白对强毒攻击的免疫保护作用[J].生物工程学报,2007,23(3):440-445.
    [183]王永山,范红结,张晓民,等.传染性法氏囊病病毒多表位模拟肽串联基因的表达与免疫原性分析[J].微生物学报,2007,47(1):121-125.
    [184]王永山,陆承平,周宗安,等.原核表达的兔出血症病毒衣壳蛋白对兔的免疫保护效果[J].中国农业科学,2004,37(11):1677-1681.
    [185]Ningyi,J.I.N.,Hongyong,Z.,Gefeng,Y.I.N.,et al.Immunogenicity of Recombinant Fowl-Pox Virus Co-Expressing Structural Protein Precursor P1-2a and Proteinase 3c of Fmdv[J].科学通报(英文版),2004,49(8):823-827.
    [186]Bertolotti-Ciarlet,A.,Ciarlet,M.,Crawford,S.E.,et al.Immunogenicity and Protective Efficacy of Rotavirus 2/6-Virus-Like Particles Produced by a Dual Baculovirus Expression Vector and Administered Intramuscularly,Intranasally,or Orally to Mice[J].Vaccine,2003,21(25-26):3885-3900.
    [187]毛乃颖,张燕,朱贞,等.检测人血清中SARS冠状病毒IgG抗体的ELISA方法建立及其应用[J].病毒学报,2004,20(1):73-78.
    [188]毛亚飞,林晓骥,李晶,等.甲型副伤寒杆菌侵袭蛋白(Spao)基因原核表达及免疫性和保护作用研究[J].中华流行病学杂志,2006,27(4):347-350.
    [189]马静云,陈峰,曹永长,等.口蹄疫病毒VP1基因的原核表达及免疫原性检测[J].中国兽医科技,2004,34(3):17-20.
    [190]Malmarugan,S.,Sulochana,S.Comparison of Dot-Elisa Passive Haemagglutination Test for the Detection of Antibodies to Duckplague[J].indian Veterinary Journal,2002,79(7):648-651.
    [191]徐耀基,黄引贤.应用微量固相放射免疫测定法检测鸭瘟病毒的初步研究[J].中国畜禽传染病,1992,(3):35-38.
    [192]程安春,汪铭书.酶联免疫吸附试验检测鸭瘟抗体的研究和应用[J].四川农业大学学报,1997,15(3):379-381.
    [193]Hahn,E.C.,Page,G.R.,Hahn,P.S.,et al.Mechanisms of Transmission of Aujeszky's Disease Virus Originating from Feral Swine in the USA[J].Vet Microbiol,1997,55(1-4):123-130.
    [194]贾仁勇,程安春,汪铭书,等.鸭肠炎病毒CHv强毒株超微结构研究[J].病毒学报,2007,23(3):202-205.
    [195]Shawky,S.Target Cells for Duck Enteritis Virus in Lymphoid Organs[J].Avian Pathology,2000,29(6):609-616.
    [196]Leibovit.L.Gross and Histopathologic Changes of Duck Plague(Duck Virus Enteritis)[J].American Journal Of Veterinary Research,1971,32(2):275-&.
    [197]徐超,程安春,汪铭书,等.间接酶免疫组化检测DPV在感染鸭体内细胞定位的研究和应用[J].中国兽医学报,2007,27(5):640-644.
    [198]郑福英,刁有祥.应用间接免疫荧光法检测新型鸭瘟病毒[J].中国兽医科技,2003,33(10):47-50.
    [199]王伯法,李玉松,黄高异.病理学技术[MI:北京:人民卫生出版社,86-89.
    [200]蔡文琴,王伯云主编.实用免疫细胞化学与核酸分子杂交技术[M].成都:四川科学技术出版社:72-97.
    [201]许益民.免疫过氧化物酶染色方法[M].2001:北京:中国农业出版社,64-72.
    [202]程安春,汪铭书.最新鸭病诊断和防治[M].成都:四川大学出版社 1995:30-52.
    [203]Cottral,G.E.Manual of Standardized Methods for Veterinary Microbiology[M].Comstock Pub.Associates,1978.
    [204]徐耀基,黄引贤.应用琼脂糖凝胶沉淀试验检测鹅鸭病料中的鸭瘟病毒[J].中国畜禽传染病,1992,4:30-31.
    [205]徐耀基,黄引贤.Dot—ELISA检测鸭瘟病毒的研究[J].中国畜禽传染病,1992,(2):19-21.
    [206]秦礼让,阎秉芳,王桂芝.用单克隆抗体诊断非典型鸭瘟[J].中国兽医科技,1987,10:58-60.
    [207]宋涌,程安春,汪铭书,等.聚合酶链反应(PCR)检测鸭瘟病毒方法的建立和应用[J].中国兽医杂志,2005,(2):17-20.
    [208]郭宇飞,程安春,汪铭书,等.鸭病毒性肠炎病毒荧光实时定量PCR检测方法的建立和应用[J].中国兽医科学,2006,36(6):444-448.
    [209]Guesdon,J.L.,Temynck,T.,Avrameas,S.The Use of Avidin-Biotin Interaction in Immunoenzymatic Techniques[J].J Histochem Cytochem,1979,27(8):1131-1139.
    [219]刘彦仿,杨守京,赵君.免疫组织化学的基本原理与方法[J].中国医学研究与临床,2004,2(19): 51-54.
    [211]江庆萍,周慕珩.T细胞性淋巴瘤组织CD56的检测及其与EB病毒的关系[J].中华病理学杂志,1998,27(4):262-264.
    [212]Wolf,K.,Burke,C.N.,Quimby,M.C.Duck Viral Enteritis:Microtiter Plate Isolation and Neutralization Test Using the Duck Embryo Fibroblast Cell Line[J].Avian Diseases,1974,18(3):427-434.
    [213]徐耀基,黄引贤.Dot—ELIAS检测鸭瘟病毒的研究[J].中国畜禽传染病,1992,(2):19-21.
    [214]Islam,M.R.,Khan,M.An Immunocytochemical Study on the Sequential Tissue Distribution of Duck Plague Virus[J].Avian Pathology,1995,24(1):189-194.
    [215]刘菲,程安春,汪铭书,等.鸭瘟病毒强毒株在急性人工感染成年鸭病例体内分布规律[J].中国兽医学报,2004,24(3):228-230.
    [216]杨汉春著.动物免疫学[M].北京:中国农业大学出版社,1996:26-27.
    [217]Wolf,K.,Burke,C.N.,Quimby,M.C.Duck Viral Enteritis:Microtiter Plate Isolation and Neutralization Test Using the Duck Embryo Fibroblast Cell Line[J].Avian Dis,1974,18(3):427-434.
    [218]程安春,汪铭书,刘菲,等.鸭瘟病毒弱毒株在免疫雏鸭体内的分布和排毒规律[J].中国兽医学报,2005,25(3):231-234.
    [219]Pearson,A.,Coen,D.M.Identification,Localization,and Regulation of Expression of the U124Protein of Herpes Simplex Virus Type 1[J].Joumal of Virology,2002,76(21):10821-10828.
    [220]Hong-Yan,Z.,Murata,T.,Goshima,F.,et al.Identification and Characterization of the U124 Gene Product of Herpes Simplex Virus Type 2[J].Virus Genes,2001,22(3):321-327.
    [221]苏鑫铭,徐亚林,于春梅,等.伪狂犬病病毒UL24基因表达蛋白的胞内定位研究[J].中国病毒学,2006,2l(5):463-467.
    [222]万卓越,张欣,鄢心革,等.间接免疫荧光法在检测SARS冠状病毒特异性抗体中的应用[J].华南预防医学,2003,29(3):36-37.
    [223]崔现兰,周方红.应用间接免疫荧光法检测鸡传染性贫血病病毒抗体的研究[J].中国畜禽传染病,1995,(5):4-6.
    [224]程安春,韩晓英,汪铭书,等.用间接免疫荧光染色法检测鸭病毒性肠炎病毒在人工感染鸭体内的侵染过程和分布规律[J].畜牧兽医学报,2007,33(9):942-946.
    [225]卢受异,余业东,廖明,等.H5亚型禽流感病毒间接免疫荧光快速诊断方法的建立[J].中国预防兽医学报,2006,28(1):76-80.
    [226]刘军连,徐志凯,喻启桂,等.单克隆抗体间接免疫荧光试验检测生殖器单纯疱疹病毒感染[J].第四军医大学学报,2004,25(8):728-729.
    [227]贾海波,周莉,汪洋,等.斜带石斑鱼生长催乳素基因全长cDNA的克隆,表达及其免疫荧光分析[J].高技术通讯,2004,14(004):76-82.
    [228]刘岳龙,秦爱建.鸡贫血病毒VP1基因在大肠杆菌中的高效表达及其生物学特性的初步分析 [J].病毒学报,2002,18(1):61-65.
    [229]李长贵,王剑锋,英志芳,等.以重组人巨细胞病毒Pp65制备的多克隆抗体建立检测感染性病毒颗粒方法[J].中国生物工程杂志,2005,25(10):47-49.
    [230]Islam,M.R.,Nessa,J.,Halder,K.M.Detection of Duck Plague Virus Antigen in Tissues by Immunoperoxidase Staining[J].Avian Pathology,1993,22(2):389-393.
    [231]Malmarugan,S.,Sulochana,S.Detection of Duck Plague Viral Antigen in Tissues by Immunoperoxidase Test[J].Indian Veterinary Journal,2002,79(2):103-105.
    [232]彭广能,郭万柱,程安春.四川省鸭瘟病原的分离鉴定[J].四川畜牧兽医,2000,(6):15-17.
    [233]Liu,Y.S.V.,Green,A.A Monoclonal-Antibody Enzyme Immunoassay for Detection of Hepatitis B Surface Antigen with Use of a Biotin-Avidin System[J].Clinical Chemistry,1985,31(2):202-205.
    [234]Chemesky,M.,Castriciano,S.,Mahony,J.,et al.Examination of the Rotazyme Ii Enzyme Immunoassay for the Diagnosis of Rotavirus Gastroenteritis[J].Journal of Clinical Microbiology,1985,22(3):462.
    [235]Homsleth,A.,Friis,B.,Krasilnikof,P.A.Detection of Respiratory Syncytial Virus in Nasopharyngeal Secretions by a Biotin-Avidin Elisa More Sensitive Than the Fluorescent Antibody Technique[J].J Med Virol,1986,18(2):113-117.
    [236]El-Mekki,A.,Al-Nakib,W.,Bibi,R.Factors Affecting the Detection of Cytomegalovirus in Urine by Sandwich Enzyme Immunoassays[J].Joumal of Virological Methods,1987,15(1):75-83.
    [237]Woolcock,J.B.,Farmer,A.M.,Mutimer,M.D.Selective Medium for Corynebacterium Equi Isolation[J].Journal of Clinical Microbiology,1979,9(5):640-642.
    [238]Sekizaki,T.,Takai,S.,Egawa,Y.,et al.Sequence of the Rhodococcus Equi Gene Encoding the Virulence-Associated 15-17-Kda Antigens[J].Gene,1995,155(1):135-136.
    [239]秦海斌,刘怀然,曲连东,等.兔出血症病毒抗原捕获ELISA检测方法[J].中国兽医学报,2008,28(1):28-44.
    [240]刘建文,余兴龙,张丽颖,等.单克隆抗体捕捉猪瘟病毒抗原ELISA方法的建立[J].畜牧兽医学报,2006,37(5):474-479.
    [241]Clavijo,A.,Zhou,E.M.,Vydelingum,S.,et al.Development and Evaluation of a Novel Antigen Capture Assay for the Detection of Classical Swine Fever Virus Antigens[J].Veterinary Microbiology,1998,60(2-4):155-168.
    [242]张礼壁.ELISA法应用于诊断病毒病的进展[J]肩毒学报,1988,4(1):91-95.
    [243]李峰,王锡堃.ELISA双抗夹心法检测IBV的研究[J].中国兽医科技,1992,22(4):5-7.
    [244]Che,X.,Qiu,L.,Pan,Y.,et al.Sensitive and Specific Monoclonal Antibody-Based Capture Enzyme Immunoassay for Detection of Nucleocapsid Antigen in Sera from Patients with Severe Acute Respiratory Syndrome[J].Joumal of Clinical Microbiology,2004,42(6):2629.
    [245]叶润全,黄引贤.应用琼脂凝胶沉淀试验快速检测鸭瘟病毒的研究[J].中国畜禽传染病,1991,(2):35-37.
    [246]邓明义,B.,E.用反向被动血凝试验检测鸭瘟病毒[J].中国兽医杂志,1989,15(1):43-46.
    [247]Malmarugan,S.,Sulochana,S.Comparison of Dot-Elisa Passive Haemagglutination Test for the Detection of Antibodies to Duck Plague[J].Indian Veterinary Journal,2002,79(7):648-651.
    [248]程安春,汪铭书,廖德惠,等.酶联免疫吸附试验检测鸭瘟抗体的研究和应用[J].四川农业大学学报,1997,(2):118-124.
    [249]Erickson,G.A.,Proctor,S.J.,Pearson,J.E.,et al.Diagnosis of Duck Virus Enteritis(Duck Plague)[J].17th Annual Proceedings of American Association of Veterinary Laboratory Diagnosticians Roanoake,Virginia,USA,1974:85-89.
    [250]贺东生,赵善昌.光敏生物素标记鸭瘟病毒核酸探针的制备及应用的研究[J].广西农业大学学报,1993,12(3):69-74.
    [251]Hansen,W.R.,Brown,S.E.,Nashold,S.W.,et al.Identification of Duck Plague Virus by Polymerase Chain Reaction[J].Avian Diseases,1999,43(1):106-115.
    [252]郭霄峰,廖明,严英华,等.利用PCR检测鸭瘟病毒[J].中国兽医科技,2002,(4):13-16.
    [253]Shannon,A.D.,Morrissy,C.,Mackintosh,S.G,et al.Detection of Hog Cholera Virus Antigens in Experimentally-Infected Pigs Using an Antigen-Capture Elisa[J].Vet Microbiol,1993,34(3):233-248.
    [254]Burke,D.S.,Nisalak,A.,Ussery,M.A.Antibody Capture Immunoassay Detection of Japanese Encephalitis Virus Immtmoglobulin M and G Antibedies in Cerebrospinal Fluid[J].Journal of Clinical Microbiology,1982,16(6):1034-1042.
    [255]刘正稳,李秀如.IgM抗体捕获ELISA法对流行性出血热患者尿液中特异[J].西安医科大学学报,1990,11(2):139-142.
    [256]Bellamy K,Rousseau SA,PS.,G The Development of an M Antibody Capture Elisa for Rubella Igm[J].J Virol Methods,1986,14((3-4)):243-251.
    [257]Barclay,W.S.,Al-Nakib,W.An Elisa for the Detection of Rhinovirus Specific Antibody in Serum and Nasal Secretion[J].J Virol Methods,1987,15(1):53-64.
    [258]Pi,G H.Zeng,Y.,Wolf,H.Detection of Iga Antibody to Ebv Membrane Antigen Using Staphylococcus Aureus Preabsorbed Sera Is Closely Associated with Nasopharyngeal Carcinoma[J].J Virol Methods,1987,15(1):33-39.
    [259]Nigro,G,Nanni,F.,Midulla,M.Determination of Vaccine-Induced and Naturally Acquired Class-Specific Mumps Antibodies by Two Indirect Enzyme-Linked Immunosorbent Assays[J].J Virol Methods,1986,13(2):91-106.
    [260]Loo,T.W.,MacDonald,I.,Clarke,D.M.,et al.Detection of Antibodies to Individual Proteins of Rubella Virus[J].J Virol Methods,1986,13(2):149-159.
    [261]毕胜利,江永珍.戊型肝炎病毒结构区基因在大肠杆菌中的表达及其在诊断中的应用[J].病毒学报,1996,12(2):118-122.
    [262]宋建领,张富强,胡嫒嫒,等.HSN1和HgN2亚型禽流感病毒型特异性抗原捕捉ELISA检测方法的建立[J].中国兽医科技,2005,35(11):879-882.
    [263]谢芝勋,秦春香,谢丽基.禽呼肠孤病毒P17蛋白基因在大肠杆菌中的表达及其ELISA检测方 法的建立[J].中国兽医科学,2007,37(9):777-782.
    [264]颜邦芬,陈锃,张书环,等.牛传染性鼻气管炎病毒gG蛋白的表达及gG-ELISA的建立[J].生物工程学报,2007,23(5):806-811.
    [265]谢芝勋,谢志勤,刘加波,等.用聚合酶链反应检测鸭瘟病毒的研究[J].中国兽药杂志,2000,(4):12-14.
    [266]Plummer,P.J.,Alefantis,T.,Kaplan,S.,et al.Detection of Duck Enteritis Virus by Polymerase Chain Reaction[J].Avian Diseases,1998,42(3):554-564.
    [267]Pritchard,L.I.,Morrissy,C.,Van Phuc,K.,et al.Development of a Polymerase Chain Reaction to Detect Vietnamese Isolates of Duck Virus Enteritis[J].Veterinary Microbiology,1999,68(1-2):149-156.
    [268]Engvall,E.,Perlman,P.Enzyme-Linked Immunosorbent Assay(ELISA).Quantitative Assay of Immunoglobulin G[J].Immunochemistry,1971,8(9):871-874.
    [269]Leyva,A.,Franco,A.,Gonzalez,T.,et al.A Rapid and Sensitive ELISA to Quantify an Hbsag Specific Monoclonal Antibody and a Plant-Derived Antibody During Their Downstream Purification Process[J].Biologicals,2007,35(1):19-25.
    [270]Juliarena,M.,Gutierrez,S.,Ceriani,C.Chicken Antibodies:A Useful Tool for Antigen Capture ELISA to Detect Bovine Leukaemia Virus without Cross-Reaction with Other Mammalian Antibodies[J].Vet Res Commun,2007,31(1):43-51.
    [271]Sahud,M.A.,Pratt,K.P.,Zhukov,O.,et al.ELISA System for Detection of Immune Responses to Fviii:A Study of 246 Samples and Correlation with the Bethesda Assay[J].Haemophilia,2007,13(3):317-322.
    [272]van Weering,H.,van Schaik,G.,van der Meulen,A.,et al.Diagnostic Performance of the Pourquier Elisa for Detection of Antibodies against Mycobacterium Avium Subspecies Paratuberculosis in Individual Milk and Bulk Milk Samples of Dairy Herds[J].Vet Microbiol,2007,125(1-2):49-58.
    [273]Mohammadi,A.,Spencer,J.L.,Chan,M.,et al.Antibody Response of Chickens to Serotype 1,2,or 3 Marek's Disease Vaccines Based on ELISA with Infected Cells as Antigen[J].Avian Dis,2007,51(4):982-985.
    [274]Masihi,K.N.,Lange,W.Enzyme-Linked Immunosorbent Assay for the Detection of Influenza Type-Specific Antibodies[J].J Immunol Methods,1980,36(2):173-179.
    [275]Richardson,L.S.,Yolken,R.H.,Belshe,R.B.,et al.Enzyme-Linked Immunosorbent Assay for Measurement of Serological Response to Respiratory Syncytial Virus Infection[J].infect Immun,1978,20(3):660-664.
    [276]Mohan,S.B.,Warren,R.C.,Richardson,M.D.Sero-Diagnosis of Invasive Aspergillosis:Attempts to Determine Antigen and Antibody Relevance to Infection[J].Mycopathologia,1980,70(1):37-41.
    [277]朱远茂,王海燕,郭巍,等.检测马传贫病毒跨膜蛋白主要免疫决定区抗体间接ELISA诊断方法的建立[J].中国预防兽医学报,2006,28(2):191-196.
    [278]王光华,独军政,丛国正,等.猪口蹄疫病毒Vp1结构蛋白抗体间接ELISA方法的建立[J].生物 工程学报,2007,23(5):961-966.
    [279]李兆利,薛飞,朱远茂,等.牛传染性鼻气管炎病毒gB基因的截短表达与间接ELISA诊断方法的建立[J].畜牧兽医学报,2006,37(12):1328-1333.
    [280]Srensen,K.J.,de Stricker,K.,Dyrting,K.C.,et al.Differentiation of Foot-and-Mouth Disease Virus Infected Animals from Vaccinated Animals Using a Blocking Elisa Based on Baculovirus Expressed Fmdv 3abc Antigen and a 3abe Monoclonal Antibody[J].Archives of Virology,2005,150(4):805-814.
    [281]Buchner,J.,Pastan,I.,Brinkmann,U.A Method for Increasing the Yield of Properly Folded Recombinant Fusion Proteins:Single-Chain Immtmotoxins from Renaturation of Bacterial Inclusion Bodies[J].Analytical Biochemistry,1992,205(2):263-270.
    [282]Johnson,B.H.,Hecht,M.H.Recombinant Proteins Can Be Isolated from E.Coli Cells by Repeated Cycles of Freezing and Thawing[J].Bio/Technology,1994,12(12):1357-1360.
    [283]Kleine,T.,Bartsch,S.,Blaeser,J.,et al.Preparation of Active Recombinant Timp-1 from Escherichia Coli Inclusion Bodies and Complex Formation with the Recombinant Catalytic Domain of Pmnl-Collagenase[J].Biochemistry,1993,32(51):14125-14131.
    [284]袁桂萍,程安春,汪铭书,等.人工感染鸭病毒性肠炎急性病例超微结构变化[J].中国兽医学报,2005,(5):459-462
    [285]徐耀基,黄引贤.应用琼脂凝胶沉淀试验检测鹅鸭病料中的鸭瘟病毒[J].中国畜禽传染病,1992,(4):30-31.
    [286]赵红庆,苑锡铜,黄留玉.多重PCR技术在病原检测中的应用[J].生物技术通讯,2007,15(5):863-865.
    [287]Kim,L.M.,King,D.J.,Suarez,D.L.,et al.Characterization of Class I Newcastle Disease Virus Isolates from Hong Kong Live Bird Markets and Detection Using Real-Time Reverse Trauscription-PGR[J]Journal of Clinical Microbiology,2007,45(4):1310-1314.
    [288]Lu,Y.Y.,Yan,J.Y.,Feng,Y.,et al.Rapid Detection of H5 Avian Influenza Virus by Taqman-Mgb Real-Time RT-PCR[J].Letters in Applied Microbiology,2007.
    [289]赵妍,王君伟,邢明伟,等.二重PCR检测鸭瘟病毒和鹅细小病毒的初步研究[J].中国预防兽医学报,2007,29(9):710-713.
    [290]郭霄峰,廖明.鸭瘟病毒北京株UL6和UL7基因的克隆及序列测定[J].畜牧兽医学报,2002,33(6):615-618.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700