用户名: 密码: 验证码:
我国部分地区鸡源空肠弯曲菌流行病学及运送flaA基因的壳聚糖纳米DNA疫苗免疫生物学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弯曲菌(Campylobacter)是全球范围内主要的人兽共患性、细菌性肠道病原菌之一,对人致病的弯曲菌中99%的是空肠弯曲菌(Campylobacter jejuni,C. jejuni),其次是结肠弯曲菌(Campylobacter coli,C. coli),其它弯曲菌偶尔致病。特定血清型空肠弯曲菌引起的肠炎是人格林-巴利综合征(Guillain-Barre syndrome,GBS)的重要前驱因子。近年来,许多国家人弯曲菌病的发生率呈指数增长趋势。弯曲菌是野生、家养动物的正常寄居菌,在肠道内有大量细菌,感染的动物通常无明显病症,但可长期向外界排菌,通过排泄物或分娩污染食物和饮水,从而引起人类感染。其中,家禽是弯曲菌病最重要的传染源,控制或清除禽类弯曲菌是预防和控制人空肠弯曲菌的重要前提。
     本研究的主要内容与目的是:(1)较为系统地调查与分析我国部分地区鸡群中弯曲菌流行特点,并应用国标方法鉴定分离株的生化特性,以2005年美国临床实验室标准化研究所(CLSI)推荐使用的琼脂扩散法进行耐药分析;(2)鸡源空肠弯曲菌地方分离株毒力相关基因分析及对HT-29细胞感染分析;(3)基于RAPD和PFGE技术的不同源空肠弯曲菌分离株分子亚分型研究,探究鸡空肠弯曲菌在人弯曲菌病中的作用;(4)鸡空肠弯曲菌新型DNA疫苗构建及其免疫生物学特性。
     1我国部分地区鸡群中弯曲菌流行现状和耐药特性调查与分析
     2005年7月至2007年12月,选取我国部分省市,采集不同品种、不同类型的鸡群样品进行空肠弯曲菌和结肠弯曲菌流行病学调查,40个鸡群中空肠弯曲菌阳性的有34个,阳性率为85%、结肠弯曲菌阳性率40%。在4 891份鸡肛门棉拭样品中,共检测出773份空肠弯曲菌阳性、平均阳性率15.80%,55份结肠弯曲菌阳性、平均阳性率1.12%;其中空肠弯曲菌和结肠弯曲菌混合污染的样品为19份,平均阳性率0.39%以上;鸡饲养环境样品217份,6份空肠弯曲菌阳性,阳性率2.76%。不同鸡群感染率悬殊较大,空肠弯曲菌阳性率从0到73.3%、结肠弯曲菌从0到7.4%。流行病学统计分析表明,规模化饲养鸡群的感染率显著高于散养鸡群(p<0.01),品系鸡群显著高于非品系(p<0.01),不同品系鸡群的感染率存在较大差异,我国地方品种鸡的鸡群感染率较低,祖代鸡群的感染率显著高于商品代和父母代(p<0.01)。
     240株鸡源空肠弯曲菌、34株结肠弯曲菌的生化特性和耐药性研究显示,空肠弯曲菌对8大类21种抗生素高度敏感的是:阿莫西林(AMC)96.67%、庆大霉素(CN)90.00%、阿齐红霉素(AZM)91.25%、链霉素(S)87.92%、红霉素(E)85.42%,高度耐药的是:头孢拉定(CE)98.33%、头孢哌酮(CFP)100.00%、头孢克罗(CEC)92.50%、诺氟沙星(NOR)92.08%、恩诺沙星(ENR)95.68%、环丙沙星(CIP)92.08%、左悬氧氟沙星(LEV)91.25%、复方新诺明(SXT)99.58%、四环素(TE)89.58%、强力霉素(DO)88.33%;耐药谱主要集中在8耐至14耐,达90.00%。34株结肠弯曲菌只对阿莫西林(AMC)高度敏感,91.18%。结肠弯曲菌耐药性和多重耐药性较空肠弯曲菌更为严重。不同地区、不同种类鸡群分离株耐药性和多重耐药性存在差异。
     我国鸡群的空肠弯曲菌对临床上常用的喹诺酮类、磺胺类、四环素类和大多数头孢菌素类抗生素均产生了不同程度的耐药性;而且结肠弯曲菌的耐药性更为严重,值得关注,必须加强各地弯曲菌耐药性和抗生素使用情况的监测,及时调整用药方案和公共卫生策略。
     2鸡源空肠弯曲菌地方分离株毒力相关基因分析及对HT-29细胞感染分析
     282株鸡源空肠弯曲菌地方分离株毒力相关基因分析显示,黏附相关基因cadF、peb1A、racR的平均携带率分别为90.07%、95.04%和97.87%,趋化性调节基因cheY、docA的平均携带率分别为95.39%和92.20%,侵袭蛋白基因iamA的平均携带率为87.94%,鞭毛蛋白基因flaA的平均携带率为86.17%,毒素调节基因cdt、wlaN和virB11质粒基因的平均携带率分别为71.28%、48.94%和7.08%;86.75%的细菌含有6个以上的毒力相关基因。结果显示,不同来源鸡分离株的毒力相关基因携带无显著性差异。
     分离株对HT-29细胞的侵袭力试验表明,119株分离株中,65株细菌无侵袭能力,占总数的54.62%;44株细菌的侵袭能力比较低,在0.0001%-0.1%之间,菌株所占比例为36.97%;10株细菌的侵袭能力较高,在0.1%-2%之间,比例为8.40%。不同侵袭能力分离株毒力相关基因分析显示:随着侵袭力的不同,分离株的基因携带有一定变化,flaA、cadF、docA、racR、iamA、peb1A和cheY的携带率随侵袭力上升而下降,而wlaN和cdt随侵袭力上升而上升。侵袭力与相关基因有密切关系,但非一一对应关系,而是相互作用,互为交叉的关系。
     不同谱系分离株对HT-29的黏附率和侵袭率表明,谱系Ⅳ分离株高于谱系Ⅰ、Ⅱ、Ⅲ分离株,相关毒力基因分析显示,在空肠弯曲菌侵袭HT-29上皮细胞过程中,黏附相关基因cadF、peb1A、racR,趋化性调节基因cheY、docA和侵袭蛋白基因iamA起重要作用。
     3不同源空肠弯曲菌分离株RAPD和PFGE分子亚分型研究
     337株不同来源的空肠弯曲菌PCR-RAPD分析表明,共得到27个基因型别,主要型别有5、6、7、9、12、14、15、22,占83.09%,其中菌株分布最集中的是型别5、9、14和15,所占比例分别为14.84%、17.51%、11.28%和12.76%,而在型别1-4、8、10、13、17、20、21和24-27中出现的菌株较少,比例均低于1%。此外,在不同来源分离的菌株中均含有5、7、9、14和15基因型别,占63.51%。276株不同源分离株PFGE图谱可分为4个遗传谱系、46个克隆组群,且我国空肠弯曲菌分离株主要属于PFGE遗传谱系Ⅲ和Ⅳ。不同源分离株在Ⅰ、Ⅱ、Ⅲ和Ⅳ遗传谱系中,不同源分离株在各克隆组群中呈交叉分布,鸡源分离株均占有优势,分别为50%、65%、70.59%、64.10%,而腹泻病人、牛群和市场食品分离株遗传谱型分布于各型中,表明鸡是空肠弯曲菌感染的主要来源。
     分子亚分型研究分析表明,PCR-RAPD和PFGE可作为研究空肠弯曲菌来源和传播途径的有力工具,且PFGE的分辨力强于PCR-RAPD。我国空肠弯曲菌分离株存在优势的遗传谱系,不同源分离株呈高度交叉分布,人弯曲菌的感染与市场食品、动物源弯曲菌感染密切相关,可能存在着相同的传染源,而且鸡源弯曲菌是人类弯曲菌病的主要传染源之一。
     4运送空肠弯曲菌flaA基因的壳聚糖纳米DNA疫苗免疫生物学特性
     根据GenBank登陆序列(gi:30407139),利用DNAStar软件分析,按正确的阅读顺序设计合成引物,PCR扩增空肠弯曲菌鞭毛蛋白基因flaA,将PCR产物回收、序列测定后,与pGEM○R T easy vector连接构建重组质粒pT-flaA,用EcoRⅠ和XbaⅠ双酶切回收后插入经同样双酶切的pCAGGS载体,构建成pCAGGS-flaA。将重组质粒pCAGGS-flaA转染COS-7细胞,间接免疫荧光检测表明重组质粒pCAGGS-flaA在转染的COS-7细胞中能检测到表达蛋白。应用现代纳米技术研制壳聚糖-重组质粒,1%琼脂糖电泳检测表明壳聚糖已经包裹了质粒,包裹率达91.9%,透射电子显微镜观察到壳聚糖已将质粒包裹形成直径100 nm左右的圆球形颗粒。
     白莱航鸡动物试验显示,二免后14天均能检测到特异性抗体,但抗体滴度较低;三免后14天抗体水平上升明显,能诱导鸡产生针对空肠弯曲菌鞭毛蛋白的体液、黏膜免疫应答,且与对照组具有显著性差异(p<0.01);流式细胞仪测定鸡脾脏和盲肠扁桃体CD4+/CD8+细胞的数量变化表明,CS-pCAGGS-flaA三免后导致脾脏和盲肠扁桃体CD4+/CD8+细胞数量比值的升高,CD4+细胞的数量高于CD8+细胞。RT-PCR测定鸡脾脏细胞IL-4、IFN-γ可知,二免、三免后14天脾脏细胞IL-4的量强于对照组,且IL-4的量强于IFN-γ。
     口服攻毒后,疫苗组在测定的时间内泄殖腔排毒率呈现下降趋势,21d后的排毒率为0,而对照组的排毒率保持相对稳定、高排毒水平;空肠弯曲菌在疫苗组小肠、大肠、盲肠和血液中的细菌量大致呈抛物线状,大约在9d-15d间达到高峰,然后呈下降趋势;而对照组在各脏器的分布呈上升趋势。免疫组小肠、大肠、盲肠和血液中细菌的细菌数量均低于对照组, 18d后能有效清除小肠内空肠弯曲菌,免疫组大肠、盲肠和血液的细菌数量较对照组分别降低2lg-3 lg、2lg和2lg-3lg数量。
Campylobacter are the most common zoonotic bacteria associated with human diarrhea in both developing and developed countries. Two thermophilic species, C. jejuni and C. coli are responsible for the vast majority of human Campylobacteriosis (~99% and~1%, respectively). A considerable number of Guillain-Barre syndrome(GBS) patients present with a prior history of Campylobacteriosis, and GBS is considered a sequela of infections caused specifically by C. jejuni. GBS is the most common acute flaccid paralysis due to an autoimmune disorder in nature. Animals (such as chicken, cattle, pigs, sheep, dogs and so on) may act as asymptomatic reservoirs, shedding C. jejuni in their stools resulting in the contamination of animal food products and the surface water nearby during slaughter and carcass dressing. Chickens, which are often heavily colonized with Campylobacter spp. without signs of pathology, are considered the most important source for human infection. It is generally assumed that Campylobacter spp. contaminate poultry constitute a major risk to human health.
     The objectives of this study were to: (i) investigate the prevalence of C. jejuni and C. coli among poultry flocks in parts of China; identify the isolates by phenotypic tests and detect the antimicrobial susceptibility with K-B method recommended by Clinical and Laboratory Standard Institute in 2005; (ii) establish and apply a C. jejuni infection model on HT-29 cells (iii) track the source of C. jejuni isolates form different origins by RAPD and PFGE; (ⅳ) develop and charaterize novel DNA vaccine candidates against C. jejuni.
     1 Epidemiological investigation and antibiotic resistance of C. jejuni and C. coli among chicken flocks in parts of China
     In this study we attempted to investigate the prevalence of C. jejuni and C. coli in chicken flocks in parts of China from June 2005 to December 2007. Among 40 flocks, 34 of them (85.0%) were detected positively for C. jejuni, and 16 were positive (40.0%) for C. coli. 4891 of chicken cloaca samples from grandparent,parent and commercial flocks of different breeds chickens were collected for the isolation and identification of C. jejuni or C. coli. The results showed that there were 773 strains of C. jejuni and 55 strains of C. coli isolated, the average positive rate was 15.80% and 1.12% respectively. The positive rates of C. jejuni varied from 0 to 73.3%, and C. jejuni from 0 to 7.4% on different chicken farms. The results showed that the C. jejuni incidence of poultry raised in large scales was significantly higher than that of chicken raised in a free-range system (P<0.01). Statistical analysis indicated that the C. jejuni positive rate of grandparent flocks was significantly higher than that of parent and commercial flocks (P<0.01).
     The 240 isolated C. jejuni from patients with sporadic diarrhea were analyzed for susceptibility to 21 kinds of antibiotics, and the results showed that these isolated strains were highly sensitive to seven kinds of antibiotics such as Amoxicillin 96.67%, Gentamicin 90.00%, Azithromycin 91.25%, Streptomycin 87.92%, Erythromycin 85.42%, and were resistant to some frequently used medicines such as Cefradine 98.33%, Cefoperazone 100%, Cefaclor 92.50%, Norfloxacin 92.08%, Enrofloxacin 95.68%, Ciprofloxacin 92.08%, Levofloxacin 91.25%, Co-trimoxazole 99.58%, Tetracycline 89.58%, Deoxycycline 88.33%. The percentage of isolates were 90.00% with resistance to 8 to 14 antimicrobials. Antibiotic resistance of 34 isolated C. coli strains were all evaluated by 21 kinds of antibiotics, and the results showed that these isolates were only high sensitive to Amoxicillin 91.18%, compared with the isolates of C. jejuni, the multidrug resistance of isolated C. coli was more severe.
     The results of this study showed that the chicken isolated strains were resistant to a number of common antibiotics used in clinic including Quinlones, Sulfonamides, Tetracyclines, and most cephalosporins. Compared with the isolates of C. jejuni, the resistance of isolated C. coli was more severe. It should pay more attention to the surveillance of antimicrobial resistance in Campylobacter spp., and it is important for inspecting the trends of antimicrobial susceptibility and supporting development of public policies for better prevention and treatment of Campylobacteriosis.
     2 Analysis of virulence-associated genes of chicken C. jejuni isolates and their infection capacity on HT-29 cell line
     Of the 282 C. jejuni isolates tested, the average positive rates of the adhesion related gene cadF, peb1A, racR were 90.07%, 95.04% and 97.87% respectively, the average rates of the chemotaxis gene cheY and docA were 95.39% and 92.20% respectively, invasion-associated gene iamA was 87.94%, the flagellar gene flaA was 86.17%, but the average rates of the virulence-associated genes cdt, wlaN and vir B11 were 71.28%, 48.94%, 7.08%, respectively. 86.75% strains carried over 6 virulence-associated genes. From above results, these data did not show remarkable differences in the presence of pathogenic genes carried by C. jejuni from various sources in chicken.
     Chicken C. jejuni isolates were tested for their ability to invade HT-29 cells in vitro. Of the 119 strains tested, 65 (54.62%) did not invade the HT-29 cells, 44 out of 119 strains (36.97%) invaded the cells at a very low level (<0.1%), 10 strains (8.40%) invaded the cells at a very high level(>0.1%). The analysis of the relationships between invasive ability and virulence-associated genes of C. jejuni showed the positive correlation between the prevalence of cdt, wlaN genes and C. jejuni invasive ability, the negative correlation between the prevalence of flaA, cadF, docA, racR, iamA, peb1A and cheY genes and C. jejuni invasive ability. There was no one to one association between virulence-associated genes and invasion or colonization ability in the chick gut.
     In vitro studies showed adhesion and invasion ability to HT-29 cells of strains of lineageⅣwere higher than those of lineageⅠ,ⅡandⅢ. The analysis of the relationships between invasive ability and virulence-associated genes of Chicken C. jejuni isolates showed that cadF、peb1A、racR、cheY、docA、iamA were the major factors to infect HT-29 cells
     3 Genotyping of C. jejuni isolates from different origins using PCR-RAPD and PFGE subtyping methods
     C. jejuni isolated from different sources (n=337) were subtyped by PCR-RAPD. The PCR products showed 27 different banding profiles, 3 lineages and 10 clonal groups. Profile number 5, 6, 7, 9, 12, 14, 15, 22 were the most frequently observed among different sources, accounting for 83.09%. In this study, profile number 5, 9 14 and 15 were predominant in the isolates, which were 14.84%、17.51%、11.28% and 12.76%, respectively. In addition, profile number 5, 7, 9, 14 and 15 were found in human, bovine and poultry isolates, accounting for 63.51%. PFGE analyses showed that the Chinese isolates could be separated into 4 genetic lineages and 46 clonal groups, respectively. The PFGE lineage classification for chicken isolates possessed dominance among lineageⅠ、Ⅱ、ⅢandⅣ, which were 50%, 65%, 70.59%, 64.10%, respectively. The lineage of isolate from human patient, cattle and food were distributed all lineages. These findings indicated that isolated strains from different source overlaped each other in all clonal groups, presenting the possibility that bovine and food, as well as chickens, may serve as a source of human Campylobacteriosis.
     The results showed that PCR-RAPD and PFGE could be powerful tool for the investigation of molecular epidemiological pattern of C. jejuni and for tracing the source of C. jejuni in clinical patients, and PFGE allowed much higher discrimination among the isolated strains than RAPD. These findings indicated that C. jejuni isolates had predominant lineage, genotype distribution of the difference resource isolates overlaped. Human Campylobacteriosis was intimate relevant to animal and food, especially chicken.
     4 Immunobiological properties of the nanoparticle of chitosan harboring DNA Vaccine pCAGGS-flaA against C. jejuni
     According to the sequences published in GenBank(GenBank Accession NO. gi30407139), a pair of primers were designed to amplify gene flaA of C. jejuni by PCR. Then the PCR product was cloned into pGEM-T easy vector to give rise to pT-flaA. The Eco R I-Xba I-restricted insert of pT-flaA was cloned into eukaryotic expression vector pCAGGS, the recombinant vector pCAGGS-flaA was constructed. The plasmid pCAGGS-flaA was transfected into COS-7 in order to dectect the expression of inserted gene by immunofluorescence staining. The results showed flaA was expressed in COS-7. To develop the oral immunological DNA vaccicnes with chitosan(CS), the recombinant plasmid was encapsulated with chitosan to nanoparticles. The imaging by transmission electron microscope (TEM) demonstrated that the diameter of the particles was around 100 nm and the shape was spherical or eliptical. The result of encapsulated efficiency of chitosan-plasmid nanoparticles showed that more than 90% plasmid DNA was encapsulated with chitosan.
     In order to evaluate the novel DNA vaccine, 1-day-old commercial White Leghorn chickens were immunized orally with chitosan-plasmid nanoparticles at two weeks interval. Negative control groups, including blank control and CS-pCAGGS control, were Low titers of specific antibodies were observed in all immunized groups and negative control groups two weeks at second postinoculation (PI). But the titers of specific antibodies in positive control group were elevated significantly at third PI two weeks (p<0.01). Ratio of CD4+/CD8+ T cell in cecal tonsil and spleen of pCAGGS-flaA group was step-up at third PI two weeks. RT-PCR showed that the expression of IL-4 in spleen was enhanced at third PI two weeks, but the level of IFN-γhad no significant difference between two and third PI.
     After challenged orally with 5×107 isolated strain ALM-80, the percentage of C. jejuni -positive chickens in cloaca showed downtrend in vaccine group and no detection after 21d, but the negative control groups holded metastable high positive ratio. Among vaccine groups, the number of strain ALM-80 in small intestine, large intestine, cecum and blood acquired peak from 9d to 15d, and then downtrend. But otherwise, there was significant difference compared with the negative control groups, which were given to uptrend. Among CS-pCAGGS-flaA group, ALM-80 could be cleaned in small intestine at 18d, compared with the negative control groups, there was 2lg-3 lg, 2lg and 2lg-3lg reduction of quantity in large intestine, caecal and blood respectively when chicken were challenged with the homologous strain.
引文
[1]黄金林,何蕊,许海燕,潘志明,焦新安.弯曲菌的公共卫生危害及其控制策略.动物保健,2006,(6):9-11
    [2] Park SF. The physiology of Campylobacter species and its relevance to their role as food-borne pathogens. Int J Food Microbiol, 2002, 74: 177-188
    [3]黄金林,许海燕,张弓,苏洁,潘志明,姜峰,刘秀梵,焦新安.江苏奶牛空肠弯曲菌和结肠弯曲菌流行状况及耐药性分析.中国人兽共患病学报,2007, 23(10):1016-1020
    [4] Skirrow MB, Blaser MJ. Campylobacter. ASM Press, Washington, DC, 2000, pp: 69-88
    [5] CDC. . Accessed 07.01.05
    [6] Jayarao BM, Donaldson SC, Straley BA. A survey of food-borne pathogens in bulk tank milk and raw milk consumption among farm families in Pennsylvania. J Dairy Sci, 2006, 89: 2451-2458
    [7] Blaser MJ. Epidemiologic and clinical features of Campylobacter jejuni infections. J Infect Dis,1997, 176: 103-105
    [8] Senok A, Yousif A, Mazi W, Sharaf E, Bindayna K, Elnima el-A, Botta G. Pattern of Antibiotic Susceptibility in Campylobacter jejuni Isolates of Human and Poultry Origin. Jpn J Infect Dis, 2007, 60(1): 1-4
    [9] Hood A M, Pearson A D, Shahamat M. The extent of surface contamination of retailed chickens with Campylobacter jejuni serogroups. Epidemiol Infect, 1988, 100(1): 17-25
    [10] Boes J, Nersting L, Nielsen EM, Kranker S, Enoe C, Wachmann HC. Prevalence and diversity of Campylobacter jejuni in pig herds on farms with and without cattle or poultry. Journal of Food Protection, 2005, 68: 722-727
    [11] Aarestrup FM, Engberg J. Review: Antimicrobial resistance of thermophilic Campylobacter. Vet Res, 2001, 32:311-321
    [12] Salazar LE, Sack RB, Chea WE, Kay BA, Piscoya I. Early treatment with erythromycin of Campylobacter jejuni associated dysentery in children. J. Pediatt, 1986, 109: 3555-3560
    [13] Tajada P, Gomez GJL, Alos JI, Balas D, Cogollos R. Antimicrobial susceptibilities of Campylobacter jejuni and Campylobacter coli to 12 beta-lactam agents and combinations with beta-lactamase inhibitors. Antimicrob Agents Chemother, 1996, 40:1924-1925
    [14] Van LM, Daube G., Zutter L, Dumont JM, Lammens C, Wijdooghe M, Vandamme P, Jouret M, Cornelis M, Goossens H. Antimicrobial susceptibilities of Campylobacter strains isolated from food animals in Belgium. J Antimicrob Chemother, 2001, 48: 235-240
    [15] Avrain L, Humbert F, Hopsitalier R, Sanders P, Vernozy RC, Kempf I. Antimicrobial resistance in Campylobacter from broilers: Association with production type and antimicrobial use. Vet Microbiol, 2003, 96: 267-276
    [16] Ishihara K, Kira T, Ogikubo K, Morioka A, Kojima A, Kijima TM, Takahashi T, Tamura Y. Antimicrobial susceptibilities of Campylobacter isolated from food-producing animals on farms (1999-2001): results from the Japanese Veterinary Antimicrobial Resistance Monitoring Program. J Antimicrob Agents, 2004, 24: 261-267
    [17] Clinical and Laboratory Standards Institute/NCCLS. Performance standards for antimicrobial susceptibility testing; Fifteenth informational supplement. CLSI/NCCLS document M100-S15. Clinical and Laboratory Standards Institute, Wayne, Pennsylvania, 2005, 25: 1-167
    [18]中华人民共和国国家标准[S].食品卫生微生物学检验——空肠弯曲菌检验. GB/T 4789, 9-2003: 59-66
    [19]何蕊,黄金林,许海燕,苏洁,潘志明,焦新安.弯曲菌多重PCR检测方法的建立及其初步应用.扬州大学学报(农业与生命科学版),2007, 28(1): 5-7
    [20] Nachamkin I. Chronic effects of Campylobacter infection. Microbes Infection, 2002, 4: 399-403
    [21] Tom H, Frieda J. Pathogens on meat and infection in animals establishing a relationship using campylobacter and salmonella as examples. Meat Science, 2006, 74: 89-97
    [22] Roberts JA, Cumberland P, Sockett PN. The study of infectious intestinal disease in England, socio-economic impact. Epidemiology and Infection, 2003, 130: 1-11
    [23] Lang DR, Allos BM, Blaser MJ. Workshop summary and recommendations regarding the development of Guillain-Barre syndrome following Campylobacter infection. J Infect Dis, 1997, 176: 198-200
    [24] Wheeler JG, Sethi CJM. Study of infectious intestinal disease in England: rates in the community, presenting to general practice, and reported to national surveillance. British Medical Journal, 1999, 318: 1046-1050. In Report on a WHO consultation on epidemiology and control of Campylobacteriosis. Bilthoven, WHO, pp: 35-44
    [25] Whyte P, McGill K, Collins JD. An assessment of steam pasteurization and hot water immersion treatments for the microbiological decontamination of broiler carcasses. Food Microbiol, 2003, 20: 111-117
    [26] Campynet (www.svs.dk/campynet)
    [27]吴蜀豫,张立实,冉陆.弯曲菌及弯曲菌病的流行现状.中国食品卫生杂志, 2004, 16: 58-61
    [28] In Report on a WHO consultation on epidemiology and control of Campylobacteriosis. Bilthoven, WHO. pp: 35-44
    [29]侯凤伶,申志新,王英豪,张淑红,关文英.保定市空肠弯曲菌感染情况调查分析.中国卫生检验杂志,2006,l6(6):725-726
    [30]姚正富,游秀贞,姚国文,程法稷.乌鸡、番鸭空肠弯曲菌带菌观察.职业与健康,2005,2l(8):1260
    [31] Hansson I, Forshell LP, Gustafsson P, Boqvist S, Lindblad J, Engvall EO, Andersson Y, V?gsholm I. Summary of the Swedish Campylobacter program in broilers, 2001 through 2005. J Food Prot. 2007, 70(9): 2008-2014
    [32] Al Amri A, Senok AC, Ismaeel AY, Al-Mahmeed AE, Botta GA. Multiplex PCR for direct identification of Campylobacter spp. in human and chicken stools. J. Med Microbiol. 2007, 56(10): 1350-1355
    [33] Robert C, Moellering B. Past, present, and future of antimicrobial agents. The America Journal of Medical, 1995, 99: 6-18
    [34] Van D, Bogaard AE. Antimicrobial resistance relation to human and animal exposure to antibiotics. J Antimicrob Chemother, 1997, 40: 453-454
    [35] Mazel D, Davies J. Gene capture in Vibrio cholerae: response. Trends Microbiol, 1999, 7: 95-96
    [36] Harold C. Pharmacokinetics, microbiology, cost: Interrelated problems for the 1990s that impact on the use of fluoroquinolone antimicrobial agents. The American Journal of Medicine, 1992, 92: 2-7
    [37] Mead P, Slutsker L, Dietz V, McCaig L, Bresee J, Shapiro C. Food-related illness and death in the United States. Infectious Diseases, 1999, 5: 607-625
    [38] Kassenborg H, Smith K, Vugia D, Fiorentino T, Bates M. Eating chicken or turkey outside the home associated with domestically acquired fluoroquinolone resistant Campylobacter infections: a FoodNet case-control study. International conference on emerging infectious diseases, 2000, Atlanta, GA: CDC
    [39] Glynn MK, Bopp C, Dewitt W, Dabney P, Mangulo F. Emergence of multidrug-resistant Salmonella enterica typhinurium DT104 infection in the United States. The New England Journal of Medicine, 1998, 338: 1333-1338
    [40]侯风琴,沈宝铨,孙新婷. 200株弯曲菌对抗生素敏感性研究.中华医院感染学杂志,2001,11(6):406-408
    [41] Deepika J, Sushmita S, Kashi N, Chandra MP. Campylobacter species and drug resistance in a north Indian rural community. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2005, 99: 207-214
    [1] Tauxe RV. Emerging foodborne diseases: an evolving public health challenge. Emerg Infect Dis, 1997, 3: 425-434
    [2] Ketley JM, Vliet AH. Pathogenesis of enteric infection by Campylobacter. Microbiology, 1997, 143: 5-21
    [3] Dingle KE, Van DBN, Colles FM, Price LJ, Woodward DL, Rodgers FG, Endtz HP, Van Belkum A, Maiden MC.Sequence typing confirms that Campylobacter jejuni strains associated with Guillain-Barre′and Miller-Fisher Syndromes are of diverse genetic lineage, serotype, and flagella type. J Clin Microbiol, 2001, 39: 3346-3349
    [4] DD Bang, Borck B, Nielsen EM, Scheutz F, Pedersen K, Madsen M. Detection of seven virulence and toxin genes of Campylobacter jejuni isolates from Danish Turkeys by PCR cytolethal distending toxin production of the isolates. J Food Protection, 2004, 67: 2171-2177
    [5] Wassenaar TM, Blaser MJ. Pathophysiology of Campylobacter jejuni infections of humans. Microb Infect, 1999, 1: 1-11
    [6] Müller J, Schulze F, Müller W, H?nel I. PCR detection of virulence-associated genes in Campylobacter jejuni strains with differential ability to invade Caco-2 cells and to colonize the chick gut. Vet Microbio, 2006, 113: 123-129
    [7] Monteville MR, Yoon JE, Konkel ME. Maximal adherence and invasion of INT-407 cells by Campylobacter jejuni requires the CadF outer-membrane peotein and microfilament reorganization. Microbiology, 2003, 149: 153-165
    [8]中华人民共和国国家标准[S].食品卫生微生物学检验——空肠弯曲菌检验. GB/T 4789, 9-2003:59-66
    [9]何蕊,黄金林,许海燕,苏洁,潘志明,焦新安.弯曲菌多重PCR检测方法的建立及其初步应用.扬州大学学报(农业与生命科学版), 2007, 28: 5-8
    [10] Nachamkin I, Bohachick K, Patton CM. Flagellin Gene Typing of Campylobacter jejuni by Restriction Fragment Length Polymorphism Analysis. Journal of Clinical Microbiology, 1993, 6: 1531-1536
    [11] Ziprin RL, CR Young, LH Stanker. The absence of cecal colonization of chicks by a mutant of Campylobacter jejuni not expressing bacterial fibronectinbinding protein. Avian Dis, 1999, 43: 586-589
    [12] Hendrixson DR, Dirita VJ. Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Molecular Microbiology, 2004, 52: 471-484
    [13] Wassenaar TM, Bleumink-Pluym NM, Newel DG. Differential flagellin expression in a flaA-/flaB+ mutant of Campylobacter jejuni. Infect Immun. 1994, 62: 3901-3906
    [14] Nuijten PJ, Berg AJ, Formentini I, van der Zeijst BA, Jacobs AA. DNA rearrangements in the flagellin locus of an flaA mutant of Campylobacter jejuni during colonization of chicken ceca. Infect Immun, 2000, 68: 7137-7140
    [15] Carvalho AC, Ruiz-Palacios GM, Ramos-Cervantes P, Cervantes LE, Jiang X, Pickering LK. Molecular Characterization of invasive and noninvasive Campylobacter jejuni and Campylobacter coli isolates. J Clin Microbiol, 2001, 39: 1353-1359
    [16] Linton D, Gilbert M, Hitchen PG, Dell A, Morris HR, Wakarchuk WW, Gregson NA, Wren BW. Phase variation of aβ-1,3 galactosyltransferase involved in generation of the ganglioside GM1-like lipo-oligosaccharide of Campylobacter jejuni. Molecular Microbiology, 2000, 37: 501-514
    [17] Datta S, Niwa H, Itoh K. Prevalence of 11 pathogenic genes of Campylobacter jejuni by PCR in strains isolated from humans, poultry meat and broiler and bovine faeces. J Med Microbiol, 2003, 52: 345-348
    [18]王珍芹,周志勇.空肠弯曲菌病流行病学研究进展.中国动物检疫, 1999, 16: 47-50
    [19] Hickey TE, McVeigh AL, Scott DA, Michielutti RE, Bixby A, Carroll SA, Bourgeois AL, Guerry P. Campylobacter jejuni cytolethal distending toxin mediates release of interleukin-8 from intestinal epithelial cells. Infect Immun, 2000, 68: 6535-6541
    [20] Friis LM, Pin C, Peason BM, Wells JM. In vivo cell culture methods for investigating Campylobacter invasion mechanisms. J Microbio Methods, 2005, 61: 145-160
    [21] Biswas D, Itoh K, Sasakawa C. Uptake pathways of clinical and healthy animal isolates of Campylobacter jejuni into INT-407 cells. Immunol Med Microbiol, 2000, 29: 203-211
    [22] Konkel ME, Joens LA. Adhesion to and invasion of HEp-2 cells by Campylobacter spp. Infect Immun, 1989, 57: 2984-2990
    [23] Elsinghorst EA. Measurement of invasion by gentamicin resistance. Methods Enzymol, 1994, 236: 405-420
    [24] Everest PH, Goossens H, Butzler JP, Lloyd D, Knutton S, Ketley JM, Williams PH. Differentiated Caco-2 cells as a model for enteric invasion by Campylobacter jejuni and C. coli. J Med Microbiol. 1992, 37: 319-325
    [25] De Melo MA, Gabbiani G, Pechere JC. Cellular events and intracellular survival of Campylobacter jejuni during infection of HEp-2 cells. Infect Immun, 1989, 57: 2214-2222
    [26] H?nel I, Müller J, Müller W, Schulze F. Correlation between invasion of Caco-2 eukaryotic cells and colonization ability in the chick gut in Campylobacter jejuni. Vet Microbio, 2004, 101: 75-82
    [27] Konkel ME, Garvis SG, Tipton SL, Anderson DE Jr, Cieplak W Jr. Identification and molecular cloning of a gene encoding a fibronectin-binding peotein (cadF) from Campylobacter jejuni. M Microbiol, 1997, 24: 953-963
    [28] Pei Z, Burucoa C, Grignon B. Mutation in the peblA locus of Campylobacter jejuni reduces interaction with epithelial cells and intestinal colonization of mice. Infect Immun, 1998, 66: 938-943
    [29] Fauchere JL, Kervella M, Rosenau A, Mohanna K, Véron M. Adhesion to HeLa cells of Campylobacter jejuni and C. coli outer membrane components. Res Microbiol, 1989, 140: 379-392
    [30] Prasad KN, Dhole TN, Ayyagari A. Adherence, invasion and cytotoxin assay of Campylobacter jejuni in HeLa and HEp-2 cells. J Diarrhea Dis, 1996, 14: 255-259
    [31]郑惠,蔡方成.空肠弯曲菌基因组序列及相关致病基因的研究.国外医学, 2005, 3: 22-24
    [32] Purdy D, Buswell CM, Hodgson AE, McAlpine K, Henderson I, Leach SA. Characterisation of cytolethal distending toxin (CDT) mutants of Campylobacter jejuni. J Med Microbiol, 2000, 49: 473-479
    [1] Crushell E, Harty S, Sharif F, Bourke B. Enteric Campylobacter: purging its secrets. Pediatr Res, 2004, 55: 3-12
    [2] Iovine NM, Blaser MJ. Antibiotics in animal feed and spread of resistant Campylobacter from poultry to humans. Emerg Infect Dis, 2004, 10: 1158-1159
    [3] Frost J. A., A. N. Oza, R. T. Thwaites and B. Rowe. Serotyping scheme for Campylobacter jejuni and Campylobacter coli based on direct agglutination of heat-stable antigens. J Clin Microbiol, 1998, 36: 335-339
    [4] Newell D. G.., J. A. Frost, B. Duim, J. A. Wagenaar, R. H. Madden, J. van der Plas, and S. L. W. On. 2000. New developments in the subtyping of Campylobacter species, p. 27-44. In I. Nachamkin and M. J. Blaser (eds.), Campylobacter. American Society for Microbiology, Washington, D. C.
    [5] Gibson JR, Fitzegerald C, Owen RJ. Comparison of PFGE, ribotyping and phage-typing in the epidemiological analysis of Campylobacter jejuni serotype HS2 infections. Epidemiol Infect, 1995, 115: 215-225
    [6] Dingle KE, Colles FM, Wareing DR. Multilocus seqence typing system for Campylobacter jejuni. J Clin Microiol, 2001, 39: 142-231
    [7] Hernandez J. A., Fayos M. A. Ferrus, and R. J. Owen. Random amplified polymorphic DNA fingerprinting of Campylobacter jejuni and C. coli isolated from human faeces, seawater and poultry products. Res. Microbiol, 1995, 146: 685-696
    [8] Madden R. H., L. Moran, and P. Scates. Subtyping of animal and human Campylobacter spp. Using RAPD. Lett. Appl. Microbiol, 1996, 23: 167-170
    [9] Imai Y, Kikuchi M, Matsuda M. Macro-fingerprinting analysis at the chromosomal genomic DNA level of isolates of thermophilic Campylobacter coli and C. jejuni by pulsed field gel electrophoresis. J Cytobios, 1994, 78: 1152-1221
    [10]中华人民共和国国家标准[S].食品卫生微生物学检验——空肠弯曲菌检验. GB/T 4789, 9-2003: 59-66
    [11]何蕊,黄金林,许海燕,苏洁,潘志明,焦新安.弯曲菌多重PCR检测方法的建立及其初步应用.扬州大学学报(农业与生命科学版),2007, 28(1): 5-7
    [12] Akopyanz N, Bukanov NO, Westblom TU, Kresovich S, Berg DE. DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucleic Acids Res, 1992, 20: 5137-5142
    [13] Hernandez J, Fayos A, Ferrus MA, Owen RJ. Random amplified polymorphic DNA fingerprinting of Campylobacter jejuni and Campylobacter coli isolated form human faeces. Res Microbiol, 1995, 18: 119-124
    [14] Chang N. and L. Chui. A standardized protocol for the rapid the rapid preparation of bacterial DNA for pulsed-field gel electrophoresis. Diagn Microbiol Infect Dis, 1998, 31: 275-279
    [15] B. Ge, W. Girard, S. Zhao, S. Friedman, S.A. Gaines and J. Meng. Genotyping of Campylobacter spp. from retail meats by pulsed-field gel electrophoresis and ribotyping. J Appl Microbiol, 2006, 100(1): 175-184
    [16] Zorman T, Heyndrickx M, Uzunovi?-Kamberovi? S, Smole Mozina S. Genotyping of Campylobacter coliand C. jejuni from retail chicken meat and humans with Campylobacteriosis in Slovenia and Bosnia and Herzegovina. Int J Food Microbiol 2006, 110(1): 24-33
    [17] K?renlampi R, Rautelin H, H?nninen ML. Evaluation of genetic markers and molecular typing methods for prediction of sources of Campylobacter jejuni and C. coli infections. Appl Environ Microbiol. 2007, 73(5): 1683-1685
    [18] Uzunovi?-Kamberovi? S, Zorman T, Heyndrickx M, Smole Mozina S. Role of poultry meat in sporadic Campylobacter infections in Bosnia and Herzegovina: laboratory-based study. Croat Med J. 2007, 48(6): 842-851
    [19] Van Deun K, Haesebrouck F, Heyndrickx M, Favoreel H, Dewulf J, Ceelen L, Dumez L, Messens W, Leleu S, Van Immerseel F, Ducatelle R, Pasmans F. Virulence properties of Campylobacter jejuni isolates of poultry and human origin. J Med Microbiol, 2007, 56(10): 1284-1289
    [20] Bae W, Hancock DD, Call DR, Park YH, Berge AC, Finger RM, Sischo WM, Besser TE. Dissemination of antimicrobial resistant strains of Campylobacter coli and Campylobacter jejuni among cattle in Washington State and California. Vet Microbiol, 2007, 122(3-4): 306-315
    [21] Han K, Jang SS, Choo E, Heu S, Ryu S. Prevalence, genetic diversity, and antibiotic resistance patterns of Campylobacter jejuni from retail raw chickens in Korea. Int J Food Microbiol, 2007, 28, 114(1): 50-59
    [1] Newell, D. G. Animal models of Campylobacter jejuni colonization and disease and the lessons to be learned from similar Helicobacter pylori models. Symp. Ser. Soc. Appl. Microbiol. 2001, 30: S 57-S 67
    [2] Verwoerd, D. J. Ostrich diseases. Rev. Sci. Tech. 2000, 19:638-661
    [3] Jacobs-Reitsma, W. F., A. W. van de Giessen, N. M. Bolder, and R. W. Mulder. Epidemiolgy of Campylobacter spp. at two Dutch broiler farms. Epidemiol. Infect. 1995, 114:413-421
    [4] Stern, N. J. 1992. Reservoirs for Campylobacter jejuni and approaches for intervention in poultry, p. 49-60, Campylobacter jejuni. Current Status and Future Trends. American Society for Microbiolgy, Washington, D.C.
    [5] Advisory Committee on the Microbiolgical Safety of Food. 1992. Interim report on campylobacter. Her Majesty’s Stationery Office, London, United Kingdom
    [6] Lee MD, Newell DG. Campylobacter in poultry: filling an ecolgical niche. Avian Dis,, 2006, 50(1): 1-9
    [7] Grant IH, Richardson NJ, Bokkenheuser VD. Broiler chickens as potential source of Campylobacter infections in humans. J Clin Microbiol, 1980, 11(5): 508-510
    [8] Zhao C, Ge B, De Villena J, Sudler R, Yeh E, Zhao S, White DG, Wagner D, Meng J. Prevalence of Campylobacter spp., Escherichia coli, and Salmonella serovars in retail chicken, turkey, pork, and beef from the Greater Washington, D.C., area. Appl Environ Microbiol, 2001, 67(12): 5431-5436
    [9] Ringoir, D. D., and V. Korolik. Colonisation phenotype and colonisation potential differences in Campylobacter jejuni strains in chickens before and after passage in vivo. Vet Microbiol, 2003, 92: 225-235
    [10] Walker RI. Considerations for development of whole cell bacterial vaccines to prevent diarrheal diseases in children in developing countries. Vaccine, 2005, 23(26): 3369-3385
    [11] Huang S, Sahin O, Zhang Q. Infection-induced antibodies against the major outer membrane protein of Campylobacter jejuni mainly recognize conformational epitopes. FEMS Microbiol Lett, 2007, 272(2): 137-143
    [12] de Zoete MR, van Putten JP, Wagenaar JA. Vaccination of chickens against Campylobacter. Vaccine. 2007, 26; 25(30): 5548-5557
    [13] Jagusztyn-Krynicka EK, Wyszyńska A, Raczko. A. New approaches to development of mucosal vaccine against enteric bacterial pathogens; preventing Campylobacteriosis. Pol J Microbiol. 2004, S53: 7-15
    [14] Sambrook J, Russell DW.分子克隆实验指南(第三版).黄培堂,译.北京:科学出版社, 2002
    [15] Walker RI. Considerations for development of whole cell bacterial vaccines to prevent diarrheal diseases in children in developing countries. Vaccine, 2005, 23(26): 3369-3385
    [16] CawthrawSA, Gorringe C,Newell DG. Prior infection, but not a killed vaccine, reduces colonization of chickens by Campylobacter jejuni. In: Lastovica AJ, Newell DG, Lastovica EE, editors. Campylobacter, helicobacter and related organisms. Cape Town: Institute of Child Health, University of Cape Town;, 1998, 364-372
    [17] Quere P, Girard F. Systemic adjuvant effect of cholera toxin in the chicken. Vet Immunol Immunopathol, 1999, 70(1-2): 135-141
    [18] Vervelde L, Janse EM, Vermeulen AN, Jeurissen SH. Induction of a local and systemic immune response using cholera toxin as vehicle to deliver antigen in the lamina propria of the chicken intestine. Vet Immunol Immunopathol, 1998, 62(3): 261-272
    [19] Sahin O, Zhang Q, Meitzler JC, Harr BS, Morishita TY, Mohan R. Prevalence, antigenic specificity, and bactericidal activity of poultry anti-Campylobacter maternal antibodies. Appl Environ Microbiol, 2001, 67(9): 3951-3957
    [20] Wolff JA, Malone RW, Williams P, Acsadi G, Jiao S, Jani A, Chong W. Direct gene transfer into mouse muscle in vivo. Science. 1990, 247: 1465-1468
    [21] Wyszynska A, RaczkoA, Lis M, Jagusztyn-Krynicka EK. Oral immunization of chickens with avirulent Salmonella vaccine strain carrying C. jejuni 72Dz/92 cjaA gene elicits specific humoral immune response associated with protection against challenge with wild-type Campylobacter. Vaccine, 2004, 22(11-12): 1379-1389
    [22] Müller, J., Schulze, F., Müller, W., H?nel, I., 2006. PCR detection of virulence-associated genes in Campylobacter jejuni strains with differential ability to invade Caco-2 cells and to colonize the chick gut. Vet. Microbiol, 113, 123-129
    [23] Widders PR, Thomas LM, Long KA, Tokhi MA, Panaccio M, Apos E. The specificity of antibody in chickens immunised to reduce intestinal colonisation with Campylobacter jejuni. Vet Microbiol, 1998, 64(1): 39-50
    [24] Widders PR, Perry R, Muir WI, Husband AJ, Long KA. Immunisation of chickens to reduce intestinal colonisation with Campylobacter jejuni. Br Poult Sci, 1996, 37(4): 765-778
    [25] Suarez D L, Schultz-Cherry S. The effect of eukaryotic expression vectors and adjuvant on DNA vaccines in chickens using as avian influenza model. Avian Disease, 2000, 44: 861-868
    [26] Bu Z G, Ling Y, Marianne J S, Ziegler H K, Richard W C, Yang C L. Enhancement of immune response to an HIV env DNA vaccine by a C-terminal segment of Listeriolysin O. AIDS Research and Human Retroviruses, 2003, 19: 409-420
    [27] Bu Z G, Ling Y, Ziegler H K, Richard W C, Yang C L. Enhanced cellular immune reponse against SIV Gag induced by immunization with DNA vaccines expressing assembly and release-defective SIV Gag proteins. Virology, 2003, 309: 272-281
    [28]姜永萍,张洪波,步志高,李呈军,赵有淑,王秀荣,于康震,陈化兰.表达载体pCAGGS显著增强禽流感DNA疫苗的免疫保护效果.中国农业科学, 2006, 39(4): 825-830
    [29] Mao HQ, Roy K, Troung-Le VL, Janes KA, Lin KY, Wang Y, August JT, Leong KW.Chitosan-DNA nanopaticles a gene carriers: synthesis,characterization and transfection efficiency. J Controlled Release,2001, 70(3): 399-421
    [30] Soane RJ, Frier M, Perkins AC, Jones NS, Davis SS, Illum L. Evaluation of the clearance characteristicsof bioadhesive systems in hmnman[J]. Int J Pharm, 1999, 178(1): 55-65
    [31] Lehr CM, Bouwstm JA, Schacht EH. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers[J]. Int J Pharm, 1992, 78(1): 43-48
    [32] Pace JL, Rossi HA, Esposito VM, Frey SM, Tucker KD, Walker RI. Inactivated whole-cell bacterial vaccines: current status and novel strategies. Vaccine, 1998, 16(16):1563-1574
    [33] Widders PR, Thomas LM, Long KA, Tokhi MA, Panaccio M, Apos E. The specificity of antibody in chickens immunised to reduce intestinal colonisation with Campylobacter jejuni. Vet Microbiol, 1998, 64(1):39-50
    [34] Widders PR, Perry R, Muir WI, Husband AJ, Long KA. Immunisation of chickens to reduce intestinal colonisation with Campylobacter jejuni. Br Poult Sci, 1996, 37(4):765-778
    [35] Newell DG, Cawthraw SA. Vaccine and nuleic acids.World Intellectual Property Organization, 2006. Patent nr. WO 2006/046017
    [36] Sahin O, Luo N, Huang S, Zhang Q. Effect of Campylobacter-specific maternal antibodies on Campylobacter jejuni colonization in young chickens. Appl Environ Microbiol, 2003, 69(9): 5372-5379
    [37] Baqar S, Bourgeois AL, Applebee LA, Mourad AS, Kleinosky MT, Mohran Z, Murphy JR. Murine intranasal challenge model for the study of Campylobacter pathogenesis and immunity. Infect Immun, 1996, 64(12): 4933-4939
    [38] Burr DH, Rollins D, Lee LH, Pattarini DL, Walz SS, Tian JH, Pace JL, Bourgeois AL, Walker RI. Prevention of disease in ferrets fed an inactivated whole cell Campylobacter jejuni vaccine. Vaccine, 2005, 23(34): 4315-4321
    [39] Wyszynska A, RaczkoA, Lis M, Jagusztyn-Krynicka EK. Oral immunization of chickens with avirulent Salmonella vaccine strain carrying C. jejuni 72Dz/92 cjaA gene elicits specific humoral immune response associated with protection against challenge with wild-type Campylobacter. Vaccine, 2004, 22(11-12): 1379-1389
    [1] McFayden J. and S.Stockman. 1913. In report of the departmental committee appointed by the board of agriculture and fisheries to enquire into epizootic abortion. His majesty`s stationary office, London, United Kingdom
    [2] Smith T.. Spirilla associated with disease of the fetal membranes in cattle (infectious abortion). J. Exp. Med., 1918, 28: 701-712
    [3]Smith T. and M. S. Taylor. Some morpholgical and biochemical characters of the spirella (Vibrio fetus n. sp.) associated with disease of the fetal membranes in cattle. J. Exp. Med., 1919, 30: 299-312
    [4] Smith T. and M. L. Orcutt. Vibrios from calves and their serolgical relation to Vibrio fetus. J. Exp. Med., 1927, 45: 391-397
    [5] Doyle L. P. A vibrio assoctated with swine dysentery. Am. J. Vet. Res., 1944, 5: 3-5
    [6] Doyle L. P. The etiolgy of swine dysentery. Am. J. Vet. Res., 1948, 9: 50-51
    [7] Sebald M. and M. Véron. Teneur en bases de TADN et classification des vibrions. Ann. Inst. Pasteur., 1963, 105: 897-910
    [8] Tom Humphrey, Sarah O'Brien, Mogens Madsen. Campylobacters as zoonotic pathogens: A food production perspective. Int. J. Food Microbio., 2007, 117: 237-257
    [9]黄金林,许海燕,张弓,苏洁,潘志明,姜峰,刘秀梵,焦新安.江苏奶牛空肠弯曲菌和结肠弯曲菌流行状况及耐药性分析.中国人兽共患病学报,2007,23(10):1016-1020
    [10] On S. L. Taxonomy of Campylobacter, Arcobacter, Helicobacter and related bacteria: current status, future prospects and immediate concerns. J Appl Microbiol., 2001, 90: S1-S15
    [11]黄金林,何蕊,许海燕,潘志明,焦新安.弯曲菌的公共卫生危害及其控制策略.动物保健,2006,(6):9-11
    [12] Tauxe R.V. Emerging foodborne pathogens. Int. J. Food Microbiol., 2002, 78 (1-2): 31-41
    [13] World Health Organization (WHO) (2000). The increasing incidence of human Campylobacteriosis: report and proc. of a WHO Consultation of Experts, Copenhagen, 21-25 November. WHO/CDS/CSR/APH/2001.7. WHO, Geneva
    [14]许海燕,黄金林,包广宇,高玉,张弓,苏洁,姜峰,潘志明,刘秀梵,焦新安.扬州市区腹泻人群空肠弯曲菌和结肠弯曲菌流行状况及耐药性分析[J].中国人兽共患病学报,2008,24(1): 58-62
    [15] Mangen M.-J.J., Havelaar A.H., Bernsen R.A.J.A.M., van Koningsveld R. & de Wit G.A. The costs of human Campylobacter infections and sequelae in the Netherlands: a DALY and cost-of-illness approach. Acta agric. scand., 2005, 2: 35-51
    [16] Havelaar A.H., de Wit M.A., van Koningsveld R. & van Kempen E. Health burden in the Netherlands due to infection with thermophilic Campylobacter spp. Epidemiol. Infect., 2000, 125 (3): 505-522
    [17] Notifiable diseases online. Ottawa: Public Health Agency of Canada. Available: http: //dsol-smed.phac -aspc.gc.ca/dsol-smed/ndis/index_e.html
    [18] Friedman, C. R., J. Neimann, H. C. Wegener, and R. V. Tauxe. Epidemiolgy of Campylobacter jejuni infections in the United Stated and other industrialized nations. In: Campylobacter, 2nd ed. I. Nachamkin and M. J. Blaser, eds. ASM Press, Washington DC. pp. 121-138. 2000
    [19] Food Standards Agency. A report of the study of infectious intestinal disease in England. The Stationary Office, Norwich, UK. 2000
    [20] Skirrow M.B. & Blaser M.J. (2000). Clinical aspects of Campylobacter infection. In Campylobacter (I. Nachamkin & M.J. Blaser, eds), 2nd Ed. ASM Press, Washington, DC, 69-88
    [21] Nachamkin, I., B. M. Allos, and T. Ho. Campylobacter species and Guillain-Barre syndrome. Clin. Microbiol. Rev., 1998, 11: 555-567
    [22] Hannu T., Mattila L., Rautelin H., Pelkonen P., Lahdenne P., Siitonen A. & Leirisalo-Repo M. Campylobacter triggered reactive arthritis: a population-based study. Rheumatolgy, 2002, 41 (3): 312-318
    [23] Hughes R.A. & Cornblath D.R. Guillain-Barrésyndrome. Lancet., 2005, 366 (9497): 1653-1666
    [24] Nichols, G. L. Fly transmission of Campylobacter. Emerg. Infect. Dis., 2005, 11: 361-364
    [25] Coker, A. O., R. D. Isokpehi, B. N. Thomas, K. O. Amisu, and C. L. Obi. Human Campylobacteriosis in developing countries. Emerg. Infect. Dis., 2002, 8: 237-244
    [26] Cawthraw, S. A., L. Lind, B. Kaijser, and D. G. Newell. Antibodies, directed towards Campylobacter jejuni antigens, in sera from poultry abattoir workers. Clin. Exp. Immunol., 2000, 122: 55-60
    [27] Burch D. Avian vibrionic hepatitis in laying hens. Vet. Rec., 2005, 157 (17): 528
    [28] Stephens C.P., On S.L. & Gibson J.A. An outbreak of infectious hepatitis in commercially reared ostriches associated with Campylobacter coli and Campylobacter jejuni. Vet. Microbiol., 1998, 61 (3): 183-190
    [29] Nicholson F.A., Groves S.J. & Chambers B.J. Pathogen survival during livestock manure storage and following land application. Bioresour. Technol., 2005, 96 (2): 135-143
    [30] Canadian Integrated Program for Antimicrobial Resistance Surveillance. Recovery rate and final number of isolates submitted for antimicrobial resistance (AMR) testing across the bacterial species, the active surveillance components and the animal species, 2002-2005. Ottawa: Public Health Agency of Canada. Available: www.phac-aspc.gc.ca/cipars -picra/pdf/cipars-picra-2005_pr-t1_e.pdf
    [31] Stern, N.J., 1992. Reservoirs for Campylobacter jejuni and approaches for intervention in poultry. In: Nachamkin, I., et al. (Eds.), Campylobacter jejuni: Current Status and Future Trends. American Society for Microbiolgy, Washington DC, pp. 49-60
    [32] Harvey, S.M., Greenwood, J.R.. Probable Campylobacter fetus subsp. fetus gastroenteritis. J. Clin. Microbiol., 1983,18: 1278-1279
    [33] Fennell, C.L., Rompalo, A.M., Totten, P.A., Bruch, K.L., Flores, B.M., Stamm, W.E.. Isolation of Campylobacter hyointestinalis from a human. J. Clin. Microbiol., 1986, 24: 146-148
    [34] Edmonds, P., Patton, C.M., Griffin, P.M., Barrett, T.J., Schmid, G.P., Baker, C.N., Lambert, M.A., Brenner, D.J.. Campylobacter hyointestinalis associated with human gastrointestinal disease in the United States. J. Clin. Microbiol., 1987, 25: 685-691
    [35] Goossens, H., DeBoeck, M., Coignau, H., Vlaes, L., Van den Boore, C., Butzler, J.P.. Modified selective medium for isolation of Campylobacter spp. from feces: comparison with Preston medium, a blood free medium, and a filtration system. J. Clin. Microbiol., 1986, 24: 840-843
    [36] Blaser, M.J., Reller, L.B.. Campylobacter enteritis. N. Engl. J. Med., 1981, 305: 1444-1452
    [37] Naoaki Misawa, Shusaku Shinohara, Hideyuki Satoh, Hiroshi Itoh, Kenji Shinohara, Koji Shimomura, Fusao Kondo, Kikuji Itoh. Isolation of Campylobacter species from zoo animals and polymerase chain reaction-based random amplified polymorphism DNA analysis. Veterinary Microbiolgy, 2000, 71: 59-68
    [38] Friedman C.R., Neimann J., Wegener H.C. & Tauxe R.V. (2000). Epidemiolgy of Campylobacter jejuni infections in the United States and other industrialized nations. In Campylobacter (I. Nachamkin & M.J. Blaser, eds), 2nd Ed. ASM Press, Washington, DC, pp 121-139
    [39] Studahl A. & Andersson Y. Risk factors for indigenous Campylobacter infection: a Swedish case-control study. Epidemiol. Infect., 2000, 125 (2): 269-275
    [40] Medema, G. J., P. F. Teunis, A. H. Havelaar, and C. N. Haas. Assessment of the dose-response relationship of Campylobacter jejuni. Int. J. Food Microbiol., 1996, 30: 101-111
    [41] Robinson, D. A. Infective dose of Campylobacter jejuni in milk. Br. Med. J., 1981, 282: 1584
    [42] Rosenquist, H., N. L. Nielsen, H. M. Sommer, B. Norrung, and B. B. Christensen. Quantitative risk assessment of human Campylobacteriosis associated with thermophilic Campylobacter species in chickens. Int. J. Food Microbiol., 2003, 83: 87-103
    [43] Black, R. E., M. M. Levine, M. L. Clements, T. P. Hughes, and M. J. Blaser. Experimental Campylobacter jejuni infection in humans. J. Infect. Dis., 1988, 157: 472-479
    [44] Dingle, K. E., F. M. Colles, R. Ure, J. A. Wagenaar, B. Duim, F. J. Bolton, A. J. Fox, D. R. Wareing, and M. C. Maiden. Molecular characterization of Campylobacter jejuni clones: a basis for epidemiolgic investigation. Emerg. Infect. Dis., 2002, 8: 949-955
    [45] Champion, O. L., M. W. Gaunt, O. Gundogdu, A. Elmi, A. A. Witney, J. Hinds, N. Dorrell, and B. W. Wren. Comparative phylgenomics of the food-borne pathogen Campylobacter jejuni reveals genetic markers predictive of infection source. Proc. Natl. Acad. Sci., 2005, 102: 16043-16048
    [46] Adak G.K., Cowden J.M., Nicholas S. & Evans H.S. The Public Health Laboratory Service national case-control study of primary indigenous sporadic cases of campylobacter infection. Epidemiol. Infect., 1995, 115 (1): 15-22
    [47] Friedman C.R., Hoekstra R.M., Samuel M., Marcus R., Bender J., Shiferaw B., Reddy S., Ahuja S.D., Helfrick D.L., Hardnett F., Carter M., Anderson B. & Tauxe R.V. Risk factors for sporadic Campylobacter infection in the United States: a case-control study in FoodNet sites. Emerging Infections Program FoodNet Working Group. Clin. infect. Dis., 2004, 38: S285-S296
    [48] Vellinga A. & Van Loock F. The dioxin crisis as experiment to determine poultry-related Campylobacter enteritis. Emerg. infect. Dis., 2002, 8 (1): 19-22
    [49] Van Pelt W., Wannet W.J.B., van de Giessen A.W., Mevius D.J. & van Duynhoven Y.T.H.P. Trends in gastroenteritis (GE) in the Netherlands, 1996-2003 [in Dutch]. Infectieziekten Bull., 2004, 15: 335-341
    [50] Newell D.G. & Wagenaar J.A. (2000). - Poultry infections and their control at the farm level. In Campylobacter (I. Nachamkin & M.J. Blaser, eds), 2nd Ed. ASM Press, Washington, DC, pp 497-509
    [51] Newell D.G. & Fearnley C. Sources of Campylobacter colonization in broiler chickens. Appl. environ. Microbiol., 2003, 69 (8): 4343-4351
    [52] Fridriksdottir V., Gunnarsson E., Jonsdottir G., Astradsdottir K., Birgisdottir K., Bjarnadottir S., Hjartardottir S., Reiersen J., Lowman R., Hiett K., Callicott K., Stern N.J. & the Campyon-Ice Consortium (2005). Campylobacteriosis in chicken in Iceland - is vertical transmission of infection taking place? In 13th Int. Workshop on Campylobacter, Helicobacter and related organisms, Gold Coast, Queensland, Australia, 4-8 September. Griffith University Publications, Gold Coast, Australia
    [53] Borck B. & Pedersen K. Pulsed-field gel electrophoresis types of Campylobacter spp. in Danish turkeys before and after slaughter. Int. J. Food Microbiol., 2005, 101 (1): 63-72
    [54] Van Gerwe T.J.W.M., Bouma A., Jacobs-Reitsma W.F., van den Broek J., Klinkenberg D., Stegeman J.A. & Heesterbeek J.A.P. Quantifying transmission of Campylobacter spp. among broilers. Appl. environ. Microbiol., 2005, 71 (10): 5765-5770
    [55] Katsma W.E.A., de Koeijer A.A., Jacobs-Reitsma W.F., Mangen M.-J.J. & Wagenaar J.A. (2006/7). Assessing interventions to reduce the risk of Campylobacter prevalence in broilers. Risk Analysis, 2007, 27(4): 863-876
    [56] Nylen G., Dunstan F., Palmer S.R., Andersson Y., Bager F., Cowden J., Feierl G., Galloway Y., Kapperud G., Mégraud F., Molbak K., Petersen L.R. & Ruutu P. The seasonal distribution of campylobacter infection in nine European countries and New Zealand. Epidemiol. Infect., 2002, 128 (3): 383-390
    [57] Jacobs-Reitsma W.F., van de Giessen A.W., Bolder N.M. & Mulder R.W. Epidemiolgy of Campylobacterspp. at two Dutch broiler farms. Epidemiol. Infect., 1995, 114 (3): 413-421
    [58] De Boer P., Wagenaar J.A., Achterberg R.P., van Putten J.P.M., Schouls L.M. & Duim B. Generation of Campylobacter jejuni genetic diversity in vivo. Molec. Microbiol., 2002, 44 (2): 351-359
    [59] El-Shibiny A., Connerton P.L. & Connerton I.F. Enumeration and diversity of campylobacters and bacteriophages isolated during the rearing cycles of free-range and organic chickens. Appl. environ. Microbiol., 2005, 71 (3): 1259-1266
    [60] Skirrow, M. Diseases due to Campylobacter, helicobacter and related organisms. J. Comp. Pathol., 1994, 111: 113-149
    [61] Newell, D. G. Animal models of Campylobacter jejuni colonization and disease and the lessons to be learned from similar Helicobacter pylori models. Symp. Ser. Soc. Appl. Microbiol., 2001, 30: S 57-S 67
    [62]黄金林,许海燕,郑国军,刘佩红,苏洁,姜峰,潘志明,张弓,刘秀梵,焦新安.部分省市鸡群空肠弯曲菌和结肠弯曲菌流行状况分析[J].中国预防兽医学报,2008,30(1):72-75
    [63] Luechtefeld, N. A., M. J. Blaser, L. B. Reller, and W. L. Wang. Isolation of Campylobacter fetus subsp. jejuni from migratory waterfowl. J. Clin. Microbiol., 1980, 12: 406-408
    [64] Stephens, C. P., S. L. On, and J. A. Gibson. An outbreak of infectious hepatitis in commercially reared ostriches associated with Campylobacter coli and Campylobacter jejuni. Vet. Microbiol., 1998, 61: 183-190
    [65] Turkson, P. K., K. J. Lindqvist, and G. Kapperud. Isolation of Campylobacter spp. and Yersinia enterocolitica from domestic animals and human patients in Kenya. APMIS, 1988, 96: 141-146
    [66] Waldenstrom, J., T. Broman, I. Carlsson, D. Hasselquist, and B. Olsen. Prevalence of Campylobacter spp. in migrating wild birds in Sweden-ecolgical considerations of carriership. Int. J. Med. Microbiol., 2001, 291: 37-38
    [67] Wallace, J. S., K. N. Stanley, and K. Jones. The colonization of turkeys by thermophilic campylobacters. J. Appl. Microbiol., 1998, 85: 224-230
    [68] Yogasundram, K., S. M. Shane, and K. S. Harrington. Prevalence of Campylobacter jejuni in selected domestic and wild birds in Louisiana. Avian Dis., 1989, 33: 664-667
    [69] Verwoerd, D. J. Ostrich diseases. Rev. Sci. Tech., 2000, 19: 638-661
    [70] Tauxe, R. 1992. Epidemiolgy of Campylobacter jejuni infections in the United States and other industrialized nations, p. 9-19. In I. Nachamkin, M. Blaser, and L. Tompkins (ed.), Campylobacter jejuni: current status and future trends. American Society for Microbiolgy, Washington, D.C.
    [71] Newell, D. G. Animal models of Campylobacter jejuni colonization and disease and the lessons to be learned from similar Helicobacter pylori models. Symp. Ser. Soc. Appl. Microbiol. 2001, 30: S57-S67
    [72] Cawthraw, S. A., T. M. Wassenaar, R. Ayling, and D. G. Newell. Increased colonization potential of Campylobacter jejuni strain 81116 after passage through chickens and its implication on the rate of transmission within flocks. Epidemiol. Infect. 1996, 117: 213-215
    [73] World Health Organization. 2002. The increasing incidence of human Campylobacteriosis. Report and proceedings of a W.H.O. consultation of experts, Copenhagen, Denmark, 21-25 November 2000. W.H.O./CDS/CSR/APH publication 2001.7. World Health Organization, Geneva, Switzerland
    [74] Advisory Committee on the Microbiolgical Safety of Food. 1992. Interim report on campylobacter. Her Majesty’s Stationery Office, London, United Kingdom
    [75] Cawthraw, S. A., T. M. Wassenaar, R. Ayling, and D. G. Newell. Increased colonization potential of Campylobacter jejuni strain 81116 after passage through chickens and its implication on the rate of transmission within flocks. Epidemiol. Infect. 1996, 117: 213-215
    [76] Ringoir, D. D., and V. Korolik. Colonisation phenotype and colonization differences in Campylobacterjejuni strains in chickens before and after passage in vivo. Vet. Microbiol. 2002, 92: 225-235
    [77] Sahin, O., N. Luo, S. Huang, and Q. Zhang. Effect of Campylobacter specific maternal antibodies on Campylobacter jejuni colonization in young chickens. Appl. Environ. Microbiol. 2003, 69: 5372-5379
    [78] Newell, D. G., and J. A. Wagenaar. Poultry infections and their control at the farm level. In: Campylobacter, 2nd ed. I. Nachamkin and M. J. Blaser, eds. ASM Press, Washington DC. pp. 497-509. 2000
    [79] Shreeve, J. E., M. Toszeghy, M. Pattison, and D. G. Newell. Sequential spread of Campylobacter infection in a multipen broiler house. Avian Dis. 2000, 44: 983-988
    [80] Wassenaar, T. M., B. A. van der Zeijst, R. Ayling, and D. G. Newell. Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin A expression. J. Gen. Microbiol. 1993, 139: 1171-1175
    [81] Saleha, A., A. Ibrahim, and A. Kamarzaman. Campylobacter in village chickens: prevalence and biotypes. J. Vet. Malaysia. 1996, 8: 25-27
    [82] Miflin, J., J. Templeton, and S. More. An improved sampling strategy for the study of Campylobacter spp. in poultry flocks. Int. J. Med. Microbiol. 2001, 291: 38
    [83] Shreeve, J. E., M. Toszeghy, M. Pattison, and D. G. Newell. Sequential spread of Campylobacter infection in a multi-pen broiler house. Avian Dis. 2000, 44: 983-988
    [84] Hartnett, E., L. Kelly, D. Newell, M. Wooldridge, and G. Gettinby. A quantitative risk assessment for the occurrence of Campylobacter in chickens at the point of slaughter. Epidemiol. Infect. 2001, 127: 195-206
    [85] Evans, S., and A. R. Sayers. A longitudinal study of campylobacter infection of broiler flocks in Great Britain. Prevent. Vet. Med. 2000, 46: 209-223
    [86] Jacobs-Reitsma, W. F., A. W. van de Giessen, N. M. Bolder, and R. W. Mulder. Epidemiolgy of Campylobacter spp. at two Dutch broiler farms. Epidemiol. Infect. 1995, 114: 413-421
    [87] Achen, M., T. Y. Morishita, and E. C. Ley. Shedding and colonization of Campylobacter jejuni in broilers from day-of-hatch to slaughter age. Avian Dis. 1998, 42: 732-737
    [88] Glunder, G., U. Neumann, and S. Braune. Occurrence of Campylobacter spp. in young gulls, duration of Campylobacter infection and reinfection by contact. Zentralbl. Vet. B 1992, 39: 119-122
    [89] Cawthraw, S., R. Ayling, P. Nuijten, T. Wassenaar, and D. G. Newell. Isotype, specificity, and kinetics of systemic and mucosal antibodies to Campylobacter jejuni antigens, including flagellin, during experimental oral infections of chickens. Avian Dis. 1994, 38: 341-349
    [90] Sahin, O., Q. Zhang, J. C. Meitzler, B. S. Harr, T. Y. Morishita, and R. Mohan. Prevalence, antigenic specificity, and bactericidal activity of poultry anti-Campylobacter maternal antibodies. Appl. Environ. Microbiol. 2001, 67: 3951-3957
    [91] Genigeorgis, C., M. Hassuneh, and P. Collins. 1986. Epidemiolgic aspects of campylobacter infection and contamination in the chain of poultry meat, p. 268-269. In A. D. Pearson, M. B. Skirrow, H. Lior, and B. Rowe (ed.), Campylobacter III. Public Health Laboratory Service, London, United Kingdom
    [92] Khoury, C. A., and R. J. Meinersmann. A genetic hybrid of the Campylobacter jejuni flaA gene with LT-B of Escherichia coli and assessment of the efficacy of the hybrid protein as an oral chicken vaccine. Avian Dis. 1995, 39: 812-820
    [93] Noor, S. M., A. J. Husband, and P. R. Widders. In ovo oral vaccination with Campylobacter jejuni establishes early development of intestinal immunity in chickens. Br. Poult. Sci. 1995, 36: 563-573
    [94] Rice, B. E., D. M. Rollins, E. T. Mallinson, L. Carr, and S. W. Joseph. Campylobacter jejuni in broiler chickens: colonization and humoral immunity following oral vaccination and experimental infection. Vaccine 1997, 15: 1922-1932
    [95] Newell, D. G. 2001. The molecular epidemiolgy of Campylobacters in poultry and poultry meat and use to develop intervention strategies. Final report FS3033. Food Standards Agency, London, United Kingdom
    [96] Schoeni, J. L., and M. P. Doyle. Reduction of Campylobacter jejuni colonization of chicks by cecum-colonizing bacteria producing anti-C. jejuni metabolites. Appl. Environ. Microbiol. 1992, 58: 664-670
    [97] Newell, D. G., and C. Fearnley. Sources of Campylobacter colonization in broiler chickens. Appl. Environ. Microbiol. 2003, 69: 4343-4351
    [98] Stern, N. J., P. Fedorka-Cray, J. S. Bailey, N. A. Cox, S. E. Craven, K. L. Hiett, M. T. Musgrove, S. Ladely, D. Cosby, and G. C. Mead. Distribution of Campylobacter spp. in selected U.S. poultry production and processing operations. J. Food Prot. 2001, 64: 1705-1710
    [99] Newell, D. G., and H. C. Davison. Campylobacter: control and prevention. In: Microbial food safety in animal agriculture. Current topics. M. E. Torrence and R. E. Isaacson, eds. Iowa State Press, Ames, IA. pp. 2003, 211-220
    [100] Hald, T., H. C. Wegener, and B. B. Jorgensen. Annual Report on Zoonoses in Denmark 1998. Ministry of Food, Agriculture and Fisheries, Copenhagen, Denmark. 1999
    [101] Hiett, K., N. Stern, J. Bailey, P. Fedorka-Cray, N. Cox, S. Craven, M. Musgrove, and S. Ladely. Molecular subtype analyses of Campylobacter spp. in selected United States poultry production and processing operations. Int. J. Med. Microbiol. 2001, 291: 342
    [102] Kapperud, G., E. Skjerve, L. Vik, K. Hauge, A. Lysaker, I. Aalmen, S. Ostroff, and M. Potter. Epidemiolgical investigation of risk factors for Campylobacter colonisation in Norwegian broiler flocks. Epidemiol. Infect. 1993, 111: 245-255
    [103] Refregier-Petton, J., N. Rose, M. Denis, and G. Salvat. Risk factors for Campylobacter spp. contamination in French broiler chicken flocks at the end of the rearing period. Prevent. Vet. Med. 2001, 50: 89-100
    [104] Wallace, J., K. Stanley, J. Currie, P. Diggle, and J. Jones. Seasonality of thermophilic Campylobacter populations in chickens. J. Appl. Microbiol. 1997, 82: 224-230
    [105] Evans, S. J. 1997. Epidemiolgical studies of Salmonella and Campylobacter in poultry. Ph.D. thesis. University of London, London, United Kingdom
    [106] Humphrey, T. J., A. Henley, and D. G. Lanning. The colonization of broiler chickens with Campylobacter jejuni: some epidemiolgical investigations. Epidemiol. Infect. 1993, 110: 601-607
    [107] Hudson, J., C. Nicol, J. Wright, R. Whyte, and S. Hasell. Seasonal variation of campylobacter types from human cases, raw chicken, milk and water. J. Appl. Microbiol. 1999, 87: 115-124
    [108] Doyle, M. P. Association of Campylobacter jejuni with laying hens and eggs. Appl. Environ. Microbiol. 1984, 47: 533-536
    [109] Craven, S. E., N. J. Stern, E. Line, J. S. Bailey, N. A. Cox, and P. Fedorka-Cray. Determination of the incidence of Salmonella spp., Campylobacter jejuni, and Clostridium perfringens in wild birds near broiler chicken houses by sampling intestinal droppings. Avian Dis. 2000, 44: 715-720
    [110] Stanley, K., J. Wallace, J. Currie, P. Diggle, and K. Jones. Seasonal variation of thermophilic Campylobacters in beef cattle, dairy cattle and calves. J. Appl. Microbiol. 1998, 85: 472-480
    [111] Jones, K., S. Howard, and J. S. Wallace. Intermittent shedding of thermophilic Campylobacters by sheep at pasture. J. Appl. Microbiol. 1999, 86: 531-536
    [112] Berndtson, E., M. L. Danielsson-Tham, and A. Engvall. Campylobacter incidence on a chicken farm and the spread of Campylobacter during the slaughter process. Int. J. Food Microbiol. 1996, 32: 35-47
    [113] Heuer, O., K. Pedersen, J. Andersen, and M. Madsen. Prevalence and antimicrobial susceptibility ofthermophilic campylobacters in organic and conventional broiler flocks. Lett. Appl. Microbiol. 2001, 33: 269-274
    [114] Uyttendaele, M., R. Schukkink, B. van Gemen, and X. Debevere. Comparison of the nucleic acid amplification system of NASBA and agar isolation for detection of pathogenic Campylobacter in naturally contaminated poultry products. J. Food Product. 1996, 59: 683-687
    [115] Ayling, R. D., M. J. Woodward, S. Evans, and D. G. Newell. Restriction fragment length polymorphism of polymerase chain reaction products applied to the differentiation of poultry Campylobacters for epidemiolgical investigations. Res. Vet Sci. 1996, 60: 168-172
    [116] Berndtson, E., U. Emanuelson, A. Engvall, and M. L. Danielsson-Tham. A 1-year epidemiolgical study of Campylobacters in 18 Swedish chicken farms. Prev. Vet. Med. 1996, 26: 167-185
    [117] Hiett, K., N. Stern, J. Bailey, P. Fedorka-Cray, N. Cox, S. Craven, M. Musgrove, and S. Ladely. Molecular subtype analyses of Campylobacter spp. in selected United States poultry production and processing operations. Int. J. Med. Microbiol. 2001, 291: 42
    [118] Hiett, K. L., N. J. Stern, P. Fedorka-Cray, N. A. Cox, M. T. Musgrove, and S. Ladely. Molecular subtype analyses of Campylobacter spp. from Arkansas and California poultry operations. Appl. Environ. Microbiol. 2002, 68: 6220-6236
    [119] Nesbit, E. G., P. Gibbs, D. W. Dreesen, and M. D. Lee. Epidemiolgic features of Campylobacter jejuni isolated from poultry broiler houses and surrounding environments as determined by use of molecular strain typing. Am. J. Vet. Res. 2001, 62: 190-194
    [120] Thomas, L., K. Lang, R. Good, M. Panaccio, and P. Widders. Genotypic diversity among Campylobacter jejuni isolates in a commercial broiler flock. Appl. Environ. Microbiol. 1997, 63: 1874-1877
    [121] Jacobs-Reitsma, W. Campylobacter in breeder flocks. Avian Dis. 1995, 39: 355-359
    [122] Buhr, R. J., N. A. Cox, N. J. Stern, M. T. Musgrove, J. L. Wilson, and K. L. Hiett. Recovery of Campylobacter from segments of the reproductive tract of broiler breeder hens. Avian Dis. 2002, 46: 919-924
    [123] Camarda, A., D. G. Newell, R. Nasti, and G. Di Modugnoa. Genotyping Campylobacter jejuni strains isolated from the gut and oviduct of laying hens. Avian Dis. 2000, 44: 907-912
    [124] Hiett, K. L., N. A. Cox, R. J. Buhr, and N. J. Stern. Genotype analyses of Campylobacter isolated from distinct segments of the reproductive tracts of broiler breeder hens. Curr. Microbiol. 2002, 45: 400-404
    [125] Cox, N., N. Stern, J. Wilson, M. Musgrove, R. Buhr, and R. Hiett. Isolation of Campylobacter from semen samples of commercial 50 week old parent roosters. Int. J. Med. Microbiol. 2001, 291: 39
    [126] Shanker, S., A. Lee, and T. C. Sorrell. Campylobacter jejuni in broilers: the role of vertical transmission. J. Hyg. 1986, 96: 153-159
    [127] Clark, A. G., and D. H. Bueschkens. Laboratory infection of chicken eggs with Campylobacter jejuni by using temperature or pressure differentials. Appl. Environ. Microbiol. 1985, 49: 1467-1471
    [128] Neill, S., J. Campbell, and J. O’Brien. Egg penetration by Campylobacter jejuni. Avian Dis. 1985, 14: 313-320
    [129] Allen, K. J., and M. W. Griffiths. Use of luminescent Campylobacter jejuni ATCC 33291 to assess eggshell colonization and penetration in fresh and retail eggs. J. Food Prot. 2001, 64: 2058-2062
    [130] King, V., A. Bavetsia, and N. Bumstead. Effect of host lineage on the virulence of Campylobacter jejuni/coli in the chicken embryo model. FEMS Microbiol. Lett. 1993, 106: 271-274
    [131] Shane, S. M., D. H. Gifford, and K. Yogasundram. Campylobacter jejuni contamination of eggs. Vet. Res. Commun. 1986, 10: 487-492
    [132] Lindblom, G. B., E. Sjorgren, and B. Kaijser. Natural Campylobacter colonization in chickens raised under different environmental conditions. J. Hyg. 1986, 96: 385-391
    [133] Pearson, A. D., M. H. Greenwood, R. K. Feltham, T. D. Healing, J. Donaldson, D. M. Jones, and R. R. Colwell. Microbial ecolgy of Campylobacter jejuni in a United Kingdom chicken supply chain: intermittent common source, vertical transmission, and amplification by flock propagation. Appl. Environ. Microbiol. 1996, 62: 4614-4620
    [134] Chuma, T., K. Makino, K. Okamoto, and H. Yugi. Analysis of distribution of Campylobacter jejuni and Campylobacter coli in broilers by using restriction fragment length polymorphism of flagellin gene. J. Vet. Med. Sci. 1997, 59: 1011-1015
    [135] Petersen, L., E. M. Nielsen, and S. L. On. Serotype and genotype diversity and hatchery transmission of Campylobacter jejuni in commercial poultry flocks. Vet. Microbiol. 2001, 82: 141-154
    [136] Jacobs-Reitsma, W., C. Becht, T. De Vries, J. Van der Plas, B. Duim, and J. Wagenaar. No evidence for vertical transmission of campylobacter in a study on Dutch breeder and broiler farms. Int. J. Med. Microbiol. 2001, 291: 39
    [137] Cox, N. A., N. J. Stern, K. L. Hiett, and M. E. Berrang. Identification of a new source of Campylobacter contamination in poultry: transmission from breeder hens to broiler chickens. Avian Dis. 2002, 46: 535-541
    [138] Hiett, K. L., N. A. Cox, and N. J. Stern. Direct polymerase chain reaction detection of Campylobacter spp. in poultry hatchery samples. Avian Dis. 2002, 46: 219-223
    [139] Chuma, T., K. Yano, H. Omori, K. Okamoto, and H. Yugi. Direct detection of Campylobacter jejuni in chicken cecal contents by PCR. J. Vet. Med. Sci. 1997, 59: 85-87
    [140] Shreeve, J. E., M. Toszeghy, A. Ridley, and D. G. Newell. The carryover of Campylobacter isolates between sequential poultry flocks. Avian Dis. 2002, 46: 378-385
    [141] Ringoir, D. D., and V. Korolik. Colonisation phenotype and colonisation potential differences in Campylobacter jejuni strains in chickens before and after passage in vivo. Vet. Microbiol. 2003, 92: 225-235
    [142] Gaynor, E. C., S. Cawthraw, G. Manning, J. K. MacKichan, S. Falkow, and D. G. Newell. The genome sequenced variant of Campylobacter jejuni NCTC 11168 and the original clonal clinical isolate differ markedly in colonization, gene expression, and virulence-associated phenotypes. J. Bacteriol. 2004, 186: 503-517
    [143] Stern, N. J., P. Fedorka-Cray, J. S. Bailey, N. A. Cox, S. E. Craven, K. L. Hiett, M. T. Musgrove, S. Ladely, D. Cosby, and G. C. Mead. Distribution of Campylobacter spp. in selected U.S. poultry production and processing operations. J. Food Prot. 2001, 64: 1705-1710
    [144] Hald, B., A. Wedderkopp, and M. Madsen. Thermophilic Campylobacter spp. in Danish broiler production: a cross sectional survey and a retrospective analysis of risk factors for occurrence in broiler flocks. Avian Pathol. 2000, 29: 123-131
    [145] Engvall, A., A. Bergqvist, K. Sandstedt, and M. Danielsson-Tham. Colonisation of broilers with Campylobacter in conventional broiler-chicken flocks. Acta Vet. Scand. 1986, 27: 540-547
    [146] Kazwala, R. R., J. D. Collins, J. Hannan, R. A. Crinion, and H. O’Mahony. Factors responsible for the introduction and spread of Campylobacter jejuni infection in commercial poultry production. Vet. Rec. 1990, 126: 305-306
    [147] van der Giessen, A., J. Tilburg, W. Ritmeester, and J. van der Plas. Reduction of Campylobacter infections in broiler flocks by application of hygiene measures. Epidemiol. Infect. 1998, 121: 57-66
    [148] Humphrey, T. J. Techniques for the optimum recovery of cold injured Campylobacter jejuni from milk or water. J. Appl. Bacteriol. 1986, 61: 125-132
    [149] Trachoo, N., J. F. Frank, and N. J. Stern. Survival of Campylobacter jejuni biofilms isolated from chicken houses. J. Food Prot. 2002, 65: 1110-1116
    [150] Rollins, D. M., and R. R. Colwell. Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl. Environ. Microbiol. 1986, 52: 531-538
    [151] Buswell, C. M., Y. M. Herlihy, L. M. Lawrence, J. T. M. McGuiggan, P. D. Marsh, C. W. Keevil, and S. A. Leach. Extended survival and persistence of Campylobacter spp. in water and aquatic biofilms and their detection by immunofluorescent-antibody and -rRNA staining. Appl. Environ. Microbiol. 1998, 64: 733-741
    [152] Terzieva, S. I., and G. A. McFeters. Survival and injury of Escherichia coli, Campylobacter jejuni, and Yersinia enterocolitica in stream water. Can. J. Microbiol. 1991, 37: 785-790
    [153] Thomas, C., D. J. Hill, and M. Mabey. Evaluation of the effect of temperature and nutrients on the survival of Campylobacter spp. in water microcosms. J. Appl. Microbiol. 1999, 86: 1024-1032
    [154] Vogt, R. L., H. E. Sours, T. Barrett, R. A. Feldman, R. J. Dickinson, and L. Witherell. Campylobacter enteritis associated with contaminated water. Ann. Intern. Med. 1982, 96: 292-296
    [155] Beumer, R. R., J. de Vries, and F. M. Rombouts. Campylobacter jejuni non-culturable coccoid cells. Int. J. Food Microbiol. 1992, 15: 153-163
    [156] Cappelier, J. M., J. Minet, C. Magras, R. R. Colwell, and M. Federighi. Recovery in embryonated eggs of viable but nonculturable Campylobacter jejuni cells and maintenance of ability to adhere to HeLa cells after resuscitation. Appl. Environ. Microbiol. 1999, 65: 5154-5157
    [157] Hald, B., K. Knudsen, P. Lind, and M. Madsen. Study of the infectivity of saline-stored Campylobacter jejuni for day-old chicks. Appl. Environ. Microbiol. 2001, 67: 2388-2392
    [158] Jones, D. M., E. M. Sutcliffe, and A. Curry. Recovery of viable but non-culturable Campylobacter jejuni. J. Gen. Microbiol. 1991, 137: 2477-2482
    [159] Medema, G. J., F. M. Schets, A. W. van de Giessen, and A. H. Havelaar. Lack of colonization of 1 day old chicks by viable, non-culturable Campylobacter jejuni. J. Appl. Bacteriol. 1992, 72: 512-516
    [160] van de Giessen, A. W., C. J. Heuvelman, T. Abee, and W. C. Hazeleger. Experimental studies on the infectivity of non-culturable forms of Campylobacter spp. in chicks and mice. Epidemiol. Infect. 1996, 117: 463-470
    [161] Talibart, R., M. Denis, A. Castillo, J. M. Cappelier, and G. Ermel. Survival and recovery of viable but noncultivable forms of Campylobacter in aqueous microcosm. Int. J. Food Microbiol. 2000, 55: 263-267
    [162] Pearson, A. D., M. Greenwood, T. D. Healing, D. Rollins, M. Shahamat, J. Donaldson, and R. R. Colwell. Colonization of broiler chickens by waterborne Campylobacter jejuni. Appl. Environ. Microbiol. 1993, 59: 987-996
    [163] Jeffrey, J. S., E. R. Atwill, and A. Hunter. Farm and management variables linked to fecal shedding of Campylobacter and Salmonella in commercial squab production. Poult. Sci. 2001, 80: 66-70
    [164] Stern, N. J., M. C. Robach, N. A. Cox, and M. T. Musgrove. Effect of drinking water chlorination on Campylobacter spp. colonization of broilers. Avian Dis. 2002, 46: 401-404
    [165] Stern, N., and M. Robach. 1998. Chlorination of broiler chicken drinking waters and colonization by Campylobacter spp., p. 410-414. In A. Lastovica, D. Newell, and E. Lastovica, Campylobacter, Helicobacter and related organisms. Institute of Child Health, University of Cape Town, Cape Town, South Africa
    [166] Gregory, E., D. W. Barnhart, N. J. Dreeson, N. J. Stern, and J. L. Corn. Epidemiolgical study of Campylobacter spp. in broilers: source, time of colonisation and prevalence. Avian Dis. 1997, 41: 890-898
    [167] Payne, R. E., M. D. Lee, D. W. Dreesen, and H. M. Barnhart. Molecular epidemiolgy of Campylobacterjejuni in broiler flocks using randomly amplified polymorphic DNA-PCR and 23S rRNA-PCR and role of litter in its transmission. Appl. Environ. Microbiol. 1999, 65: 260-263
    [168] Wedderkopp, A., E. Rattenborg, and M. Madsen. National surveillance of Campylobacter in broilers at slaughter in Denmark in 1998. Avian Dis. 2000, 44: 993-999
    [169] Newell, D. G., J. E. Shreeve, M. Toszeghy, G. Domingue, S. Bull, T. Humphrey, and G. Mead. Changes in the carriage of Campylobacter strains by poultry carcasses during processing in abattoirs. Appl. Environ. Microbiol. 2001, 67: 2636-2640
    [170] Gibbens, J., S. Pascoe, S. Evans, R. Davies, and A. Sayers. A trial of biosecurity as a means to control Campylobacter infection of broiler chickens. Prev. Vet. Med. 2001, 48: 85-99
    [171] Pattison, M. Practical intervention strategies for Campylobacter. Symp. Ser. Soc. Appl. Microbiol. 2001, 30: S121-S125
    [172] Cawthraw, S. A., L. Lind, B. Kaijser, and D. G. Newell. Antibodies, directed towards Campylobacter jejuni antigens, in sera from poultry abattoir workers. Clin. Exp. Immunol. 2000, 122: 55-60
    [173] van de Giessen AW, Bloemberg BP, Ritmeester WS, Tilburg JJ. Epidemiolgical study on risk factors and risk-reducing measures for Campylobacter infections in Dutch broiler flocks. Epidemiol. Infect. 1996, 117: 245-250
    [174] Slader, J., G. Domingue, F. Jorgensen, K. McAlpine, R. J. Owen, F. J. Bolton, and T. J. Humphrey. Impact of transport crate reuse and of catching and processing on Campylobacter and Salmonella contamination of broiler chickens. Appl. Environ. Microbiol. 2002, 68: 713-719
    [175] Hald, B., E. Rattenborg, and M. Madsen. Role of batch depletion of broiler houses on the occurrence of Campylobacter spp. in chicken flocks. Lett. Appl. Microbiol. 2001, 32: 253-256
    [176] Fernie, D., and R. Park. The isolation and nature of Campylobacters (microaerophilic vibrios) from laboratory and wild rodents. J. Med. Microbiol. 1977, 10: 325-329
    [177] Umunnabuike, A. C., and E. A. Irokanulo. Isolation of Campylobacter subsp. jejuni from Oriental and American cockroaches caught in kitchens and poultry houses in Vom, Nigeria. Int. J. Zoonoses 1986, 13: 180-186
    [178] Evans, S. J. Introduction and spread of thermophilic Campylobacters in broiler flocks. Vet. Rec. 1992, 131: 574-576
    [179] Shreeve, J. E., M. Toszeghy, A. Ridley, and D. G. Newell. The carryover of Campylobacter isolates between sequential poultry flocks. Avian Dis. 2002, 46: 378-385
    [180] Fallacara, D. M., C. M. Monahan, T. Y. Morishita, and R. F. Wack. Fecal shedding and antimicrobial susceptibility of selected bacterial pathogens and a survey of intestinal parasites in free-living waterfowl. Avian Dis. 2001, 45: 128-135
    [181] Stern, N. J., M. A. Myszewski, H. M. Barhart, and D. W. Dreeson. Flagellin A gene restriction fragment length polymorphism patterns of Campylobacter spp. isolates from broiler production sources. Avian Dis. 1997, 41: 899-905
    [182] Jacobs-Reitsma, W. Campylobacter in the food supply. In: Campylobacter, 2nd ed. I. Nachamkin and M. J. Blaser, eds. ASM Press, Washington DC. 2000, 467-481
    [183] Avrain, L., L. Allain, C. Vernozy-Rozand, and I. Kempf. Disinfectant susceptibility testing of avian and swine Campylobacter isolates by a filtration method. Vet. Microbiol. 2003, 96: 35-40
    [184] Wang, W. L., B. W. Powers, N. W. Leuchtefeld, and M. J. Blaser. Effects of disinfectants on Campylobacter jejuni. Appl. Environ. Microbiol. 1983, 45: 1202-1205
    [185] Park, H., Y. C. Hung, and R. E. Brackett. Antimicrobial effect of electrolyzed water for inactivating Campylobacter jejuni during poultry washing. Int. J. Food Microbiol. 2002, 72: 77-83
    [186] Buhr,R. J., D.V.Bourassa, J.K.Northcutt,A.Hinton, Jr., K. D.Ingram, and J. A. Cason. Bacteria recovery from genetically feathered and featherless broiler carcasses after immersion chilling. Poult. Sci. 2005, 84: 1499-1504
    [187] Bashor, M. P., P. A. Curtis, K. M. Keener, B. W. Sheldon, S. Kathariou, and J. A. Osborne. Effects of carcass washers on Campylobacter contamination in large broiler processing plants. Poult. Sci. 2004, 83: 1232-1239
    [188] Li, Y., H. Yang, and B. L. Swem. Effect of high-temperature insideoutside spray on survival of Campylobacter jejuni attached to prechill chicken carcasses. Poult. Sci. 2002, 81: 1371-1377
    [189] Yang, H., Y. Li, and M. G. Johnson. Survival and death of Salmonella typhimurium and Campylobacter jejuni in processing water and on chicken skin during poultry scalding and chilling. J. Food Prot. 2001, 64: 770-776
    [190] Chantarapanont, W., M. E. Berrang, and J. F. Frank. Direct microscopic observation of viability of Campylobacter jejuni on chicken skin treated with selected chemical sanitizing agents. J. Food Prot. 2004, 67: 1146-1152
    [191] Whyte, P., J. D. Collins, K. McGill, C. Monahan, and H. O’Mahony. Quantitative investigation of the effects of chemical decontamination procedures on the microbiolgical status of broiler carcasses during processing. J. Food Prot. 2001, 64: 179-183
    [192] Hinton, A., Jr., and K. D. Ingram. Microbicidal activity of tripotassium phosphate and fatty acids toward spoilage and pathogenic bacteria associated with poultry. J. Food Prot. 2005, 68: 1462-1466
    [193] Kapperud, G., E. Skjerve, N. H. Bean, S. M. Ostroff, and J. Lassen. Risk factors for sporadic Campylobacter infections: results of a case-control study in southeastern Norway. J. Clin. Microbiol. 1992, 30: 3117-3121
    [194] Stern, N. J., K. L. Hiett, G. A. Alfredsson, K. G. Kristinsson, J. Reiersen, H. Hardardottir, H. Briem, E. Gunnarsson, F. Georgsson, R. Lowman, E. Berndtson, A. M. Lammerding, G. M. Paoli, and M. T. Musgrove. Campylobacter spp. in Icelandic poultry operations and human disease. Epidemiol. Infect. 2003, 130: 23-32
    [195] Solow, B. T., O. M. Cloak, and P. M. Fratamico. Effect of temperature on viability of Campylobacter jejuni and Campylobacter coli on raw chicken or pork skin. J. Food Prot. 2003, 66: 2023-2031
    [196] Zhao, T., G. O. Ezeike, M. P. Doyle, Y. C. Hung, and R. S. Howell. Reduction of Campylobacter jejuni on poultry by low-temperature treatment. J. Food Prot. 2003, 66: 652-655
    [197] Szewzyk, U., R. Szewzyk, W. Manz, and K. H. Schleifer. Microbiolgical safety of drinking water. Annu. Rev. Microbiol. 2000, 54: 81-127
    [198] Vandamme, P., M. I. Daneshvar, F. E. Dewhirst, B. J. Paster, K. Kersters, H. Goossens, and C. W. Moss. Chemotaxonomic analyses of Bacteroides gracilis and Bacteroides ureolyticus and reclassification of B. gracilis as Campylobacter gracilis comb. nov. Int. J. Syst. Bacteriol. 1995, 45: 145-152
    [199] Maher, M., C. Finnegan, E. Collins, B. Ward, C. Carroll, and M. Cormican. Evaluation of culture methods and a DNA probe-based PCR assay for detection of Campylobacter species in clinical specimens of feces. J. Clin. Microbiol. 2003, 41: 2980-2986
    [200] Newell, D. G. Campylobacter concisus: an emerging pathogen? Eur. J. Gastroenterol. Hepatol. 2005, 17: 1013-1014
    [201] McFall-Ngai, M. J. Unseen forces: the influence of bacteria on animal development. Dev. Biol. 2002, 242: 1-14
    [202] Xu, J., and J. I. Gordon. Inaugural article: honor thy symbionts. Proc. Natl. Acad. Sci. U. S. A. 2003, 100: 10452-10459
    [203] Elvers, K. T., and S. F. Park. Quorum sensing in Campylobacter jejuni: detection of a luxS encoded signaling molecule. Microbiolgy. 2002, 148: 1475-1481
    [204] Park, S. F. The physiolgy of Campylobacter species and its relevance to their role as foodborne pathogens. Int. J. Food Microbiol. 2002, 74: 177-188
    [205] Lancaster, C. R. D., and J. Simon. Succinate: quinone oxidoreductases from e-proteobacteria. Biochim. Biophys. Acta. 2002, 1553: 84-101
    [206] Krieg, N. R., and P. S. Hoffman. Microaerophily and oxygen toxicity. Annu. Rev. Microbiol. 1986, 40: 107-130
    [207] Sellars, M. J., S. J. Hall, and D. J. Kelly. Growth of Campylobacter jejuni supported by respiration of fumarate, nitrate, nitrite, trimethylamine-N-oxide, or dimethyl sulfoxide requires oxygen. J. Bacteriol. 2002, 184: 4187-4196
    [208] Chynoweth, R. W., J. A. Hudson, and K. Thom. Aerobic growth and survival of Campylobacter jejuni in food and stream water. Lett. Appl. Microbiol. 1998, 27: 341-344
    [209] Mohammed, K. A., R. J. Miles, and M. A. Halablab. Simple method to grow enteric campylobacters in unsupplemented liquid medium without the need for microaerophilic kits. J. Microbiol. Methods. 2005, 61: 273-276
    [210] Beery, J. T., M. B. Hugdahl, and M. P. Doyle. Colonization of gastrointestinal tracts of chicks by Campylobacter jejuni. Appl. Environ. Microbiol. 1988, 54: 2365-2370
    [211] Myers, J. D., and D. J. Kelly. A sulphite respiration system in the chemoheterotrophic human pathogen Campylobacter jejuni. Microbiolgy. 2005, 151: 233-242
    [212] Hoffman, P. S., and T. G. Goodman. Respiratory physiolgy and energy conservation efficiency of Campylobacter jejuni. J. Bacteriol. 1982, 150: 319-326
    [213] Kelly, D. J. Metabolism, electron transport and bioenergetics of Campylobacter jejuni: implications for understanding life in the gut and survival in the environment. In: Campylobacter: Cellular and molecular biolgy. J. M. Ketley and M. E. Konkel, eds. Horizon Bioscience, Norfolk, United Kingdom. 2005, 275-292
    [214] Maier, R. J. Use of molecular hydrogen as an energy substrate by human pathogenic bacteria. Biochem. Soc. Trans. 2005, 33: 83-85
    [215] Carlone, G. M., and J. Lascelles. Aerobic and anaerobic respiratory systems in Campylobacter fetus subsp. jejuni grown in atmospheres containing hydrogen. J. Bacteriol. 1982, 152: 306-314
    [216] Corry, J. E., D. E. Post, P. Colin, and M. J. Laisney. Culture media for the isolation of Campylobacters. Int. J. Food Microbiol. 1995, 26: 43-76
    [217] Ahmed, I. H., G. Manning, T. M. Wassenaar, S. Cawthraw, and D. G. Newell. Identification of genetic differences between two Campylobacter jejuni strains with different colonization potentials. Microbiolgy. 2002, 148: 1203-1212
    [218] Fouts, D. E., E. F. Mongodin, R. E. Mandrell, W. G. Miller, D. A. Rasko, J. Ravel, L. M. Brinkac, R. T. DeBoy, C. T. Parker, S. C. Daugherty, R. J. Dodson, A. S. Durkin, R. Madupu, S. A. Sullivan, J. U. Shetty, M. A. Ayodeji, A. Shvartsbeyn, M. C. Schatz, J. H. Badger, C. M. Fraser, and K. E. Nelson. Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLOS Biol. 3: 15. 2005
    [219] Line, J. E. Development of a selective differential agar for isolation and enumeration of Campylobacter spp. J. Food Prot. 2001, 64: 1711-1715
    [220] Smith, M. A., G. L. Mendz, M. A. Jorgensen, and S. L. Hazell. Fumarate metabolism and the microaerophily of Campylobacter species. Int. J. Biochem. Cell Biol. 1999, 31: 961-975
    [221] Lu, J., U. Idris, B. Harmon, C. Hofacre, J. J. Maurer, and M. D. Lee. Diversity and succession of theintestinal bacterial community of the maturing broiler chicken. Appl. Environ. Microbiol. 2003, 69: 6816-6824
    [222] Zhu, X. Y., and R. D. Joerger. Composition of microbiota in content and mucus from cecae of broiler chickens as measured by fluorescent in situ hybridization with group-specific, 16S rRNA-targeted oligonucleotide probes. Poult. Sci. 2003, 82: 1242-1249
    [223] Mead, G. C. Microbes of the avian cecum: types present and substrates utilized. J. Exp. Zool. Suppl. 1989, 3: 48-54
    [224] von Engelhardt, W., J. Bartels, and S. Kirschberger, H. D. Meyer zu Du¨ttingdorf, and R. Busche. Role of short-chain fatty acids in the hind gut. Vet. Q. 1998, 20: S52-S59
    [225] Bernalier, A., A. Willems, M. Leclerc, V. Rochet, and M. D. Collins. Ruminococcus hydrogenotrophicus sp. nov., a new H2/CO2-utilizing acetogenic bacterium isolated from human feces. Arch. Microbiol. 1996, 166: 176-183
    [226] Laanbroek, H. J., L. H. Stal, and H. Veldkamp. Utilization of hydrogen and formate by Campylobacter spec. under aerobic and anaerobic conditions. Arch. Microbiol. 1978, 119: 99-102
    [227] Fernandez, F., R. Sharma, M. Hinton, and M. R. Bedford. Diet influences the colonisation of Campylobacter jejuni and distribution of mucin carbohydrates in the chick intestinal tract. Cell. Mol. Life Sci. 2000, 57: 1793-1801
    [228] Hugdahl, M. B., J. T. Beery, and M. P. Doyle. Chemotactic behavior of Campylobacter jejuni. Infect. Immun. 1988, 56: 1560-1566
    [229] Bovill, R. A., and B. M. Mackey. Resuscitation of‘non-culturable’cells from aged cultures of Campylobacter jejuni. Microbiolgy. 1997, 143: 1575-1581
    [230] Newell, D. G., J. E. Shreeve, M. Toszeghy, G. Domingue, S. Bull, T. Humphrey, and G. Mead. Changes in the carriage of Campylobacter strains by poultry carcasses during processing in abattoirs. Appl. Environ. Microbiol. 2001, 67: 2636-2640
    [231] Doyle, M. P., and D. J. Roman. Response of Campylobacter jejuni to sodium chloride. Appl. Environ. Microbiol. 1982, 43: 561-565
    [232] Reezal, A., B. McNeil, and J. G. Anderson. Effect of low-osmolality nutrient media on growth and culturability of Campylobacter species. Appl. Environ. Microbiol. 1998, 64: 4643-4649
    [233] Blaser, M. J., H. L. Hardesty, B. Powers, and W. L. Wang. Survival of Campylobacter fetus subsp. jejuni in biolgical milieus. J Clin. Microbiol. 1980, 11: 309-313
    [234] Buswell, C. M., Y. M. Herlihy, L. M. Lawrence, J. T. McGuiggan, P. D. Marsh, C. W. Keevil, and S. A. Leach. Extended survival and persistence of Campylobacter spp. in water and aquatic biofilms and their detection by immunofluorescent-antibody and -rRNA staining. Appl. Environ. Microbiol. 1998, 64: 733-741
    [235] Snelling. W. J., J. P. McKenna, D. M. Lecky, and J. S. Dooley. Survival of Campylobacter jejuni in waterborne protozoa. Appl. Environ. Microbiol. 2005, 71: 5560-5571
    [236] Murphy, C., C. Carroll, and K. N. Jordan. Induction of an adaptive tolerance response in the foodborne pathogen, Campylobacter jejuni. FEMS Microbiol. Lett. 2003, 223: 89-93
    [237] Kelly, A. F., S. F. Park, R. Bovill, and B. M. Mackey. Survival of Campylobacter jejuni during stationary phase: evidence for the absence of a phenotypic stationary-phase response. Appl. Environ. Microbiol. 2001, 67: 2248-2254
    [238] Moen, B., A. Oust, O. Langsrud, N. Dorrell, G. L. Marsden, J. Hinds, A. Kohler, B. W. Wren, and K. Rudi. Explorative multifactor approach for investigating global survival mechanisms of Campylobacter jejuni under environmental conditions. Appl. Environ. Microbiol. 2005, 71: 2086-2094
    [239] Martinez-Rodriguez, A., and B. M. Mackey. Physiolgical changes in Campylobacter jejuni on entry into stationary phase. Int. J. Food Microbiol. 2005, 101: 1-8
    [240] Phadtare, S., J. Alsina, and M. Inouye. Cold-shock response and cold-shock proteins. Curr. Opin. Microbiol. 1999, 2: 175-180
    [241] Kelana, L. C., and M. W. Griffiths. Use of an autobioluminescent Campylobacter jejuni to monitor cell survival as a function of temperature, pH, and sodium chloride. J. Food Prot. 2003, 66: 2032-2037
    [242] Konkel, M. E., B. J. Kim, J. D. Klena, C. R. Young, and R. Ziprin. Characterization of the thermal stress response of Campylobacter jejuni. Infect. Immun. 1998, 66: 3666-3672
    [243] Brondsted, L., M. T. Andersen, M. Parker, K. Jorgensen, and H. Ingmer. The HtrA protease of Campylobacter jejuni is required for heat and oxygen tolerance and for optimal interaction with human epithelial cells. Appl. Environ. Microbiol. 2005, 71: 3205-3212
    [244] Parkhill, J., B. W. Wren, K. Mungall, J. M. Ketley, C. Churcher, D. Basham, T. Chillingworth, R. M. Davies, T. Feltwell, S. Holroyd, K. Jagels, A. V. Karlyshev, S. Moule, M. J. Pallen, C. W. Penn, M. A. Quail, M. A. Rajandream, K. M. Rutherford, A. H. van Vliet, S. Whitehead, and B. G. Barrell. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature. 2000, 403: 665-668
    [245] Wassenaar, T. M., J. A. Wagenaar, A. Rigter, C. Fearnley, D. G. Newell, and B. Duim. Homonucleotide stretches in chromosomal DNA of Campylobacter jejuni display high frequency polymorphism as detected by direct PCR analysis. FEMS Microbiol. Lett. 2002, 212: 77-85
    [246] Cappelier, J. M., and M. Federighi. Demonstration of viable but nonculturable state for Campylobacter jejuni. Rev. Med. Vet. 1998, 149: 319-326
    [247] Rollins, D. M., and R. R. Colwell. Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl. Environ. Microbiol. 1986, 52: 531-538
    [248] Hochman, A. Programmed cell death in prokaryotes. Crit. Rev. Microbiol. 1997, 23: 207-214
    [249] Cappelier, J. M., J. Minet, C. Magras, R. R. Colwell, and M. Federighi. Recovery in embryonated eggs of viable but nonculturable Campylobacter jejuni cells and maintenance of ability to adhere to HeLa cells after resuscitation. Appl. Environ. Microbiol. 1999, 65: 5154-5157
    [250] Chaveerach, P., A. A. ter Huurne, L. J. Lipman, and F. van Knapen. Survival and resuscitation of ten strains of Campylobacter jejuni and Campylobacter coli under acid conditions. Appl. Environ. Microbiol. 2003, 69: 711-714
    [251] Ziprin, R. L., R. E. Droleskey, M. E. Hume, and R. B. Harvey. Failure of viable nonculturable Campylobacter jejuni to colonize the cecum of newly hatched leghorn chicks. Avian Dis. 2003, 47: 753-758
    [252] Ziprin, R. L., and R. B. Harvey. Inability of cecal microflora to promote reversion of viable nonculturable Campylobacter jejuni. Avian Dis. 2004, 48: 647-650
    [253] Allos BM. Campylobacter jejuni infections: update on emerging issues and trends. Clin Infect Dis,, 2001, 32(8): 1201-1206
    [254] Girard MP, Steele D, Chaignat CL, Kieny MP. A review of vaccine research and development: human enteric infections. Vaccine,, 2006, 24(15): 2732-2750
    [255] Gascon J. Epidemiolgy, etiolgy and pathophysiolgy of traveler’s diarrhea. Digestion,, 2006, 73(Suppl. 1): 102-108
    [256] Hughes RA, Hadden RD, Gregson NA, Smith KJ. Pathogenesis of Guillain-Barre syndrome. J Neuroimmunol,, 1999, 100(1-2): 74-97
    [257] Hannu T, Mattila L, Rautelin H, Pelkonen P, Lahdenne P, Siitonen A, Leirisalo-Repo M. Campylobacter-triggered reactive arthritis: a population-based study. Rheumatolgy (Oxford),, 2002, 41(3): 312-318
    [258] Baker MG, Sneyd E, Wilson NA. Is the major increase in notified Campylobacteriosis in New Zealand real? Epidemiol Infect,, 2006, 1-8
    [259] Samuel MC, Vugia DJ, Shallow S, Marcus R, Segler S, McGivern T, Kassenborg H, Reilly K, Kennedy M, Angulo F, Tauxe RV; Emerging Infections Program FoodNet Working Group. Epidemiolgy of sporadic Campylobacter infection in the United States and declining trend in incidence, FoodNet, 1996-1999. Clin Infect Dis,, 2004, 38(Suppl. 3): S165-S174
    [260] Coker AO, Isokpehi RD, Thomas BN, Amisu KO, Obi CL. Human Campylobacteriosis in developing countries. Emerg Infect Dis,, 2002, 8(3): 237-244
    [261] Buzby JC, Allos BM, Roberts T. The economic burden of Campylobacter-associated Guillain-Barre syndrome. J Infect Dis,, 1997, 176(Suppl. 2): S192-S197
    [262] Lee MD, Newell DG. Campylobacter in poultry: filling an ecolgical niche. Avian Dis,, 2006, 50(1): 1-9
    [263] Grant IH, Richardson NJ, Bokkenheuser VD. Broiler chickens as potential source of Campylobacter infections in humans. J Clin Microbiol,, 1980, 11(5): 508-510
    [264] Zhao C, Ge B, De Villena J, Sudler R, Yeh E, Zhao S, White DG, Wagner D, Meng J. Prevalence of Campylobacter spp., Escherichia coli, and Salmonella serovars in retail chicken, turkey, pork, and beef from the Greater Washington, D.C., area. Appl Environ Microbiol,, 2001, 67(12): 5431-5436
    [265] Wagenaar JA, Mevius DJ, Havelaar AH. Campylobacter in primary animal production and control strategies to reduce the burden of human Campylobacteriosis. Rev Sci Tech Off Int Epiz,, 2006, 25(2): 581-594
    [266] Loc Carrillo C, Atterbury RJ, el-Shibiny A, Connerton PL, Dillon E, Scott A, Connerton IF. Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl Environ Microbiol,, 2005, 71(11): 6554-6563
    [267] Wagenaar JA, Van Bergen MA, Mueller MA, Wassenaar TM, Carlton RM. Phage therapy reduces Campylobacter jejuni colonization in broilers. Vet Microbiol,, 2005, 109(3-4): 275-283
    [268] Snelling WJ, Matsuda M, Moore JE, Dooley JS. Campylobacter jejuni. Lett Appl Microbiol,, 2005, 41(4): 297-302
    [269] Walker RI, Caldwell MB, Lee EC, Guerry P, Trust TJ, Ruiz-Palacios GM. Pathophysiolgy of Campylobacter enteritis. Microbiol Rev,, 1986, 50(1): 81-94
    [270] Ketley JM. Pathogenesis of enteric infection by Campylobacter. Microbiolgy,, 1997, 143(Pt 1): 5-21
    [271] Black RE, Levine MM, Clements ML, Hughes TP, Blaser MJ. Experimental Campylobacter jejuni infection in humans. J Infect Dis,, 1988, 157(3): 472-479
    [272] Butzler JP. Campylobacter, from obscurity to celebrity. Clin Microbiol Infect,, 2004, 10(10): 868-876
    [273] Jin S, Joe A, Lynett J, Hani EK, Sherman P, Chan VL. JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells. Mol Microbiol,, 2001, 39(5): 1225-1236
    [274] Song YC, Jin S, Louie H, Ng D, Lau R, Zhang Y, Weerasekera R, Al Rashid S, Ward LA, Der SD, Chan VL. FlaC, a protein of Campylobacter jejuni TGH9011 (ATCC43431) secreted through the flagellar apparatus, binds epithelial cells and influences cell invasion. Mol Microbiol,, 2004, 53(2): 541-553
    [275] Wassenaar TM. Toxin production by Campylobacter spp. Clin Microbiol Rev,, 1997, 10(3): 466-476
    [276] Mills SD, Bradbury WC. Human antibody response to outer membrane proteins of Campylobacter jejuni during infection. Infect Immun,, 1984, 43(2): 739-743
    [277] Nachamkin I,Yang XH. Local immune responses to the Campylobacter flagellin in acute Campylobactergastrointestinal infection. J Clin Microbiol,, 1992, 30(2): 509-511
    [278] Blaser MJ, Hopkins JA, Vasil ML. Campylobacter jejuni outer membrane proteins are antigenic for humans. Infect Immun,, 1984, 43(3): 986-993
    [279] Cawthraw SA, Feldman RA, Sayers AR, Newell DG. Long-term antibody responses following human infection with Campylobacter jejuni. Clin Exp Immunol,, 2002, 130(1): 101-106
    [280] Blaser MJ, Duncan DJ. Human serum antibody response to Campylobacter jejuni infection as measured in an enzyme-linked immunosorbent assay. Infect Immun,, 1984, 44(2): 292-298
    [281] Herbrink P, van den Munckhof HA, Bumkens M, Lindeman J, van Dijk WC. Human serum antibody response in Campylobacter jejuni enteritis as measured by enzyme-linked immunosorbent assay. Eur J Clin Microbiol Infect Dis, 1988, 7(3): 388-393
    [282] Lane EM, Batchelor RA, Bourgeois AL, Burr DH, Olson JG. Urine and faecal IgA response during naturally acquired infection with Campylobacter jejuni. Lancet, 1987, 1(8542): 1141
    [283] Blaser MJ, Black RE, Duncan DJ, Amer J. Campylobacter jejunispecific serum antibodies are elevated in healthy Bangladeshi children. J Clin Microbiol, 1985, 21(2): 164-167
    [284] Renom G, Kirimat M, Georges AJ, Philippe JC, Martin PM. High levels of anti-Campylobacter-flagellin IgA antibodies in breast milk. Res Microbiol, 1992, 143(1): 93-98
    [285] Ruiz-Palacios GM, Calva JJ, Pickering LK, Lopez-Vidal Y, Volkow P, Pezzarossi H, West MS. Protection of breast-fed infants against Campylobacter diarrhea by antibodies in human milk. J Pediatr, 1990, 116(5): 707-713
    [286] Torres O, Cruz JR. Protection against Campylobacter diarrhea: role of milk IgA antibodies against bacterial surface antigens. Acta Paediatr, 1993, 82(10): 835-838
    [287] Ringoir DD, Korolik V. Colonisation phenotype and colonization potential differences in Campylobacter jejuni strains in chickens before and after passage in vivo. Vet Microbiol, 2003, 92(3): 225-235
    [288] Stas T, Jordan FT,Woldehiwet Z. Experimental infection of chickens with Campylobacter jejuni: strains differ in their capacity to colonize the intestine. Avian Pathol, 1999, 28(1): 61-64
    [289] Stern NJ, Meinersmann RJ, Cox NA, Bailey JS, Blankenship LC. Influence of host lineage on cecal colonization by Campylobacter jejuni in chickens. Avian Dis, 1990, 34(3): 602-606
    [290] Boyd Y, Herbert EG, Marston KL, Jones MA, Barrow PA. Host genes affect intestinal colonisation of newly hatched chickens by Campylobacter jejuni. Immunogenetics, 2005, 57(3-4): 248-253
    [291] Newell DG, Fearnley C. Sources of Campylobacter colonization in broiler chickens. Appl Environ Microbiol, 2003, 69(8): 4343-4351
    [292] Duim B,Wassenaar TM, Rigter A,Wagenaar J. High-resolution genotyping of Campylobacter strains isolated from poultry and humans with amplified fragment length polymorphism fingerprinting. Appl Environ Microbiol, 1999, 65(6): 2369-2375
    [293] Duim B, Ang CW, van Belkum A, Rigter A, van Leeuwen NW, Endtz HP, Wagenaar JA. Amplified fragment length polymorphism analysis of Campylobacter jejuni strains isolated from chickens and from patients with gastroenteritis or Guillain-Barre or Miller Fisher syndrome. Appl Environ Microbiol, 2000, 66(9): 3917-3923
    [294] Beery JT, Hugdahl MB, Doyle MP. Colonization of gastrointestinal tracts of chicks by Campylobacter jejuni. Appl Environ Microbiol, 1988, 54(10): 2365-2370
    [295] Dhillon AS, Shivaprasad HL, Schaberg D, Wier F, Weber S, Bandli D. Campylobacter jejuni infection in broiler chickens. Avian Dis, 2006, 50(1): 55-58
    [296] Achen M, Morishita TY, Ley EC. Shedding and colonization of Campylobacter jejuni in broilers fromday-of-hatch to slaughter age. Avian Dis, 1998, 42(4): 732-737
    [297] Knudsen KN, Bang DD, Andresen LO, Madsen M. Campylobacter jejuni strains of human and chicken origin are invasive in chickens after oral challenge. Avian Dis, 2006, 50(1): 10-14
    [298] Sanyal SC, Islam KM, Neogy PK, Islam M, Speelman P, Huq MI. Campylobacter jejuni diarrhea model in infant chickens. Infect Immun, 1984, 43(3): 931-936
    [299] Karlyshev AV, Everest P, Linton D, Cawthraw S, Newell DG, Wren BW. The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiolgy, 2004, 150(Pt 6): , 1957-1964
    [300] Wosten MM, Wagenaar JA, van Putten JPM. The FlgS/FlgR two-component signal transduction system regulates the fla regulon in Campylobacter jejuni. J Biol Chem, 2004, 279(16): 16214-16222
    [301] MacKichan JK, Gaynor EC, Chang C, Cawthraw S, Newell DG, Miller JF, Falkow S. The Campylobacter jejuni dccRS two-component system is required for optimal in vivo colonization but is dispensable for in vitro growth. Mol Microbiol, 2004, 54(5): 1269-1286
    [302] Bras AM, Chatterjee S, Wren BW, Newell DG, Ketley JM. A novel Campylobacter jejuni two-component regulatory system important for temperature-dependent growth and colonization. J Bacteriol, 1999, 181(10): 3298-3302
    [303] Ziprin RL, Hume ME, Young CR, Harvey RB. Inoculation of chicks with viable non-colonizing strains of Campylobacter jejuni: evaluation of protection against a colonizing strain. Curr Microbiol, 2002, 44(3): 221-223
    [304] Myszewski MA, Stern NJ. Influence of Campylobacter jejuni cecal colonization on immunoglobulin response in chickens. Avian Dis, 1990, 34(3): 588-594
    [305] Rice BE, Rollins DM, Mallinson ET, Carr L, Joseph SW. Campylobacter jejuni in broiler chickens: colonization and humoral immunity following oral vaccination and experimental infection.Vaccine, 1997, 15(17-18): 1922-1932
    [306] Cawthraw S, Ayling R, Nuijten P, Wassenaar T, Newell DG. Isotype, specificity, and kinetics of systemic and mucosal antibodies to Campylobacter jejuni antigens, including flagellin, during experimental oral infections of chickens. Avian Dis, 1994, 38(2): 341-349
    [307] Sahin O, Zhang Q, Meitzler JC, Harr BS, Morishita TY, Mohan R. Prevalence, antigenic specificity, and bactericidal activity of poultry anti-Campylobacter maternal antibodies. Appl Environ Microbiol, 2001, 67(9): 3951-3957
    [308] Sahin O, Luo N, Huang S, Zhang Q. Effect of Campylobacter-specific maternal antibodies on Campylobacter jejuni colonization in young chickens. Appl Environ Microbiol, 2003, 69(9): 5372-5379
    [309] Stern NJ, Meinersmann RJ, Dickerson HW. Influence of antibody treatment of Campylobacter jejuni on the dose required to colonize chicks. Avian Dis, 1990, 34(3): 595-601
    [310] Cawthraw SA, Gorringe C,Newell DG. Prior infection, but not a killed vaccine, reduces colonization of chickens by Campylobacter jejuni. In: Lastovica AJ, Newell DG, Lastovica EE, editors. Campylobacter, helicobacter and related organisms. Cape Town: Institute of Child Health, University of Cape Town, 1998, 364-372
    [311] Walker RI. Considerations for development of whole cell bacterial vaccines to prevent diarrheal diseases in children in developing countries. Vaccine, 2005, 23(26): 3369-3385
    [312] Pace JL, Rossi HA, Esposito VM, Frey SM, Tucker KD, Walker RI. Inactivated whole-cell bacterial vaccines: current status and novel strategies. Vaccine, 1998, 16(16): 1563-1574
    [313] Glunder G, Spiering N, Hinz KH. Investigations on parental immunization of chickens with a Campylobacter mineral oil vaccine. In: Nagy B, Mulder RWAW, editors. Proceedings COST Action 97.Pathogenic micro-organisms in poultry and eggs. 5. Poultry and food safety, European Commission, Luxembourg: Office for Official Publications of the European Communities;, 1998. p. 247-253
    [314] Noor SM, Husband AJ, Widders PR. In ovo oral vaccination with Campylobacter jejuni establishes early development of intestinal immunity in chickens. Br Poult Sci, 1995, 36(4): 563-573
    [315] Quere P, Girard F. Systemic adjuvant effect of cholera toxin in the chicken. Vet Immunol Immunopathol, 1999, 70(1-2): 135-141
    [316] Vervelde L, Janse EM, Vermeulen AN, Jeurissen SH. Induction of a local and systemic immune response using cholera toxin as vehicle to deliver antigen in the lamina propria of the chicken intestine. Vet Immunol Immunopathol, 1998, 62(3): 261-272
    [317] Hendrixson DR, DiRita VJ. Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol Microbiol, 2004, 52(2): 471-484
    [318] Widders PR, Thomas LM, Long KA, Tokhi MA, Panaccio M, Apos E. The specificity of antibody in chickens immunised to reduce intestinal colonisation with Campylobacter jejuni. Vet Microbiol, 1998, 64(1): 39-50
    [319] Widders PR, Perry R, Muir WI, Husband AJ, Long KA. Immunisation of chickens to reduce intestinal colonisation with Campylobacter jejuni. Br Poult Sci, 1996, 37(4): 765-778
    [320] Khoury CA, Meinersmann RJ.Agenetic hybrid of the Campylobacter jejuni flaA gene with LT-B of Escherichia coli and assessment of the efficacy of the hybrid protein as an oral chicken vaccine. Avian Dis., 1995, 39(4): 812-820
    [321] Newell DG, Cawthraw SA. Vaccine and nuleic acids.World Intellectual Property Organization;, 2006. Patent nr. WO, 2006/046017
    [322] Doig P, Kinsella N, Guerry P, Trust TJ. Characterization of a posttranslational modification of Campylobacter flagellin: identification of a sero-specific glycosyl moiety.Mol Microbiol, 1996,, 19(2): 379-387
    [323] Power ME, Guerry P, McCubbin WD, Kay CM, Trust TJ. Structural and antigenic characteristics of Campylobacter coli FlaA flagellin. J Bacteriol, 1994, 176(11): 3303-3313
    [324] Lgan SM, Kelly JF, Thibault P, Ewing CP, Guerry P. Structural heterogeneity of carbohydrate modifications affects serospecificity of Campylobacter flagellins. Mol Microbiol, 2002, 46(2): 587-597
    [325] Pei ZH, Ellison 3rd RT, Blaser MJ. Identification, purification, and characterization of major antigenic proteins of Campylobacter jejuni. J Biol Chem, 1991, 266(25): 16363-16369
    [326] Burnens A, Stucki U, Nicolet J, Frey J. Identification and characterization of an immunogenic outer membrane protein of Campylobacter jejuni. J Clin Microbiol, 1995, 33(11): 2826-2832
    [327] Del Rocio Leon-Kempis M, Guccione E, Mulholland F, Williamson MP, Kelly DJ. The Campylobacter jejuni PEB1a adhesin is an aspartate/glutamate-binding protein of an ABC transporter essential for microaerobic growth on dicarboxylic amino acids. Mol Microbiol, 2006, 60(5): 1262-1275
    [328] Kervella M, Pages JM, Pei Z, Grollier G, Blaser MJ, Fauchere JL. Isolation and characterization of two Campylobacter glycineextracted proteins that bind to HeLa cell membranes. Infect Immun, 1993, 61(8): 3440-3448
    [329] Sizemore DR,Warner B, Lawrence J, Jones A, KilleenKP.Live, attenuated Salmonella Typhimurium vectoring Campylobacter antigens. Vaccine, 2006, 24(18): 3793-3803
    [330] Pawelec D, Rozynek E, Popowski J, Jagusztyn-Krynicka EK. Cloning and characterization of a Campylobacter jejuni 72Dz/92 gene encoding a 30 kDa immunopositive protein, component of the ABC transport system; expression of the gene in avirulent Salmonella Typhimurium. FEMS Immunol Med Microbiol, 1997,, 19(2): 137-150
    [331] Raczko A, Wyszynska A, Jagusztyn-Krynicka EK. Antigenicity of the Campylobacter coli CjaA protein produced by Escherichia coli. Pol J Microbiol, 2004, 53(1): 61-64
    [332] Pawelec DP, Korsak D, Wyszynska AK, Rozynek E, Popowski J, Jagusztyn-Krynicka EK. Genetic diversity of the Campylobacter genes coding immunodominant proteins. FEMS Microbiol Lett, 2000, 185(1): 43-49
    [333] Wyszynska A, RaczkoA, Lis M, Jagusztyn-Krynicka EK. Oral immunization of chickens with avirulent Salmonella vaccine strain carrying C. jejuni 72Dz/92 cjaA gene elicits specific humoral immune response associated with protection against challenge with wild-type Campylobacter. Vaccine, 2004, 22(11-12): 1379-1389
    [334] Baqar S, Applebee LA, Bourgeois AL. Immunogenicity and protective efficacy of a prototype Campylobacter killed whole-cell vaccine in mice. Infect Immun, 1995, 63(9): 3731-3735
    [335] Rollwagen FM, Pacheco ND, Clements JD, Pavlovskis O, Rollins DM, Walker RI. Killed Campylobacter elicits immune response and protection when administered with an oral adjuvant. Vaccine, 1993, 11(13): 1316-1320
    [336] Lee LH, Burg E 3rd, Baqar S, Bourgeois AL, Burr DH, Ewing CP, Trust TJ, Guerry P. Evaluation of a truncated recombinant flagellin subunit vaccine against Campylobacter jejuni. Infect Immun, 1999, 67(11): 5799-5805
    [337] Abimiku AG, Dolby JM, Borriello SP. Comparison of different vaccines and induced immune response against Campylobacter jejuni colonization in the infant mouse. Epidemiol Infect, 1989, 102(2): 271-280
    [338] Baqar S, Bourgeois AL, Applebee LA, Mourad AS, Kleinosky MT, Mohran Z, Murphy JR. Murine intranasal challenge model for the study of Campylobacter pathogenesis and immunity. Infect Immun, 1996, 64(12): 4933-4939
    [339] Pavlovskis OR, Rollins DM, Haberberger Jr RL, Green AE, Habash L, Strocko S, Walker RI. Significance of flagella in colonization resistance of rabbits immunized with Campylobacter spp. Infect Immun, 1991, 59(7): 2259-2264
    [340] Burr DH, Rollins D, Lee LH, Pattarini DL, Walz SS, Tian JH, Pace JL, Bourgeois AL, Walker RI. Prevention of disease in ferrets fed an inactivated whole cell Campylobacter jejuni vaccine. Vaccine, 2005, 23(34): 4315-4321
    [341] Prokhorova TA, Nielsen PN, Petersen J, Kofoed T, Crawford JS, Morsczeck C, Boysen A, Schrotz-King P. Novel surface polypeptides of Campylobacter jejuni as traveller’s diarrhoea vaccine candidates discovered by proteomics. Vaccine, 2006, 24(40-41): 6446-6455
    [342] Pace JL, Walker RI, Frey SM. Vaccine containing a Campylobacter bacterium having an enhanced antigenic property. United States Patent, 1999. Nr. 5,869,066
    [343] Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell, 2006, 124(4): 783-801
    [344] Dalpke A, Frank J, Peter M, Heeg K. Activation of toll-like receptor 9 by DNA from different bacterial species. Infect Immun, 2006, 74(2): 940-946
    [345] Andersen-Nissen E, Smith KD, Strobe KL, Barrett SL, Cookson BT, Lgan SM, Aderem A. Evasion ofToll-like receptor 5 by flagellated bacteria. Proc Natl Acad Sci USA, 2005, 102(26): 9247-9252
    [346] Smith KD, Andersen-Nissen E, Hayashi F, Strobe K, Bergman MA, Barrett SL, Cookson BT, Aderem A. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol, 2003, 4(12): 1247-1253
    [347] Fukui A, Inoue N, Matsumoto M, Nomura M, Yamada K, Matsuda Y, Toyoshima K, Seya T. Molecular cloning and functional characterization of chicken toll-like receptors. A single chicken toll covers multiple molecular patterns. J Biol Chem, 2001, 276(50): 47143-47149
    [348] Yilmaz A, Shen S, Adelson DL, Xavier S, Zhu JJ. Identification and sequence analysis of chicken Toll-like receptors. Immunogenetics, 2005, 56(10): 743-753
    [349] Leveque G, Forgetta V, Morroll S, Smith AL, Bumstead N, Barrow P, Loredo-Osti JC, Morgan K, Malo D. Allelic variation in TLR4 is linked to susceptibility to Salmonella enterica serovar Typhimurium infection in chickens. Infect Immun, 2003, 71(3): 1116-1124
    [350] Iqbal M, Philbin VJ, Withanage GS, Wigley P, Beal RK, Goodchild MJ, Barrow P, McConnell I, Maskell DJ, Young J, Bumstead N, Boyd Y, Smith AL. Identification and functional characterization of chicken toll-like receptor 5 reveals a fundamental role in the biolgy of infection with Salmonella enterica serovar typhimurium. Infect Immun, 2005, 73(4): 2344-2350
    [351] Philbin VJ, Iqbal M, Boyd Y, Goodchild MJ, Beal RK, Bumstead N, Young J, Smith AL. Identification and characterization of a functional, alternatively spliced Toll-like receptor 7 (TLR7) and genomic disruption of TLR8 in chickens. Immunolgy, 2005, 114(4): 507-521
    [352] Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A. The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci USA, 2005, 102(27): 9577-9582
    [353] He H, Genovese KJ, Nisbet DJ, Kogut MH. Profile of Toll-like receptor expressions and induction of nitric oxide synthesis by Toll-like receptor agonists in chicken monocytes. Mol Immunol, 2006, 43(7): 783-789
    [354] Higgs R, Cormican P, Cahalane S, Allan B, Lloyd AT, Meade K, James T, Lynn DJ, Babiuk LA, O'farrelly C. Induction of a novel chicken Toll-like receptor following Salmonella enterica serovar Typhimurium infection. Infect Immun, 2006, 74(3): 1692-1698
    [355] Hilton LS, Bean AG, Lowenthal JW. The emerging role of avian cytokines as immunotherapeutics and vaccine adjuvants.Vet Immunol Immunopathol, 2002, 85(3-4): 119-128
    [356] Asif M, Jenkins KA, Hilton LS, Kimpton WG, Bean AG, Lowenthal JW. Cytokines as adjuvants for avian vaccines. Immunol Cell Biol, 2004, 82(6): 638-643
    [357] Qureshi MA, Heggen CL, Hussain I. Avian macrophage: effector functions in health and disease. Dev Comp Immunol, 2000, 24(2-3): 103-119
    [358] Bar-Shira E, Sklan D, Friedman A. Establishment of immune competence in the avian GALT during the immediate post-hatch period. Dev Comp Immunol, 2003, 27(2): 147-157
    [359] Muir WI, Bryden WL, Husband AJ. Immunity, vaccination and the avian intestinal tract. Dev Comp Immunol, 2000, 24(2-3): 325-342
    [360] Mast J, Goddeeris BM. Development of immunocompetence of broiler chickens. Vet Immunol Immunopathol, 1999, 70(3-4): 245-256
    [361] Johnston PA, Liu H, O’Connell T, Phelps P, Bland M, Tyczkowski J, Kemper A, Harding T, Avakian A, Haddad E, Whitfill C, Gildersleeve R, Ricks CA. Applications in in ovo technolgy. Poult Sci, 1997, 76(1): 165-178
    [362] Negash T, al-Garib SO, Gruys E. Comparison of in ovo and post-hatch vaccination with particular reference to infectious bursal disease. A review. Vet Q, 2004, 26(2): 76-87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700