用户名: 密码: 验证码:
电站锅炉燃烧状态监测与优化策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着市场竞争的加剧、能源的日益短缺以及对环境保护的要求越来越严格,迫切需要火电机组提高其锅炉燃烧系统的运行水平,以尽快达到节能减排指标。本文采用基于数据驱动的多种不同方法研究了电站锅炉燃烧的状态监测和性能评价问题,并以此为基础从稳定、经济和环保三个不同侧面统计挖掘锅炉最佳的风煤分配组合,作为优化运行的操作指导。
     本文的研究内容及取得的主要成果体现在以下五个方面:
     ①通过广泛的选择和比较,在机理分析的基础上,分别选用火焰强度、炉膛压力和蒸汽热能参数三种方式实现燃烧状态的稳定性监测。研究表明,火焰强度和炉膛压力对燃烧状态变化的响应灵敏,可用作稳定性的实时监测;蒸汽热能参数能够从整体上反映稳定性能的高低;并且在同一工况下,稳定性能与经济性能具有一致性。
     ②通过主成分分析法,结合蒸汽热能品质的波动特性,定义燃烧综合稳定因子,作为燃烧稳定性能的评价指标,弥补以往炉内直接监测在全面定量评价燃烧稳定性方面上的不足。计算该性能因子,一方面有助于评判最优燃烧过程,供优化运行参考;另一方面可作为班组考核指标,以促进运行操作水平的提高。
     ③选用烟气含氧量作为燃烧经济性监测参数,并确定锅炉效率为相应的评价指标。借助灰箱建模方法实现烟气含氧量的软测量,以保证过量空气系数的有效估计,从而有助于锅炉效率的计算。研究表明,灰箱模型相比神经网络等辨识模型,具有更加明显的物理意义和更高的预测精度。
     ④以NOx排放量作为燃烧环保性能主要监测和评判参数。根据分级燃烧思想,分别从燃料分级和风分级两种方法入手,通过对某600MW锅炉历史燃烧工况的分析,得出低NOx排放的配风方式以及磨煤机组合方式。
     ⑤综合本文的研究成果,以大唐盘山#3锅炉系统为例,分别以燃烧稳定性能、燃烧经济性能及环保性能为目标,统计分析得到不同负荷区间最佳的磨煤机组合方式和一次风搭配方式,并根据决策树理论挖掘同类工况的风煤最佳出力规则。结果表明,本文所提出的燃烧优化解决方案具有重大的实际应用价值。
With the increasing competition from the power market, the shortage of energy, and the severe requirement on environment protection, it is urgent for the thermal power units to improve the operation level of the boiler combustion system, and to meet the requirements on energy saving and emission reduction. This dissertation studies the state monitoring and the performance assessment of the boiler combustion in thermal power units via different data-driven methods, and the best combination mode and load dispatch of the air and fuel for the boiler from the viewpoints of stability, economy and environment are obtained based on the proposed methods. The result can be used as guidance for optimal operation.
     The main contributions of this dissertation are summarized as follows:
     1) By extensive selection and comparison, the flame intensity, furnace pressure and steam heat-parameters are used to realize the state monitoring of the combustion stability. It is found that the flame intensity and furnace pressure are sensitive to the change of combustion state, and they can be used as real-time monitor of the combustion stability. The steam heat-parameters can reflect the quality of stability, which accords with the economy performance at the same operating point.
     2) To remedy the deficiency of the previous methods, a comprehensive index to evaluate the combustion stability performance is proposed as the evaluation index of combustion stability, which is computed from the steam heat quality using the PCA (Principal Components Analysis) method. The result can not only be helpful to search the best combustion process for optimal operation, but also be used as one assess-index for improving the operation level of the engineers.
     3) The excess-air coefficient is selected as the main monitoring state of combustion economy, and the boiler efficiency is selected as the assess index. To compute the excess-air coefficient and boiler efficiency accurately, the grey-box modeling method is used in the soft sensing of oxygen content in flue gases. The results show that the grey-box model has clearer physical meaning and more exact forecast precision than other identification models such as neural network.
     4) The NOx (nitrogen oxides) emission is used as the monitor state and evaluation index of combustion environment. The stage combustion methods are discussed for the NOx emission reduction, which is air-stage and fuel-stage. Some rules of air supply and mill combination mode is found by analyzing the history data in a 600MW boiler.
     5) Taking the NO.3 boiler of Datang Panshan Power Plant as an example, this dissertation obtain the best mode of air supply and mill combination by statistical analysis, and mine the best rules of the load dispatch, with the best combustion performance of stability, economy and environment as separate objective, The result shows that this scheme for combustion optimization is significant in real application.
引文
[1]何万青.热工过程非线性辨识和控制以及燃烧可视化研究[D].上海:上海交通大学, 1993
    [2]电力工业部电力规划设计总院. DLGJ 116-93,火力发电厂锅炉炉膛安全监控系统设计技术规定[S].北京:中国电力出版社,1994
    [3] Kurihara. A combustion diagnosis method for pulverized coal boilers using flame recognition technology[J]. IEEE Trans. On Energy Conversion, 1986,1(2):99-103
    [4] S.Collins. Advanced flame monitors take on combustion control[J]. Power, 1993,10: 75-77
    [5] Mitsubishi Heavy Industries LTD., Specification of Flame Detector[S], 1997
    [6]舒子凯.三菱新型火焰检测装置OPTIS简介[J].热工自动化信息, 1993
    [7]王补宣.图像处理技术用于发光火焰温度分布测量的研究[J].工程热物理学报, 1989,10(4): 446-448
    [8]徐雁.非对称火焰三维温度分布测量的重构算法[J].清华大学学报, 1996,36(10): 30-34
    [9]徐伟勇.数字图像处理技术在火焰检测上的应用[J].中国电力, 1994,10: 41-44
    [10]周怀春.煤粉燃烧火焰颜色定量分析试验研究[J].中国电机工程学报, 1993,13(1):44-49
    [11]周怀春.炉膛火焰温度场图像处理试验研究[J].中国电机工程学报, 1995,15(5):295-300
    [12]周怀春.单色火焰图像处理技术在锅炉燃烧监控中的应用研究[J].电力系统自动化, 1996,20(10): 18-22
    [13]周怀春.基于辐射图像处理的炉膛燃烧三维温度分布检测原理及分析[J].中国电机工程学报, 1997,17 (1): 1-4
    [14]王飞.利用火焰图像处理技术监测炉膛出口NOx的排放[J].电站系统工程, 2001,17(3):313-314
    [15]王飞.根据火焰图像测量煤粉炉截面温度场的研究[J].中国电机工程学报, 2000,20(7): 40-43
    [16]徐军伟,宋兆龙,王磊.电站锅炉燃烧优化技术现状和发展动向[J].江苏电机工程, 2005,24(3): 6-7
    [17]孔亮,张毅,丁艳军,等.电站锅炉燃烧优化控制技术综述[J].电力设备, 2006,7(2): 19-22
    [18]侯子良. SIS—中国电厂信息化道路[J].电力信息化, 2006,4(6): 42-44
    [19]陈炳华,张颉,孙悦,等.运行参数对锅炉煤粉着火燃烧和飞灰含碳量影响的数值研究[J].动力工程, 2004, 24(4): 470-476
    [20]徐明厚,胡泰来,袁建纬,等. 420t/h同心正切圆锅炉燃烧优化的数值计算[J].热能动力工程, 1996,11(3): 160-164
    [21]郑楚光,赵海波.实际锅炉中煤粉燃尽率与飞灰含碳量的预测[J].华中科技大学学报, 2001,29(增1): 14-17
    [22] K.F.Reinschmidt. Neural Networks: Next step for simulation and control[J]. Jouranl of Power Engineering, 1991,(2): 41-45
    [23] K.J.Hunt, D.Sbarbaro, R.Zbikowski, et al. Neural networks for control systems-a survey[J]. Automatica, 1992,28(6): 1083-1112
    [24] Z. Fathi, J.Korbicz, W.F.Ramirez, et al. An intrgrated diagnostic system using analytical redundancy and artificial intrlligence for coal-fired power plants. Control of Power Plants and Power Systems[C]. Selected Papers form the IFAC Symposium. Munich, Germany. March 9, 1992. Edited by E.Welfonder and G.K.Lausterer. 1992, 193-198
    [25] E.Ikonen, U.Kortela. Dynamic model for a fluidized bed coal combustor[C]. Automatic Control, World Congress 1993, Proc. 12th Triennial World Congress of the IFAC. Syndey, Australia. 18~23 July 1993. Edited by G.C.Goodwin and R.J.Evens, 1993,4: 681-684
    [26] K.J.Astrom, R.D.Bell. A nonlinear model for steam generatin process[C]. Automatic control, World Congress 1993, Proceedings 12th Triennial World Congress of the IFAC. Syndey, Australia. 18-23 July 1993. Edited by G.C.Goodwin and R.J.Evens. 1993,4: 649-652
    [27] P.O’Reilly, S.Thompson. A neural network air-fuel ratio estimator[C]. Control’94, International Conference. 1994,1:165-172
    [28] T.C.Fogarty, L.Bull. Optimizing individual control rules and multiple communicating rule-based control systems with parallel distributed genetic algorithm[J]. IEE Proceedings Control Theory Application, 1995,142(3): 211-215
    [29] M.Yoshikawa, Y Harada, N.Toshida, et al. Boiler dynamics model based economic load dispatch[C]. Proceedings of the 13th World Congress, IFAC. San Francisco, USA. 30th June-5th July 1996, 109-114
    [30] G Irwin. Neural network modeling of a 200MW boiler system[J]. IEE Proceedings Control Theory Application, 1995,142(6): 529-536
    [31] R.D.Bell, K.J.Astrom. A forth order non-linear for drum-boiler dynamics[C]. Proceedings of the 13th World Congress, IFAC. San Francisco, USA 30th June-5th July 1996, 31-36
    [32] E.Ikonen, K.Najim, U.Kortela. Modeling of NO emissions based on a fuzzy logic neural network[C]. Proceedings of the 13th World Congress, IFAC. San Francisco, USA 30th June-5th July 1996, 61-66
    [33] M.Hunt, S.Williams, K.Hickok. An intelligent systems Approach for on line poer plant efficiency, emissions and maintenance diagnostics[C]. The 1994 EPRI Heat Rate Congerence, May 3~5, 1994, Baltimore, MD
    [34] R.C.Booth, W.B.Roland. Neural network-based combustion optimization reduces NOx emissions while improving performance[C]. Proceedings of the American Power Conference, Chicago, USA, 1998,60:667-672
    [35]赵利敏,初利辉,张世辉.电站燃煤锅炉燃烧预示BP网络的实现[J].电站系统工程, 1998,14(3): 32-35
    [36]周昊,郑立刚,翁安心,等.火电厂锅炉热效率优化调整软件的开发[J].中国电力, 2004,37(2):29-31
    [37]林波.基于遗传算法的优化燃烧控制系统研究[D].南京:东南大学, 2001
    [38]王强.电站锅炉燃烧系统的神经网络辨识与控制[D].上海:上海交通大学,2002
    [39] Ogilvie T, Swidenbank E, Hogg B W. Use of data mining techniques in the performance monitoring and optimization of a thermal power plant[C]. In: Procedings of IEE Colloquium on Knowledge Discovery and Data Mining. London, UK, 1998,7:1-4
    [40] Andrew Kusiak, Alex Burns, Shital Shan. Detection of events causing pluggage of a coal-fired boiler: a data mining approach[J]. Combust. Sci. and Tech, 2005,177: 2327-2348
    [41] Andrew Kusiak, Alex Burns, Ferman Milster. Optimizing combustion efficiency of a circulatin fluidized boiler: A data mining approach[J]. International Journal of Knowledge-based and Intelligent Engineering Systems, 2005,9:263-274
    [42] Andrew Kusiak, Zhe Song. Combustion efficiency optimization and virtual testing: a data-mining approach[J]. IEEE Transactions on industrial informatics, 2006,2(3): 176-184
    [43]靳涛.数据挖掘及在电厂凝汽设备诊断中的应用[D].北京:华北电力大学动力系, 2003
    [44]田志友.基于电厂数据的机组性能关联规则分析[D].北京:华北电力大学动力系, 2004
    [45]谢李兵.基于关联规则的锅炉异常工况数据挖掘[D].北京:华北电力大学动力系, 2005
    [46]卢勇.数据信息采掘与热工过程控制优化[D].北京:清华大学动力机械及工程系, 2003
    [47]李建强.基于数据挖掘的电站运行优化理论研究与应用[D].北京:华北电力大学自动化系, 2006
    [48]刘福国.基于统计分析的电站锅炉性能建模与优化[J].动力工程, 2004,24(4): 477-480
    [49]岑可法,姚强,骆仲泱,等.燃烧理论与燃烧控制[M].北京:机械工业出版社, 2004, 52-60
    [50]白卫东.电站锅炉煤粉火焰安全监测及燃烧诊断方法研究[D].杭州:浙江大学机械与能源工程学院,2004
    [51]何佩敖,董延平.电站燃煤锅炉煤粉火焰和煤粉燃烧的检测及诊断技术[J].电站系统工程, 1993, 9(6): 8-14
    [52]周怀春,韩才元.锅炉燃烧诊断技术研究[J].电站系统工程, 1993,9(4): 50-55
    [53]屠昕,黄群星,马增益,等.基于B/S模式的火焰监测和燃烧诊断系统[J].计算机工程, 2003,29(13): 65-66
    [54]华彦平,于向军,宋兆龙,等.基于单燃烧器火焰图像处理的炉膛燃烧监测系统[J].自动化仪表, 2002,23(8): 4-7
    [55]焦沛.实时监控锅炉燃烧状态的火焰在线监测系统[J].西北电力技术, 2004,3: 39-40
    [56]何佩敖,董延平.我国300MW和600MW机组燃煤锅炉的炉膛火焰检测技术[J].电站系统工程, 1993, 9(5): 36-40
    [57] Gang Lu, Yong Yan, Richard Hill. Monitoring of osicillatory characteristics of pulverized coal flames throush image processing and spectral analysis[J]. IEEE transactions on instrumentation and measurement, 2006,55(1):226-231
    [58]高翔,骆中泱,陈亚非,等.锅炉实时燃烧诊断系统的开发[J].热力发电, 1999,6: 38-39
    [59]高翔,骆中泱,陈亚非,等.电站锅炉燃烧实时诊断应用技术[J].电站系统工程. 1998,14(3): 52-54
    [60]金庆铭.燃烧诱发的炉墙结构振动[J].上海机械学院学报. 1989,11(4): 51-57
    [61]金庆铭.燃烧场压力功率密度测量[J].动力工程. 1990, 10(2):43-45.
    [62]金庆铭.电站锅炉墙结构振动模态参数识别[J].上海机械学院学报. 1994,16(1): 57-60
    [63]周俊虎,周末,寿伟义,等.四角切圆燃煤锅炉燃烧噪音和炉墙振动频谱特性的试验研究[J].工程热物理学报. 1997,18(5): 644-648
    [64]高翔,骆中泱,陈亚非,等.燃烧过程压力脉动信号的自相关分析研究[J].燃烧科学与技术. 1998,4(3): 253-257
    [65]太谷启一.燃烧振动为发电厂的燃烧诊断[J].燃料协会志, 1991,70(5): 452-459
    [66]门爱东.数字信号处理[M].北京:人民邮电出版社. 2003
    [67]余岳峰,马骏,范浩杰.基于频谱分析的煤粉火焰燃烧稳定性研究[C]. 2004电站自动化信息化学术技术交流会议论文集, 2004.
    [68]周怀春,韩才元,朱和平,等.基于自组织神经网络的燃烧诊断研究[J].控制理论与应用, 1994,11(5): 600-603
    [69]常太华,苏杰,田亮.一种基于DSP实现火焰检测的方法[J].华北电力大学学报, 2002,29(4): 48-50
    [70]邱立科,崔松海.单燃烧器火焰检测装置的开发[J].吉林电力, 2002,6: 8-10
    [71]杨柳.火焰特性研究及其检测技术[D].天津:天津大学, 2004
    [72]黄生琪.炉膛压力与燃烧安全、节能和环保的关系[J].化工装备技术, 2001,22(5): 13-16
    [73]李伟全.浅析锅炉灭火与炉膛压力变化的关系及应用[J].山东电力高等专科学校学报, 2004,7(1):61-64
    [74]周炜星,潘斌,孙巨禄.域重标分析的算法及性质[J].非线性动力学学报, 2000,7(3-4):180-191
    [75] Narasimhan S, Mah R S H, Tamhane AC, et al. A composite statistical test for detecting changes of steady states [J]. AIChE Journal, 1986,32(9): 1409-1418
    [76] Narasimhan S, Chen S K, Mah R S H. Detecting changes of steady states using the mathematical theory of evidence [J]. AIChE Journal, 1987,33(1):1930-1932
    [77]周怀春.煤粉火焰稳定性的动态分析及状态诊断的研究[D].武汉:华中理工大学,1993
    [78]程浩斌,周怀春.新型燃煤锅炉燃烧过程稳定性评价指数CSI[J].工程热物理学报, 1997,18(4):512-515
    [79]赵虹,杨建国.煤粉燃烧稳定性指数的建立[J].燃烧科学与技术, 2003,9(4):364-366
    [80] Dorr R. Detection, Isolation and identification of sensor faults in nuclear power plants[J]. IEEE Transactions on Control Systems Technology, 1997,5(1): 42-60
    [81]王璐,何平.大系统的多重主成分评价及其应用[J].统计与信息论坛, 2006,21(4): 21-24
    [82]宋之杰,高晓红.一种多指标综合评价中确定指标权重的方法[J].燕山大学学报, 2002,26(1): 20-26
    [83] Jiang Huiyuan, Wang Wanxiang. Application of principal component analysis in synthetic appraisal for multi-objects decision-making[J]. Journal of Wuhan University of Technology, 2004,28(3): 467-470
    [84]童其慧.主成分分析方法在指标综合评价中的应用[J].北京理工大学学报(社会科学版), 2002,4(1): 59-61
    [85]李靖华,郭耀煌.主成分分析用于多指标评价的方法研究—主成分评价[J].管理工程学报, 2002,16(1): 39-43
    [86] Qiang Xiong, Arthur Jutan. Grey-box modeling and control of chemical processes[J]. Chemical Engineering Science, 2002, 57: 1027-1039
    [87] Henrik Bechmann, Marinus K., Henrik Madsen, et al. Grey-box modeling of pollutant loads from a sewer system[J]. Urban Water, 1999, 1: 71-78
    [88] Jacob Carstensen, Poul Harremoes, Rune Strube. Software sensors based on the grey-box modeling approach[J]. Wat. Sci. Tech., 1996, 33(1): 117-126
    [89] Bohlin, T. Case study of grey-box identification[J]. Automatica, 1994, 30: 307-318
    [90] Kang Li, Steve Thompson, Gareth-Guan R. Duan, et al. A case study of fundamental grey-box modeling[C]. IFAC 15th Triennial World Congress, Barcelona, Spain, 2002, 1111-1121
    [91] Kang Li, Steve Thompson, Jianxun Peng. Modelling and prediction of NOx emission in a coal-fired power generation plant[J]. Control Engineering Practice, 2004, 12: 707-723
    [92]王旭东,邵惠鹤.基于神经网络的通用软测量技术[J].自动化学报,1998,24(5): 702-706
    [93]樊泉桂,阎维平.锅炉原理[M].北京:中国电力出版社,2004
    [94]郑守忠.煤粉再燃烧技术中煤焦异相还原高温烟气中NO的实验和理论研究[D].南京:东南大学,1999
    [95]岑可法,姚强,骆仲泱,等.燃烧理论与污染控制[M].北京:机械工业出版社,2004
    [96] Sloss L. NOx emission from coal combustion[J]. IEA Coal Research, 1991,36
    [97] Hayhurst A N. Emission of nitrous oxide from combustion source[J]. Pro Energy and Combustion Science, 1992, 18(6): 529-552
    [98] Kildsig F, Morsig P. N2O-Emission aus Kesselanlagen[C]. In: VGB Kraftwerkstechnik 1991, 71(6):592-593
    [99]欧洲经济委员会.氮氧化物排放控制技术经验总结[M](徐志勇,朱浩林,朱静芳等译) .北京:电力部环境保护办公室;西安:电力部西安热工研究所,1994
    [100] Zeldovich Y B. The oxidation of nitrogen in combustion and explosions[J]. Acta Physicochim, URSS, 1946, 21: 577-583
    [101] Bowman C T. Kinetics of nitric oxide formation in combustion processes[C]. In: Proceedings of the Fourteenth Symposium (International) on combustion. Pittsburgh, PA, The Combustion Institute, 1973, 270-280
    [102] Fenimore C P. Formation of nitric oxide from fuel nitrogen in ethylent flames[J]. Combustion and Flames, 1972, 19: 289-302
    [103] C P Fenimore. Formation of Nitric Oxide in Premixed Hydrocarbon Flames[C]. In: 13th Symp. (Int'l.) on Combustion. The Combustion Institute, 1971, 373-374
    [104] Fenimore C. P. Reactions of fuel-nitrogen in rich flame gases[J]. Combustion and Flames, 1976, 26: 249-256
    [105] Miller J A, Bowman C T. Mechanism and modeling of nitrogen chemistry in combustion[J]. Prog. Energy Combust. Sci., 1989, 15: 287-338
    [106] S.Kuehn. Retrofit Control technology reducing NOx emissions[J]. Power Engineering, 1994,2
    [107] EPRI-DOE-EPA. Advanced Reburning for SIP Call NOx Control[C]. Combined Utility Air Pollution Control Symposium: The MEGA Symposium, Atlanta, August 1999.
    [108] C. Latta, Roy F. Weston, et al. Methods for Reducing NOx Emissions[J]. Plant Engineering, September 1998
    [109] Bartok, Williamed. Fossil Fuel Combustion: a source book[M]. New York: Wiley, 1991
    [110] S.Vatcha. Low-Emission Gas Turbines Using Catalytic Combustion[J]. Energy Conversion Management, 1997,38(10): 1327-1334
    [111]周昊,茅建波,池作和,等.燃煤锅炉低氮氧化物燃烧特性的神经网络预报[J].环境科学, 2002(2):18-22
    [112]孙巧玲,沈炯,李益国.基于遗传算法的燃煤电站锅炉整体燃烧优化方法研究[J].热能动力工程, 2004,19(1):85-89
    [113]王培红,李磊磊,陈强,等.人工智能技术在电站锅炉燃烧优化中的应用研究[J].中国电机工程学报, 2004,24(4):184-188
    [114]刘福国.基于统计分析的电站锅炉性能建模与优化[J].动力工程, 2004,24(4):476-480.
    [115]白卫东,严建华,王飞,等.统计回归方法在电站锅炉氮氧化物排放量监测中的应用[J].动力工程, 2004,24(3):431-435.
    [116] Kang Li, Steve Thompson, Jian-xun Peng. Modelling and prediction of NOx emission in a coal-fired power generation plant[J]. Control Engineering Practice, 2004(12):707-723.
    [117]天津大唐盘山发电有限责任公司. Q/DTPD--***--01—01.集控运行规程[S].天津:天津大唐盘山发电有限责任公司,2001-03
    [118] Wolfgang H?rdle, Leopold Simar. Applied Multivariate Statistical Analysis[M]. Springer, 2003. 373-378
    [119]徐国璋.中国电力百科全书[火力发电卷][M].北京:中国电力出版社,1995. 169-170
    [120] SPSS Inc. Clementine 8.0 User’s Guide[M]. United States of America, 2003. 329-334

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700