用户名: 密码: 验证码:
氮化铝陶瓷基片碳热还原法低成本制备技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用普通的氧化铝和和经过处理的碳黑作为原料,首次采用水基凝胶注模工艺成型出了柔韧性良好、可以冲切加工的氧化铝-碳陶瓷坯片,在流动氮气氛下通过碳热还原氮化反应直接制备出了AlN陶瓷基片。这为氮化铝陶瓷基片的低成本制备开辟了一条新的思路。
     系统研究了氧化铝-碳陶瓷水基料浆的制备工艺和流变学特性。首次分别在中性和碱性条件下制备出固含量高达56vol%的氧化铝-碳陶瓷水基料浆。在流变学研究中发现:氧化铝-碳陶瓷料浆在低的剪切速率(<150s-1)时,表现为“剪切变稀”,高的剪切速率下表现为“剪切增厚”;在一定的范围内(50vol%~56vol%),固含量对碱性料浆产生“剪切增厚”的临界剪切速率影响不大,然而对中性料浆,随着固含量的降低,“剪切增厚”的临界剪切速率呈明显的升高趋势;分散剂的加入量对氧化铝-碳料浆的粘度有显著的影响,在恒剪切速率下,随着分散剂加入量的升高,其粘度逐渐降低,但当加入量超过一定值时,料浆的粘度又会出现升高现象,而且分散剂加入量对氧化铝-碳料浆的“剪切增厚”临界剪切速率具有显著的影响,当分散剂含量为1.0wt%时,料浆的“剪切增厚”的临界剪切速率较高。这说明当固含量为56vol%时,分散剂合适的量为1.0wt%;随着球磨时间的延长,粉料平均粒径逐渐减小,当球磨时间超过一定值后,粒径变化出现一个“平台”,即球磨对粉料细化是有一定限度的。如果粉料原始粒径较小,那么“平台”出现的早一些,反之,“平台”出现的时间晚一些,而且随着球磨时间的延长,氧化铝-碳料浆的“剪切增厚”临界剪切速率增大,而且逐渐不再有“剪切变稀”阶段。此外,随着球磨时间的延长,料浆逐渐显示出一定的触变性。
     研究了氧化铝-碳陶瓷水基料浆的高分子凝胶工艺和机理。系统研究了加热、催化剂、氧化-还原等不同的凝胶方式,研究了单体含量、引发剂、催化剂加入量对凝胶速率的影响,结果表明:随单体含量、引发剂、催化剂加入量的增加,凝胶速率增大,但如果加入量太大,最终坯片中高分子含量过高,坯片经排胶后内部孔隙较多,所以它们的添加量应适当。
     对氧化铝-碳凝胶注模陶瓷坯片的干燥过程进行了系统的研究,并对陶瓷坯片进行了多方位的表征。研究表明:凝胶注模陶瓷坯片的干燥过程与试样外形尺寸、环境温度和湿度有关;料浆的固含量影响到凝胶注模陶瓷坯片的坯片尺寸收缩率和坯片的密度值;随着料浆固含量的提高,坯片的抗弯强度呈下降趋势;随着料浆固含量的增加,坯片内部的孔隙率降低,平均孔隙直径从110nm降为90nm,而且均为单峰分布;凝胶注模成型的陶瓷坯片在干燥后,颗粒与颗粒之间有明显的有机物粘结,可进行适当的冲、切加工。
     通过XRD物相分析,优化了氧化物、氟化物等不同反应助剂的合适添加量。研究了碳热还原氮化的工艺对反应过程的影响。重点研究了反应助剂含量、工艺温度、保温时间对反应相变过程的影响。随后对碳热还原氮化进行了热力学分析,建立了碳热还原氮化的模型。添加适量的反应助剂对碳热还原氮化反应有很大的帮助。在助剂为:2.0wt% CaF2,反应工艺为1750℃×4h的条件下,氧化铝通过碳热还原氮化反应能够完全转变成为氮化铝,热导率达到了50 W/m?K。助剂为:1.0wt% Y2O3,反应工艺为1750℃×4h的条件下,反应的最终产物为氮化铝和极少量的氧化铝,热导率达到了49W/m?K。当采用2.0wt%CaF2+1.0wt%Y2O3和2.0wt%CaF2+1.0wt%YF3作为复合反应助剂时,较合适的反应工艺为(1650~1750)℃×4h,在此条件下,反应能够完全进行,能够完全转变成为氮化铝,热导率分别达到了54W/m?K和59W/m?K。
     利用SEM和TEM研究了反应烧结体的断口形貌和材料内部的微观结构,重点研究了晶界相在材料内部的分布情况。研究表明,Y-Al-O和Ca-Al-O相多数出现在三晶粒交界处。
Aluminum nitride has excellent potential for use as a substrate material for high-density, high thermal conductivity, excellent electrical insulation and low thermal expansion mismatch relative to Si. The thermal conductivity of AlN is several times higher than that of Al2O3 at room temperature and is almost equal to that of BeO at 150℃. But the development of aluminum nitride is restricted by high preparation cost,so low-cost preparation is a key technique to realize industrialization. In this research, a new fabrication technology is developed. Aluminum nitride substrate with thermal conductivity of ~59W/m?K is prepared by gelcasting and carbothermal reduction nitridation methods using alumina and carbon black as raw materials.
     The alumina-carbon suspensions were prepared and their rheology characteristics were studied systematically. The aqueous alumina-carbon suspensions of 56vol% solid loading were prepared in neutral and alkaline surroundings respectively for the first time. It is found that alumina-carbon suspension shows“shear thinning”behavior in lower shear rate (<150s-1), and“shear thickening”in higher shear rate. In given range, the critical shear rate of“shear thickening”is impervious to the solid loading in alkaline suspension,while it is increased with the decrease of the solid loading clearly in neutral suspension.
     The dispersant content has as remarkable effects on the viscosity of the alumina-carbon suspension. Under constant shear rate, the viscosity of the suspension first decreases with the increment of the dispersant content , and then begin to rise at a certain value. However, the dispersant content remarkably affects the suspension’s critical shear rate of the“shear thickening”. The critical shear rate is higher when the content is 1.0wt%. So it can be taken as the appropriate contents of dispersant to the suspension with the solid loading of 56vol%.
     Ball milling can smash the power in suspension, but this effect is limited. As the milling time prolongs, the average diameter of powder first decreases first, then the plateau appears and the average diameter keeps changeless. The finer the particle diameter is, the earlier the plateau appears. Furthermore, the critical shear rate of the“shear thickening”of the alumina-carbon suspension increases with the ball-milling time, also the stage of“shear thinning”disappears in long time ball-milling, and the suspension becomes thixotropic gradually.
     The polymer gelating procedure and mechanism of the alumina–carbon suspension were investigated. The different gelating ways such as heating, catalysis, oxidation-deoxidization and the effect of monomer content and initiator content on the gelating rate were studied in detail. It reveals that the gelling rate accelerates by the increase of the content of monomer and initiator. However, in view of more cavity in the green body caused by too much polymer, excessive content is not proposed.
     The drying procedure of alumina-carbon gel flan was studied carefully. Comprehensive analyses show that the drying procedure of the gel-casting ceramic flan is associated with sample size, surrounding temperature and humidity. Moreover, the shrinking rate and volume density of the ceramic flan are affected by solid loading of suspension. As the solid loading increases, the shrinking rate and density increases, and average pore diameter decreases.
     Aluminum nitride ceramics were successfully fabricated by carbothermal reduction-nitridation in flowing nitrogen gas using different reacting aids. In appropriate condition, the alumina-carbon ceramic flans can be completely converted to aluminum nitride. When CaF2 was chosen as reaction additive, the appropriate content was 2.0wt% and preferable reaction temperature was 1750℃. When Y2O3 was chosen as reaction additive, the appropriate content was 1.0wt% and preferable reaction temperature was 1750℃. But if CaF2 and Y2O3 were chosen as reaction additive, the appropriate composition was 2.0wt%CaF2 and 1.0wt%Y2O3, and in this condition, the preferable reaction temperature was 1650℃, and the reaction temperature was reduced by 100℃.
     In this paper, the effects of the carbothermal reduction-nitridation parameters on the reaction was studied, especially the additive contents, reaction temperature and soaking time. The appropriate content of different reaction additives such as oxide and fluoride were optimized respectively. The thermodynamics of the carbothermal reduction-nitridation procedures were analyzed and the model of the reaction was established.
     The aluminum nitride specimen has a thermal conductivity of (49~59) W/m?K, which is about as twice as that of alumina. There will be a widely application as promising substrate material.
引文
1. 万群等著.电子信息材料,冶金工业出版社,1990.
    2. 曲喜新,电子元件与材料,1999(18)1:10.
    3. 肖利全,电装高技术,宇航出版社,1993.
    4. 杨帮朝,电子元件与材料,1996,15(6):1.
    5. NMAB.Materials for high-density electronic packaging and interconnection.Materials and design,1991,12(3):158.
    6. MARKSTEIN HOWARD W.A wide choice of materials for MCMs.Electronic packaging and production,1997,37(3):34.
    7. SUNDAHL R C, GRAYELI N. Materials and science and the electronic packaging roadmap.Mat Res Soc Symp Proc.U.S.A:Materials Research Society,1995:3.
    8. 张忱.材料导报,1997,11(1):12.
    9. 薛泉林.日本精细陶瓷产业展望,江苏陶瓷,2000,33(3):1.
    10. 万冬梅.美国高技术陶瓷持续增长,新材料产业,2001(3):24.
    11. Markstein howard W.A wide choice of materials for MCMS.Materials& Design,1991,12(3):158~162.
    12. 万群,钟俊辉.电子信息材料.冶金工业出版社,北京,1990.
    13. 石奇功,王健,丁培道.陶瓷基片材料的研究现状.功能材料,1994(24):2176.
    14. 高技术新材料要览编写组.高技术新材料要览.中国科学技术出版社,1993.
    15. Jeyyr DR,Sergent E.Materials for multichip Modules. Electronic Packaging and Production,1996,36(12):28.
    16. Siliano Richard E, Rober Lanzone.Multilayer ceramics:a revitalization. Electronic Packaging and Production,1996(36)9:47.
    17. Ep P,Ceramic substrate materials. Electronic Packaging and Production,1999,39(3):23.
    18. Cote Rene E.ceramics multichip moduel and high density thick film interconnect technology. Electronic Packaging and Production, 1998,38(4):43.
    19. Hodsen Timothy L. AlN steps up,takes the heat and delivers.Electronic Pakeaging and production, 1995,35(7):26.
    20. 王 岱 峰 , 李 文 兰 , 庄 汉 锐 . 高 热 导 氮 化 铝 陶 瓷 研 究 进 展 . 材 料 导报,1998,12(1):29.
    21. 李淑芳,周毅.氮化铝粉末的合成与高热导氮化铝基片的研制.材料导报,1994,8(2):38.
    22. 高尚通,赵正平.电子封装在中国的发展趋势.世界电子元器件,1996(6):32.
    23. Susan Crum.MCM-L substrate choice expand. Electronic Pakeaging and production, 1996,36(4):47.
    24. EP P.MCM process combines beryllia substrate. Electronic Pakeaging and production, 1996,36(8):81.
    25. G. A. Slack, Non Metallic Crystals with High Thermal Conductivity, J. Phys. Chem. Solids, Vol. 34, 1973, 321-335.
    26. Anil V. Virkar, T. Barrett Jackson, Raymond A. Cutler, Thermodymic and Kinetic Effects of Oxygen Removal on the Thermal Conductivity of Aluminum Nitride, J. Am. Ceram. Soc., 72 [11], 1989, 2031-2042.
    27. 中国硅盐酸学会,陶瓷指南’96,Vol. 2,中国建材工业出版社,1996,第一版,58-62.
    28. C. E. Newberg, S. H. R. Sbud, Binder Chemistry, Adhesion and Structure of Interfaces in Thick-film Metallized Aluminum Nitride Substrates, J. Mater. Sci. 27 (1992), 2670-2676.
    29. G. A. Slack, Non Metallic Crystals with High Thermal Conductivity, J. Phys. Chem. Solids, Vol. 34, 1973, 321-335.
    30. 黄汉生.电子材料用精细陶瓷.硅酸盐通报,1987(6):25.
    31. 杜军.材料研究学报.1995(9)增刊:272.
    32. 骆丹.电子元件与材料.1994(13):1.
    33. 翁履谦,黄栋生。高热导率的氮化铝陶瓷材料,陶瓷(湖南),1992(2).
    34. 张雯。氮化铝陶瓷基片研究进展.陶瓷研究,1996(1).
    35. Sheppard L M.Am.ceram.Soc.Bull.,1990,69(11):1801.
    36. Slack G A,Tanzilli R A,Pohl R O,et al.J.phy.Chem.Solids,1987,48( 7):641.
    37. 徐廷献等, 电子陶瓷材料, 天津大学出版社, 1993 年第一版.
    38. 中国硅盐酸学会,陶瓷指南’96,Vol. 2,中国建材工业出版社,1996,第一版,58-62.
    39. 张立美.氮化铝粉末的制备.机械工程材料,1991(3):23.
    40. G. A. Slack, Non Metallic Crystals with High Thermal Conductivity, J. Phys. Chem. Solids, Vol. 34, 1973, 321-335.
    41. Slack G A.Nonmetallic Crystals with High Thermal Conductvity.J.Phys. Chem.Solids,1973(34):321.
    42. 关振铎,张中太,焦金生.无机材料物理性能.清华大学出版社.北京,2000,6(第二版).
    43. Ran-Rong Lee, Development of High Thermal Conductivity Aluminum Nitride Ceramic, J. Am. Ceram. Soc., 74 [9], 1991, 2242-2249.
    44. C. Kittel, Introduction to Solid State Physics, John Wiley & Sons Inc. 1970.
    45. G. A. Slack, Non Metallic Crystals with High Thermal Conductivity, J. Phys. Chem. Solids, Vol. 34, 1973, 321-335.
    46. G. A. Slack, et al, The Intrinsic Thermal Conductivity of AlN, J. Phys. Chem. Solids, 48 [7], 1987, 641-647.
    47. Koji Watari, Kozo Ishizaki, Fumiaki Tsuchiya, Phonon Scattering and Thermal Conduction Mechanisms of Sintered Aluminium Nitride Ceramics. J. Mater. Sci., 28 (1993), 3709-3714.
    48. K. Watari. K.Ishizaki, T. Fujikawa. Thermal Conduction Mechanism of Aluminium Nitride Ceramics, J. Mater. Sci., 27 (1992), 2627-2630.
    49. Ran-Rong Lee, Development of High Thermal Conductivity Aluminum Nitride Ceramic, J. Am. Ceram. Soc., 74 [9], 1991, 2242-2249.
    50. Slack G A,Tanzilli R A. The Intrinsic Thermal Conductivity of AlN. J.Phys.Chem.Splids,1987(48)7:641.
    51. Marchant D D.Aluminum Nitride:Preparation,Processing and Properties. In:Man F Yan, Koichi Niwa et al.eds, Advances in Ceramic vol26 (Ceramic substrates and packages for Electronic Applications).The Ameriacn Ceramic Society,Inc.,1989:19.
    52.Huseby I C,Bobik C F.Process of Pressureless Sintering to Procedure Dense, High Thermal Conductivity Aluminum Nitride Ceramic Body.U.S.Pat.NO4478785,October 23,1984.
    53.Huseby I C,Bobik C F.Process of Pressureless Sintering to Procedure Dense, High Thermal Conductivity Aluminum Nitride Ceramic Body.U.S.Pat.NO4547471,October 15,1985.
    54.吴音,缪卫国,周和平.影响 AlN 陶瓷热导率的非本征缺陷.清华大学学报,1996(36)s1:11.
    55.Koramoto N,Takada K,Numata Y.Composite Nitride sintered Body.European Pat.No.85192890.2,March 13,1985.
    56.Taylor K M and Lenie Camata Y. Some Properties of Aluminum Nitride. Journal of the Electrochemical Society,1960(107)4:308.
    57. Baik Y and Drew R A L.Aluminmu Nitride:Processing and Applications.Key Engineering Materials,1996(122):533.
    58. Werdecker W,Aldinger F.Aluminum nitride-An Alternative Ceramic Substrate for high Power Applications in Microcircuits.IEEE Trans.Comp.,Hybrids Manuf.Technol.,1984(7)4:399.
    59. Slack G A and Bartram S F. thermal Expension Of some Diamondlike Crystals .Journal of Applicated Physics,1975(46)1:89.
    60. Yim W M,Stofko E J,Zanzucchi P J et al.Epitaxially Growth AlN and its Optical Brand Gap.J.Appl.Phys.1973(44)1:292.
    61. Cox G A,Cummins D O,Kawabe K et al.On the Preparation, Optical Propetties and Electrical Behaviour of Aluminum Nitride. J.Phys.Chem.Solids.,1967(28):543.
    62. Pelletier J, Gervias D and Pomot C.Application of wide-Gap Semiconductors to surface Ionization:Work Functions of AlN and SiC Single Crystals.J.Appl.Phys,1984(55)4:994.
    63. Soh Ju-Won,Jang Seong-soo,Jeong In-Seop et al.C-axis Orientation of AlN Films Prepared by ECR PECVD.Thin.Solid Flims.,1996(279)1-2:17.
    64.Edwards J,Kawabe K,Stevens G et al.Space Charge Conduction and Electrical Behaviour of Aluminum Nitride single Crystals.Solid State Communications,1965(3):99.
    65.Kuramoto N,Taniguchi H,Aso I.American Ceramic Society Bulletin,1989 (68):886.
    66.Waltraud Werdecker, Fritz Aldinger, Aluminum Nitride---An Alternative Ceramic Substrate for High Power Applications in Microcircuits, IEEE, Vol. CHMT-7, No. 4, 1984, 399-404.
    67. Lokesh Chandra Pathak, et al., Carbothermal Synthesis of Nanocrystalline Aluminum Nitride Powders, J. Am. Ceram. Soc., 82 [91, 1999, 257-260.
    68. Jack H. Enloe, Roy W. Rice, et al., Microstructural Effects on the Thermal Conductivity of Polycrystalline Aluminum Nitride, J. Am Ceram. Soc., 74 [9], 2214-2219.
    69. Weon-Ju Kim, Do Kyung Kim, Chong Hee Kim, Morphological Effect of Second Phase on the Thermal Conductivity of AlN Ceramics, J, Am. Ceram. Soc., 79 [4], 1996, 1066-1072.
    70. 戴长虹, 张显鹏, 刘素兰, 氮化铝超细粉微波合成机理研究, 无机材料学报, 1997,12(5):755-758.
    71. 叶乃清, 刘长久, 曾照强等, 用Al2O3和BN合成AlN粉末的条件及机理, 第十届全国高技术陶瓷学术年会论文集, 1998, 青岛, 70-73.
    72. 黄莉萍, 黄熊璋等, 氮化铝粉末的制备, 硅酸盐学报, 1986,14(3) 332-338.
    73. 李沐山, 氮化铝粉末的制取方法, , 硅酸盐通报, 1989,8(3):42-48.
    74. 王群, 王文忠, 高钦等, 反应自生成 AlN 传质过程的研究, 无机材料学报, 1997,12(1):100-104.
    75. 王群等, Lanxide 技术合成 AlN 材料的反应过程及组织特征, 无机材料学报, 1997,12(1) 105-108.
    76. 何国新, 铝源对碳热还原氮化法制备 AlN 粉末的影响, 硅盐酸通报, 1993, (4):4-8.
    77. 江国健, 庄汉锐等, 高压氮气中自蔓延燃烧合成氮化铝, 无机材料学报, 1998,13(1):105-108.
    78. 陈克新等, 自蔓延高温合成(SHS)氮化铝反应机制的研究, 无机材料学报, 1998,13(3):339-344.
    79. Francesco J. Moura, Richard J. Manz, Vapor-phase Synthesis of Nanosize Aluminum Nitride Particles Using a Two-stage Transferred Arc Reactor, J. Am. Ceram. Soc., 80 [9], 1997, 2425-2428.
    80. Kwang-tto Kim, Chin-hsiuing Ho, et al., Ultrafine Aluminum Nitride Powder Produced by Plasma-assisted Chemical Vapor Deposition of Trimethylaluminum , J. Mater. Sci. 27 (1992), 2580-2588.
    81. Jean Marie Haussonne, et al., A New Synthesis Process for AlN, Am. Ceram. Soc., Bull., Vol. 72, No. 5, 1993, 84-90.
    82. Takeshi Tsuchida, Takao Kitagawa, Michio Inagaki, Self-propagating High-temperature Synthesis of AlN in a Graphite Crucible in Air by Mechanical Activation, J. Mater. Sci., 32 (1997), 5123-5126.
    83. 刘新宽, 马明亮, 周敬恩, 碳热还原法制备氮化铝反应机制的研究进展, 硅酸盐通报, 1999,(1):35-39.
    84. 宇田雅广,公开特许报,昭 59-57904,3 Apr.(1984).
    85. 宇田雅广,公开特许报,昭 59-227765,21 Dec.(1984).
    86. 槌田桔,竹下幸俊,山根昭,窑业协会志,1987,95(2):274-276.
    87. 渡孝则,秋月俊颜,池田博志,日本窑业协会学术论文志,1989,97(8)864-867.
    88. 李春忠,胡黎明,陈敏恒,化学气相沉积技术合成氮化铝超细粉末,硅酸盐学报,1993,21(1):93-99.
    89. Interrente L.V.,Carpenter, Proccedings of the Materials Research Society Symposium, Polo Alto.CA.APRIL,1986.Edited by C.J.Brinker,D.E.Clark and D.K.Ulrick,Materials Research Society,Pittsburgh.PA.1986.
    90. Varma A Lebrt J P.Combustion Synthesis of Advanced Materials. Chemical Chemical Eengineering Science,1992,47(9-11): 2179-2183.
    91. Hirai S. Formation of AlN by carbothermic reduction of Al2O3 in a Flowing N2 atmosphere.J.Jpn.Inst.Matals.,1989,53(10):1035-1040.
    92. 钦征骑著。新型陶瓷材料手册,江苏科技出版社,1996 年第一版。
    93. A.Geith,M.Kulig,T.Hofmann,et al. Thermal Conductivity of Calcium -Doped Aluminium Nitride Ceramics.J.Mater.Sci.,1993(28):865.
    94. N.Ichinose.Effect of Carbon-Reducing Atmosphere on the Properties of Aluminum Nitride.Mater.Chem.Phys.,1995(42):176.
    95. Noboru Hashimoto, Hiroyoshi Yoden, Sintering Behavior of Fine Aluminum Nitride Powder Synthesized From Aluminum Polynuclear Complexes, J. Am. Ceram. Soc., 75 [8], 1992, 2098-2106.
    96. Koji Watari, Mitsuru Kawamoto, Kozo Ishizaki, Sintering Chemical Reactions to Increase Thermal Conductivity of Aluminum Nitride, J. Mater. Sci., 26 (1991), 4727-4732.
    97. N. S. Raghavan, S. D. Poste, D. Pattemore, Preparation and Sintering of Aluminum Nitride Suitable for Electronic Substrate Purposes, Material Science and Engineering, B19, 1993, 240-250.
    98. Pedro Sainz de Baranda, et al., Effect of Silica on the Thermal Conductivity of Aluminum Nitride, J. Am. Ceram. Soc., 76 [7], 1993, 1761-1771.
    99. Koji Watari, Maria Cecilia, et al., Densification and Thermal Conductivity of AlN Doped With Y2O3, CaO and Li2O, J. Am. Ceram. Soc., 79 [12], 1996, 3103-3108.
    100. Pedro Sainz de Baranda, et al., Effect of CaO on the Thermal Conductivity of Aluminum Nitride, J. Am. Ceram. Soc., 76 [7], 1993, 1751-1760.
    101. Alan W. Weimer, Gene A. Cochran, et al., Rapid Process forManufacturing Aluminum Nitride Powder, J. Am. Ceram. Soc., 77 [1], 1994, 3-18.
    102. 吴音, 周和平, 缪卫国, 冲击波处理的 AlN 粉体的低温烧结特性, 无机材料学报, Vol. 13, No. 2, 1998, 229-233.
    103. Laurel M. Sheppard, Aluminum Nitride: A Versatile but Challenging Material, Ceram. Bull., Vol. 69, No. 11, 1990, 1801-1812.
    104. 周和平, 刘耀诚等, Dy2O3掺杂AlN陶瓷的低温烧结研究, 第九届全国特陶学术年会论文专辑, 山东 泰安, 1996, 4-65, P271-280.
    105. Se-Aug Jang, Gyeong Man Choi, Electrical Conduction in Aluminum Nitride, J. Am. Ceram. Soc., 76[4], 1993, 957-960.
    106. Noboru Hashimoto, Hiroyoshi Yoden, Sintering Behavior of Fine Aluminum Nitride Powder Synthesized From Aluminum Polynuclear Complexes, J. Am. Ceram. Soc., 75 [8], 1992, 2098-2106.
    107. Anil V. Virkar, T. Barrett Jackson, Raymond A. Cutler, Thermodymic and Kinetic Effects of Oxygen Removal on the Thermal Conductivity of Aluminum Nitride, J. Am. Ceram. Soc., 72 [11], 1989, 2031-2042.
    108. Ran-Rong Lee, et al., Phase Reaction and Sintering Behavior in the Pseudo Ternary System AlN-Y2O3-Al2O3, J. Am. Ceram. Soc.,79 [10], 1996, 2645-2651.
    109. 刘耀诚, 氮化铝陶瓷的低温烧结机理及其显微结构与性能, 清华大学博士论文, 1999.
    110. Ran-Rong Lee and J. A. Charles, Synthesis of Nitrogen Ceramic Powder by Carbothermal Reduction and Nitridation ---Part 3 Aluminum Nitride, Mater. Sci. and Tech., Vol. 7,1991, 495-503.
    111. 戴遐明, 田杰谟等, AlN 制备反应的热力学研究, 1994 秋季中国材料研讨会---低维材料, 386-389.
    112. 戴遐明, 田杰谟等, 碳热还原工艺中 AlN 粉生成机理研究,第十届全国高技术陶瓷学术年会论文集, 1998, 青岛, 65-69.
    113. 戴长虹, 张显鹏, 刘素兰, 氮化铝超细粉微波合成机理研究, 无机材料学报, 1997,12(5): 755-758.
    114. 缪卫国, 吴音, 周和平, AlN 晶须的形貌及取向, 无机材料学报, 1997, 12(3):425-429.
    115. Shinji Hirai, Bachelard, et al., Formation of AlN by CarbothermicReduction of Al2O3 in a Flowing N2 Atmosphere, 日本金属学会志, Vol. 53, No. 10, 1989, 1035-1040.
    116. Pierre Lefort, Michel Billy, Mechanism of AlN Formation Through the Carbothermal Reduction of Al2O3 in a Flowing N2 Atmosphere, J. Am. Ceram. Soc., 76 [9], 1993, 2295-2299.
    117. B. Forslund, J. Zheng, Carbothermal Synthesis of Aluminum Nitride At Elevated Nitragen Pressure---Part I Effect of Process Parameters on Conversion Rate, J. Mater. Sci., 28 (1993), 3125-3131.
    118. B. Forslund, J. Zheng, Carbothermal Synthesis of Aluminum Nitride At Elevated Nitragen Pressure---Part II Effect of Process Parameters on Particle Size and Morphology, J. Mater. Sci., 28 (1993), 3132-3136.
    119. 沈明, 还原氮化法合成 AlN 粉末的反应机理初探, 硬质合金, 1991, 8(2):24-27.
    120. A. Tsuge, H. Inoue, et al., Raw Material Effect on AlN Powder Synthesis from Al2O3 Carbothermal Reduction, J. Mater. Sci., 25 (1990), 2359-2361.
    121. Noboru Hashimoto, et al., Influence of Carbon Source on the Synthesis of AlN Powder from Aluminum Polynuclear Complexes, J. Ceram. Soc. Japan, 99 [9], 1991, 751-756.
    122. Katsutoshi Komeya, et al., Synthesis of AlN Powder by Carbothermal Reduction-Nitridation Method---Effect of Additives on Reaction Rate, J. Ceram. Soc. Japan, 101 [4], 1993, 377-382.
    123.单慧波, 张宗涛, AlN 粉末有机物表明处理及水解动力学, 无机材料学报, 1998, 13(5):667-673.
    1. Mark A. Janney, Ogbemi O.Ometete, U.S. Patent(1992) ,Patent Number 5145908.
    2. O.O.Ometete, Mark A. Janney, R.A.Strehlow, Gelcasting-A New Ceramic Forming Process, Ceram. Bull.,1991,70(10):1641.
    3. Mark A. Janney, U.S. Patent(1990), Patent Number 4894194.
    4. Lange, Frederick F. Valamakanni,Bhasker V., U.S. Patent(1991), Patent Number 5188780.
    5. Tiegs, Terry N.,Wittmer, Dale E. U.S. Patent(1994), Patent Number 5456877.
    6. Gauckler, Ludwig J.,Graule, Thomas, U.S. Patent(1996), Patent Number 5788891.
    7. 陈大明,李斌太,杜林虎,仝建峰等,一种制备薄片形陶瓷元件坯片的方法和专用模具.专利号:01104148.
    8. 陈大明,氧化铝陶瓷基片的水基注凝法低成本制备技术,材料导报,2000.3
    9. Sherry L. Morissette, Chemorheology of Aqueous-Based Alumina-Poly (rinyl alcohol) Gelcasting Suspensions, J. Am. Ceram. Soc.,1999 ,82 (3):521.
    10. Joseph A. Yanez, et al., Shear Modulus and Yield Stress Measurement of Attactive Alumina Particle Networks in Aqueous Slurries, J. Am. Ceram. Soc.,1996,79(11):2917.
    11. Pirmin C. Hidber, et al., Citric Acid-A Dispersant for Aqueous Alumina Suspersions, J. Am. Ceram. Soc.,1996,79(7):1857.
    12. 陈大明,李斌太,赵家培等,陶瓷的凝胶注模成型工艺的研究,第九届全国特种陶瓷学术年会论文集,1996,泰安.
    13. 高家化,沈志坚,丁子上,陶瓷材料的凝胶注模成型方法,硅酸盐通报,1993(6):42.
    14. 李理,候耀永等,高分散,高稳定α-Al2O3和纳米SiC混合水悬浮液的制备,第九届全国特种陶瓷学术年会论文集,1996,泰安.
    15. James S. Reed, Princples of Ceramics Processing, Sscond Edition, John Wiley and Sons, Inc. 1995.
    16. A.C.Young,O.O.Ometete, M.A.Janney, etal., Gelcasting of alumina , J. Am. Ceram. Soc.,1991,74(3):612.
    17. Maria J.P.,Kiggans J.O., Tiegs T.N., Gelcasting of sintered reaction bonded silicon nitride for improved mechanical properties, Ceramic. Eng and Sci. Proc.,1995(16):51071.
    18. 郭瑞松,陈饴瑞,杨方正等.陶瓷坯片有机凝胶法成型工艺.天津大学学报,27(6):665.
    19. 杨金龙,黄勇,谢志鹏等.精细陶瓷成型工艺及发展,现代技术陶瓷,1995,16(4):1.
    20. T.Carisey, A.L.Werth, D.G.Brandon,Control of texture in Al2O3 by gelcasting, J Europen Ceram Soc.,1995(15):1.
    21. D.M.Baskin, M.H.Zimmerman, K.T.Faber, forming single-phase laminates via the gelcasting technique, J. Am. Ceram. Soc.,1991,74(3):612.
    22. 朱海涛,张灿英,杨静漪等.ZTA 复相陶瓷凝胶注模成型工艺的研究.山东陶瓷,1999,22(3):3.
    23. 沈钟,王果庭著,胶体和表面化学,第二版,化学工业出版社,北京,1997.
    24. D.J.S,Introduction to colloid and surface chemistry,bostom, MA.1980.
    25. 刘学健,氮化硅陶瓷浆料的流变性及其直接铸模成型工艺的研究.博士学位论文,1999:30.
    26. Mooney M.,The viscosity of concentrated suspension of spherical particles, J.Coll.Sci.,1956(6):162.
    27. J.Cesarano Ⅲ,I.A.Aksay, Processing of highly concentrated aqueous α-Al2O3 suspensions with poly(Methacry acid)polyelectrolyte, J Am Ceram Soc.,1990,71(4):250.
    28. Hesselink, Vrij, Overbeek, On the theory of the stablization of dispersions by adsorbed macromolecules, I. Statistics of the change of some configurational properties of adsorbed macromolecules on the apporch of an impenstrable interface, J.Phys. Chem.,1971,75(1):65.
    29. Hesselink, Vrij, Overbeek, On the theory of the stablization of dispersions by adsorbed macromolecules,Ⅱ interaction between two flat particles, J. Phys. Chem.,1971(75):2094.
    30. [英]H.A.Barnes, J.F.Hutton and K.Walters,吴大诚,古大冶等译校,流变学导引,中国石化出版社,1992.
    31. L.J.Strble,C.F.Zukoski and G.C.Maitland eds.,Flow and microstructure of dense suspension, Materials Research Society, Pennsylvania,1992.
    32. W.D.金格瑞等,清华大学译,陶瓷导论,中国建材出版社,1982.
    33. 钦征骑著,新型陶瓷材料手册,江苏科学技术出版社,1996.
    34. 李葵英著,界面与胶体的物理化学,哈尔滨工业大学出版社,哈尔滨,1999.
    
    1. 周祖康,顾惕人,马季铭,胶体化学基础,北京大学出版社,北京,1996。
    2. H.Henning Winter,Polymer gels-Materials that combine liquid and solid properties,Mater.Bull.,1991(8):44.
    3. 何曼君,陈维孝,董西侠,高分子物理,复旦大学出版社,上海,1990.
    4. 潘祖仁,高分子化学,化学工业出版社,北京,1986.
    5. 严瑞暄,水溶性高分子,化学工业出版社,北京,1998.
    6. 江之征,李允明著。高分子化学及物理学.中国轻工业出版社.1994,4.
    7. O.O.Ometete,M.A.Janney,R.A.Strehlow,Gelcasting - A New Ceramic Forming Process,Ceram.Bull.,1991(70)10:1641.
    8. 夏炎,高分子科学简明教程.科学出版社,北京,1998.
    1. A.C Young,O.O.Omatete,M.A.Janey and P.A.Menchhofer.“Gelcasting of Alumina”,1991(74)6:612.
    2. F.F.Lange,“powder Processing science and technology for increased reability”,J Am Ceram soc.1989(72)1:3.
    3. O.O.Omatete,M.A.Janey and R.A.Streklow,“Gelcasting-a new ceramic forming process”,Ceramic bulltin,1991(70)10:1641.
    4. 陈大明,李斌太,管保青等.陶瓷的凝胶注模成型工艺研究.第八届全国高技术陶瓷年会论文集。1994.
    5. G.w.Scherer,“Theory of drying”, J Am Ceram soc.1990(73)1:3.
    6. O.O.Omatete, R.A.Streklow,and C.A.Walls. “ Drying of Gelcast Caremics”.Trans.Am. Ceram soc.,1992(26):101.
    7. 杨金龙,汤强,谢志鹏等.陶瓷的凝胶注模成型工艺的研究. 第八届全国高技术陶瓷年会论文集。1994.
    8. Sarbajit Ghosal and Abbas Emami-Naeini etal.,Aphysical Model for the Drying of Gelcast Ceramics. J Am Ceram soc.1999(82)3:513.
    9. 郭瑞松,陈饴瑞,杨方正等.陶瓷坯片有机凝胶法成型工艺.天津大学学报(27)6:665.
    10. K.Prabhakaran,C.Pavithran, Gelcasting of alumina from acidic aqueous medium using acrylic acid.J Euro Ceram soc.,2000(20):1115.
    1. J.F.Elliott,M.Gleiser,Ed,Thermochemistry for Steel Making,Addison Wesey Publishing Company,Inc.(1960).
    2. 梁英教,车荫昌著.无机物热力学数据手册.东北大学出版社.1993,8.
    3. 黄利萍,黄熊璋,符锡仁等,氮化铝粉 末 的 制 备 . 硅 酸 盐 学 报 ,1986,14(3):332.
    4. Chen His-Kuei and Michel Billy. Mechanism of AlN Formation through the Carbothermal Reduction and Nitridetion, Part3, Aluminum Nitride.Materials science and technology,1991,7(6):495.
    5. 戴遐明,丁明勤,李庆丰,AlN制备反应的热力学研究.1994年秋季中国材料研讨会-低维材料。
    6. 翁履谦,黄栋生,黄尚文,碳热法合成 AlN 的热力学及动力学.硅酸盐通报,1993(5):29.
    7. Forslund B,Zheng J.Carbothermal Synethesis of Aluminum Nitride at Elevated Nitrogen Pressures,PartI, Effect of Process Parameters on Conversion Rate. J. mater.sci.,1993,28(12):3125.
    8. Forslund B,Zheng J.Carbothermal Synethesis of Aluminum Nitride at Elevated Nitrogen Pressures,PartII, Effect of Process Parameters on Particle size and Morphology. J. mater.sci.,1993,28(12):3132.
    9. Pierre Leffort and Michel Billy.Mechanism of AlN Formation through the Carbothermal Reduction of Al2O3 in a flowing N2 Atmosphere. 1993,76(9):2295.
    10. Ish-Shalom M.Formation of aluminum oxynitride by carbothermal reduction of aluminum oxide in nitrogen. J. Mater. Sci. Lett., 1982(1):147.
    11. Hirai S.Formation through the carboyhermal reduction of Al2O3 in a flowing N2 atmosphere. J.jpn.Inst.Matals.,1989,53(10):105.
    12. 何 国 新 , 铝 源 对 碳 热 还 原 氮 化 法 制 备 AlN 粉 末 的 影 响 . 硅 酸 盐 通报,1993(4):4.
    13. Baik Y.Shanker K.Mcdermid J.R,et al.Carbothermal Synthesis of Aluminum Nitride using sucrose. J.Mater.Sci.,1996(31):2165-2172.
    14. 蔡娟,Si3N4/W,Al2O3/C,MgO/C体系反应动力学.清华大学硕士论文.
    15. Cho Y W and Charles J A. Synthesis of Nitrogen Ceramic Powders BY Carbothermal Reduction and Nitridation,Part3,Aluminum Nitride.Materials science and technology ,1991,7(6):495.
    16. Katsutoshi Komeya, Isayoshi Kitagawa and Takeshi Meguro.Effect of Ca-Compound Addition on synthesis of Powder by Carbothermal Reduction Nitridation Method. J cera Soc of Jpn.1994,10(7):669.
    17. Ide T. Komeya K.Meguro T,et al.Characteristics of Aluminum Nitride Powders Synthesized by Carbothermal Reduction-Nitridation of Alumina with CaF2 addition. The first China International Conference on High-Proformance Ceramics Oct.31-Nov.3,1998,Beijing China.
    1. R. S.Roth, T.Negas,L.P.Cook.Phase Diagrams for Ceramists(V).Columbus: AcerS,1983.94.
    2. I.Barin,O.Knacke,O. Kubaschewski Thermochemical. Thermo-chemical Pro- perties of Inorganic Substance.Dusseldorf:Springer-Verlag,1977.
    3. I.Barin,O. Knacke, Thermochemical. Thermo-chemical Properties of Inorganic Substance.Dusseldorf:Springer-Verlag,1973.
    4. U.Neumann,T.Reetz,C.Russel. The Influence of the Anions of CalciumConta- ining Sintering Aids for Aluminum Nitride.J.Europ.Ceram.Soc.1993(12):117.
    5. P.Greil, M.Kulig, D.Hotza. Aluminum Nitride Ceramics with High Thermal Conductivity from Gas-Phase Synthesized Powders.J.Europ.Ceram.Soc. 1994(13)229.
    6. Miao W G.Wu Y, Zhou H P. Journal of Materials Sciences,1997(32):1969.
    7. 周和平,陈浩,刘耀诚.升华再结晶法制备 AlN 晶须以及生长特性.无机材料学报.1998(13)4:477.
    8. 周和平,陈浩,吴音.碳热还原法合成 AlN 晶须以及生长机理.材料研究学报.1998(12)1:25.
    9. 李亚伟,李楠,袁润章. 碳热还原法生成 AlN 晶须的形貌及晶界方向.材料研究学报.1996(10)6:633.
    10. 傅仁利,周和平,陈璐. AlN 晶须碳热还原法合成研究.人工晶体学报.1998 (27)3:206.
    11. 周和平,傅仁利, 陈璐. AlN 晶须碳热还原法合成工艺研究.中国学术期刊文摘(科技快报).1997(3)9:1121.
    12. R. S.Roth, T.Negas,L.P.Cook.Phase Diagrams for Ceramists(V). Columbus:AcerS,1983.94.
    13. 周和平,周劲松.添加CaF2-Y2O3的AlN陶瓷的显微结构以及热导性质.无机材料学报,1995(10)4:439.
    14. 周和平,缪卫国,吴音.添加BB2O3-Y2O3添加剂对AlN陶瓷显微结构及性能的影响.硅酸盐学报,1996(24)2:146.
    15. 徐洁,沈爱国,丘太等.AlN 陶瓷中的晶界第二相.硅酸盐学报.1995(23)1:1.
    16. 周和平,周劲松.添加CaF2-Y2O3的AlN陶瓷的显微结构以及热导性质.无机材料学报,1995(10)4:439.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700