用户名: 密码: 验证码:
微乳液凝胶及其作为药物载体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着人们对药物缓释、控释的日益重视,对药物载体的要求也越来越高。微乳液凝胶(microemulsion-based gels,MBGs)以微乳液为基础,兼有微乳液和凝胶的双重优点,可以增强药物的稳定性,提高药物的溶解度和生物利用率,并且由于其粘度较大,对于某些药物,还可以达到缓释,控释的目的,在药剂学领域逐渐受到重视。本论文利用流变学、电镜、荧光等方法,对微乳液凝胶的形成条件、微观结构、流变性质展开研究。此外,研究了Pluronic型嵌段聚合物在bmimBF_4离子液体中的相行为。研究内容主要包括三部分:
     第一部分,选择IPM/AOT/Tween85/水形成的W/O微乳液,并向微乳液中加入明胶,形成微乳液凝胶。利用流变和环境扫描电镜研究了明胶和水溶性药物盐酸布替萘芬对微乳液凝胶微观结构的影响。确定了微乳液凝胶形成的最佳条件,即AOT与Tween85的质量比为1:2,并且明胶含量在7.0-12.0 wt%之间。此外,样品的流变参数,如屈服应力值(σ_y)、储能模量(G′)和损耗模量(G″)均随明胶含量的增加而增大,环境扫描电镜也表明当明胶含量在7.0-12.0 wt%之间时,凝胶网络结构较致密。当明胶含量低于7.0 wt%时,体系为溶胶;当明胶含量高于12.0wt%时,明胶过量,会出现胶状和固体状明胶共存的两相。
     加入盐酸布替萘芬后,由于AOT和盐酸布替奈芬均与明胶发生静电作用力,这种竞争性静电作用会对微乳液凝胶的网络结构起到一定的破坏作用。但是,盐酸布替萘芬含量为0.5 wt%时,网络结构仍能很好的保持;盐酸布替萘芬含量为1.0 wt%时,会削弱凝胶的网络结构,但是不能完全破坏其网络结构。因此,微乳液凝胶仍然是一种潜在的药物载体。
     第二部分,选择IPM/Span20/Tween20/H_2O形成的O/W型微乳液,分别向此微乳液中加入不同链段长度的两亲嵌段聚合物F127(EO_(99)PO_(67)EO_(99))、F68(EO_(70)PO_(30)EO_(79))和L64(EO_(13)PO_(30)EO_(13)),形成温度敏感型微乳液凝胶。对于同一种聚合物来说,形成微乳液凝胶所需的聚合物的量比形成水凝胶所需的聚合物的量少,表明聚合物与表面活性剂之间均存在疏水作用。流变实验中,模量随温度的变化表明,微乳液凝胶的形成与否与微乳液的类型有很大关系,嵌段聚合物在双连续微乳液中并不能形成凝胶,而在水中和O/W的微乳液中均能形成凝胶,这就说明,凝胶的形成必须具备大的连续的水环境,且聚合物在水中和在O/W微乳液中的胶凝机理相似,都是基于嵌段聚合物的胶束化,以及胶束聚集体的形成。
     F127与F68形成的微乳液凝胶的解链温度随聚合物含量的增大而升高,L64形成的微乳液凝胶却相反。此外,L64浓度超过48 wt%后,体系在任何温度下均呈流体。荧光实验表明,在F127与F68体系中,芘探针处于微乳液液滴的内核中,证明凝胶形成后,微乳液液滴的结构仍然存在,冷冻蚀刻电镜照片进一步证实,微乳液凝胶体系形成了网络结构,在网络结构中含有大量的微乳液液滴。在L64体系中,芘探针部分处于微乳液的液滴中,部分处于L64的胶束中,微乳液液滴有相当程度的破坏。L64体系之所以与F127和F68体系的相行为有较大差别,是因为L64嵌段聚合物中EO链段很短,EO链段与水分子间形成的氢键较少,氢键作用力较弱.此外,胶束聚集时,EO链段间缠结也会减弱。在L64/微乳液体系中胶束的聚集结构和网络结构比较松散,并且,并不是所有的L64大分子都参与了胶束的形成,在网络结构中存在大量的自由大分子,这些大分子与Span20、Tween20表面活性剂分子间存在相互作用,形成“项链”式结构,穿插于网络结构之中。当L64浓度达到一定程度(>48 Wt%),L64与水分子呈现一种互溶状态,L64分子基本以单体形式存在,所以在任何温度下均不能形成凝胶。
     油溶性药物氯霉素的加入,对F127和F68微乳液凝胶粘弹性的影响不大,微乳液凝胶的网络结构仍能很好的保持,但是对L64微乳液凝胶的网络结构破坏较大。微乳液液滴的存在对于提高油溶性药物的溶解度以及提高体系稳定性方面具有重要的作用。缓释结果表明,微乳液凝胶具有持续释放药物的特性。此外,由于具有温度敏感特性,使得微乳液凝胶比其他药物载体更具有优越性,例如,可以在室温条件下,实现多种给药方式。此外,在本体系中,所选组分均无毒、无刺激性,并且是被药典收录的药用辅料,这种智能型给药体系,在生物医疗方面具有较大的应用潜力。
     第三部分,主要考察了离子液体bmimBF_4与嵌段聚合物L64形成的溶致液晶,以及加入不同极性的第三组分对液晶结构的影响。通过双折射性与偏光织构观察以及小角X射线散射等方法,对不同组成、温度条件下形成的有序体系的相态与结构进行表征,并根据分子间的作用力对液晶的形成机理进行了分析。
     偏光织构观察和SAXS测试结果表明,在一定浓度和温度下,嵌段聚合物L64可与bmimBF_4离子液体形成层状液晶。bmimBF_4与L64分子间的氢键作用力、静电作用力以及疏溶剂力是液晶形成的驱动力。SAXS结果表明,对于L64/bmimBF_4体系,液晶层间距随L64浓度的增大而减小,这主要是由于表面活性剂浓度的增大,使得溶剂化层中的离子液被挤出所致。
     液晶结构受温度影响,温度升高,层间距增大,原因是升温条件下,液晶极性区与非极性区尺寸会有不同程度增大。并且,在一定温度范围内,升温可使液晶区向低聚合物含量方向移动,且体系的有序性增强。但是,随温度的进一步升高,二级散射峰强度变弱,对于所有层状液晶体系,达到某一温度后,偏光性消失,这是因为,温度过高会导致离子液体与PEO链段之间的氢键破坏,从而使结构的有序度降低。
     极性不同的分子对层状液晶结构的影响不同。当加入水分子时,水分子插入液晶极性微区,与EO基团氧原子形成氢键,而bmimBF_4与L64形成层状液晶的驱动力是离子液咪唑环阳离子(N~+)与EO基团氧原子上孤对电子间的静电作用力。水分子的加入使得这种静电作用力减弱,从而使得液晶的有序性降低,液晶结构破坏。而加入少量极性较小的油溶性分子后,油溶性分子填充到PPO链段间,使得PPO链段在一定程度上得到伸展,液晶层间距增大,两亲分子排列的有序性增强,这就为油溶性分子的增溶提供了有利条件,扩展了该体系的应用前景。
Recently,the stability and bioavailability of the drug delivery and the controlled drug release have attracted more and more attention.Microemulsion-based gels (MBGs)not only have the characteristics of microemulsion but also the characteristics of gel.MBGs could improve the stability and the bioavailability of the drug and could also control the release of some drugs due to the higher viscosity.In the present study,MBGs are characterized by several techniques including rheological measurements and electron microscope.The formation conditions of MBGs,viscoelastic properties and microstructures of the systems are systematically investigated.Moreover.the phase behaviors of Pluronic copolymer in ionic liquid (bmimBF_4)are investigated.Three main experimental researches are included.
     In the first part.gelatin-containing microemulsion-based organogels(MBGs) systems composed of isopropyl myristate(IPM)/AOT/Tween85/H_2O.both with and without a model drug(Butenafine hydrochloride),are investigated by rheological measurements and environmental scanning electron microscope(ESEM).Then the effects of gelatin and butenafine hydrochloride on the rheological properties and microstructures of the MBGs are investigated generally.It is revealed that there exits an optimal gelation concentration of gelatin,homogeneous and compact MBGs can be formed when the concentration of gelatin in the selected W/O microemulsion sample is in the range of 7.0 to 12.0 wt%.Moreover.the rheological properties such as the yield stresses(σ_y).storage and loss moduli(G′.G″)of the samples increase with increasing the concentration of gelatin.Accordingly.the ESEM photographs also reveal that the network structures of MBGs are formed when the concentration of gelatin is between 7.0 and 12.0 wt%.and the network structures become more compact as the concentration of gelatin is increased.At the concentration of gelatin lower than 7.0 wt%,the systems are sols.At the concentration of gelatin higher than 12.0 wt%.the systems are two-phases containing jelly-like phase and solid particles of gelatin.
     The addition of butenafine hydrochloride to the MBGs could weaken the interconnected network structures of the system at a certain extent.Namely,when the concentration of butenafine hydrochloride is lower than 0.5 wt%,the network structures of MBGs could be maintained perfectly.Consequently,the systems are potentially transdermal drug delivery vehicles.At the higher butenafine hydrochloride concentration(1.0 wt%),the effect of butenafine hydrochloride on the weaken network structures of MBGs is obvious,but the networks have not been destroyed completely.
     In the second part,temperature-sensitive microemulsion-based gels(MBGs)of three copolymers of different composition,F127(EO_(99)PO_(67)EO_(99)),F68(EO_(79)PO_(30)EO_(79)) and L64(EO_(13)PO_(30)EO_(13)),are formed in microemulsion systems composed of isopropyl myristate(IPM)/Span20/Tween20/H_2O,and the phase behaviors of the systems are investigated.For the same polymer,the gelation concentration of copolymer is much lower in MBGs than in hydrogels which indicates that there are hydrophobic interactions between copolymer and surfactant molecules,so the micelles easily pack and turn into gels.Temperature sweep measurements indicate that the type of microemulsion is important for the formation of MBG.The gelation can not form in B.C.microemulsion,but can form in O/W microemulsion and water. this suggests that the enough amount water is very important for forming copolymer micelles and the micelles are formed in the water phase of the O/W microemulsion. The gelation mechanism of MBGs is similar to that of hydrogels,both based on the micellization and aggregation of micelles.
     The melting temperatures of MBGs increase with increasing F127 or F68 concentration,while the MBGs formed by L64 are opposite.Moreover,when the concentration of L64 is more than 48 wt%,the systems are liquid at any temperature. In F127 and F68 systems,the results of fluorescent experiments suggest that pyrene is located in the core of the microemulsion droplet,and the major structure of the microemulsion is retained after formation MBGs,which is further proved by FF-TEM photographs.In L64 systems,some pyrene is located in the core of the microemulsion droplet,some is located in micelles of L64.and the structure of the microemulsion is destroyed at a considerable extent.There are very different phase behaviors between L64 with F127 or F68 systems,which is because that the hydrogen bonds between EO and H_2O are much less due to the shorter EO chains of L64,so hydrogen bonds force is weak.Moreover,the entanglement of EO chains is weakened due to the shorter EO chains.Therefore,the network structure is much looser.Furthermore,there are many free L64 macromolecules in the network structure,so there are some necklace-like structures formed by L64 macromolecules and the surfactants(Span20.Tween20). When the concentration of L64 reaches a certain level(>48 wt%),L64 macromolecules and water molecules are miscible,and L64 exists as monomer.so the MBGs are not formed at any temperature.
     Chloramphenicol has little effect on the rheological properties of the MBGs formed by F127 and F68,and the network structures of MBGs are still retained. While the network structures of MBGs formed by L64 are destroyed at a certain extent after the addition of chloramphenicol into the systems.The continued existence of microemulsion droplets plays an important role in enhancing the solubility and stability of oil-soluble drugs.The results of controlled release experiments suggest that MBG shows sustained release properties.Moreover.due to its temperature-sensitivity.MBG is superior to other drug carriers,e.g.multiple administrations are much easier to achieve at room temperature.Furthermore.in these systems,the formulations have low toxicity and are approved for pharmaceutical use. so the MBG systems have potential as drug delivery systems.
     In the last part,lyotropic liquid crystalline(LLC)made of nonionic block copolymer L64 and ionic liquid(ILs)bmimBF_4(1-n-butyl-3-methyl imidazolium tetrafluoroborate)is constructed and characterized by POM and SAXS measurements. with comparison of component and temperature effects.Moreover.the formation mechanism is discussed.
     POM and SAXS measurements indicate that lamellar phase can be obtained with increasing L64 concentration at a certain temperature range.The various interactions between PEO-bmimBF_4(hydrogen bonding)and PPO-bmimBF_4(hydrophobic interaction)play the key role in LLC formation.The results of SAXS suggest that the lattice spacing(d)decrease with increasing L64 concentration.
     The effect of temperature on the lamellar phase is investigated.The lattice spacing increases with increasing temperature.This change can be attributed to swelling of polar and apolar microdomains.At certain temperature range,the lamellar region shifts to lower polymer concentrations and the lamellar phase becomes more ordered with increasing temperature.However,the birefringent phenomenon of the lamellar phase disappears when the temperature reaches a certain level,which is attributed to the breakage of hydrogen bonds between bmimBF_4 and EO chains.So the long-range order of LLC is decreased.
     The effect of different polarity molecules on the lamellar phase is also investigated.With addition water,water molecules insert into the polar microdomains of LLC,and form hydrogen bonds with the oxygen atom of EO groups.The static actions which occur between the cation moiety(-N~+)of IL and the lone pairs on oxygen atom of EO groups are the key driving force for the formation of LLC.The addition of water molecules makes the static actions weaken and the long-range order of LLC decrease.However,after addition a little apolar molecules,apolar molecules insert into hydrophobic microdomains(PPO chains),which makes PPO chains extend at certain degree,and the order of LLC increases.Therefore,the systems will supply favorable conditions for enhancing the solubility of oil-soluble molecules,which further expands application prospects of the systems.
引文
[1]Haering G.,Luisi P.L.Hydrocarbon gels from water-in-oil microemulsions[J].J.Phys.Chem.1986,90,5892-5895.
    [2]Quellet C.,Eicke H.F.Mutual gelation of gelatin and water-in-oil microemulsions [J].Chimia 1986,40,233-238.
    [3]Luisi P.L.,Scartazzini R.,Haering G.,Schurtenberger P.Organogels from water-in-oil microemulsions[J].Colloid Polym.Sci.1990,268,356-374.
    [4]Ricci E.J..Lunardi L.O.,Nanclares D.M.A..Marchetti J.M.Sustained releaseof lidocaine from Poloxamer 407 gels[J].Int.J.Pharm.2005,288,235-244.
    [5]Park Y.J.,Yong C.S.,Kim H.M.,Rhee J.D.,Oh Y.K..Kim C.K.,Choi H.G.Effect of sodium chloride on the release,absorption and safety of diclofenac sodium delivered by poloxamer gel[J].Int.J.Pharm.2003.263,105-111.
    [6]Wei G.,Xu H.,Ding P.T.,Li S.M..Zheng J.M.Thermosetting gels with modulated gelation temperature for ophthalmic use:the rheological and gamma scintigaphic studies[J].J.Control.Release 2002.83,65-74.
    [7]Jeong J.H.,Kim S.W.,Park T.G.Biodegradable triblock copolymer of PLGA-PEG-PLGA enhances gene transfection of efficiency[J].Pharm.Res.2004.21,50-54.
    [8]Kwon Y.M.,Kim S.W.Biodegradable triblock copolymer microspheres based on thermosensitive sol-gel transition[J].Pharm.Res.2004,21,339-343.
    [9]Li Z.,Ning W.,Wang J.,Choi A.,Lee P.Y.,Tyagi P.,Huang L.Controlled gene delivery system based on thermosensitive biodegradable hydrogel[J].Pharm.Res. 2003,20.884-888.
    [10]Yaghmur A.,Aserin A.,Carti N.Phase behavior of microemulsions based on food-grade nonionic surfactants:effect of potyols and short-chain alcohols[J].Colloids Surf.A 2002.209,71-81.
    [11]Kreilgaard M.Influence of microemulsions on cutaneous drug delivery,[J].Adv.Drug Deliver Rev.2002.54.S77-S98.
    [12]Kreilgaard K.,Pedersen E.J.,Jaroszewski J.W.NMR characterisation and transdermal drug delivery potential of microemulsion systems[J].J.Control.Release 2000,69,421-433.
    [13]Baroli B.,Lopez-Quintela M.A.,Delgado-Charro M,B.Microemulsions for topical delivery of 8-methoxsalen[J].J.Control.Release 2000,69,209-218.
    [14]Lv F.F.,Li N.,Zheng L.Q.,Tung C.H.Studies on the stability of the chloramphenicol in the microemulsion free of alcohols[J].Eur.J.Pharm.Biopharm.2006,62.288-294.
    [15]Atkinson P.J.,Grimson M.J.,Heenan R.K.,Howe A.M.,Robinson B.H.Microemulsion-based gels:a small-angle neutron scattering study[J].Chem.Phys.Lett.1988.151.494-498.
    [16]Atkinson P.J.,Grimson M.J.,Heenan R.K.,Howe A.M.,Robinson B.H.Structure of microemulsion-based organogels[J].J.Chem.Soc.,Chem.Commun.1989,23.1807-1809.
    [17]Atkinson P.J.,Robinson B.H.,Howe A.M.,Heenan R.K.Structure and stability of microemulsion-based organogels[J].J.Chem.Soc.,Faraday Trans.1991,87.3389-3397.
    [18]Caldararu H.,Timmins G.S.,Gilbert B.C.The structure of gelatin water/oil microemulsion sols and gels.An EPR spin-probe and spinlabeling study[J].Phys.Chem.Chem.Phys.1999.1,5689-5695.
    [19]Quellet C.,Eicke H.F.,Sager W.Formation of microemulsion-based gelatin gels [J].J.Phys.Chem.1991,95,5642-5655.
    [20]Petit C.,Zemb T.h.,Pilen M.P.Structural study of microemulsion-based gels at the saturation point[J].Langmuir 1991.7,223-231.
    [21] Rees G. D., Nascimento N. G.. Jenta T. R. J.. Robinson B. H. Reverse enzyme synthesis in microemulsion-based organogels [J]. Biochim. Biophys. Acta 1991. 1073,493-501.
    
    [22] Jenta T. R. J.. Batts G., Rees G. D. Robinson B. H. Kinetic studies of chromobacterium viscosum lipase in AOT water in oil microemulsions and gelatin microemulsion-based organogels [J]. Biotechnol. Bioeng. 1997. 54. 416-427.
    
    [23] Rees G. D.. Robinson B. H.. Stephenson G. R. Preparative-scale kinetic resolutions catalysed by microbial Upases immobilized in AOT-stabilised microemulsion-based organogels: Cryoenzymology as a tool for improving enantioselectivity [J]. Biochim. Biophts. Acta 1995, 1259. 73-81.
    [24] Kantaria S., Rees G. D., Lawrence M. J. Gelatin-stabilized microemulsion-based organogels: rheology and application in iontophoretic transdermal drug deliver. [J]. J. Control. Release 1999, 60, 355-365.
    [25] Kantaria, S., Rees, G. D., Lawrence, M. J. Formulation of electrically conducting microemulsion-based organogel [J]. Int. J. Pharm. 2003, 250, 65-83.
    [26] D'Cruz O. J., Uckun F. M. Gel-microemulsions as vaginal spermicides and intravaginal drug delivery vehicles [J]. Contraception 2001. 64, 113-123.
    [27] Valenta C, Schultz K. Influence of carrageenan on the rheology and skin permeation of microemulsion formulations [J]. J. Control. Release 2004. 95. 257-265.
    [28] Knox W. J., Parshall T. O. The interaction of sodium dodecyl sulfate with gelatin [J]. J. Colloid Interf. Sci. 1970, 33, 16-23.
    [29] Fadnavis N. W., Koteshwar K. An unusual reversible sol-gel transition phenomenon in organogels and its application for enzyme immobilization in gelatin membranes [J]. Biotechnol. Prog. 1999. 15, 98-104.
    [30] Lopez F.. Venditti F., Ambrosone L., Colafemmina G., Andrea C, Palazzo G. Gelatin microemulsion-based gels with the cationic surfactant cetyltrimethylammonium bromide: a self-diffusion and conductivity study [J]. Langmuir 2004, 20, 9449-9452.
    [31]Fadnavis N.W.,Koteshwar K.An unusual reversible sol-gel transition phenomenon in organogels and its application for enzvme immobilization in gelatin membranes[J].Biotechnol.Prog.1999.15.98-104.
    [32]周国伟,李干佐.黄锡荣 等.微乳液中脂肪酶和含明胶的微乳液凝胶中固定化脂肪酶的催化特性[J].高等学校化学学报 2001.9,1525-1529.
    [33]Zhou G.W.,Li G.Z.,Xu J.Sheng Q.Kinetic studies of lipase-catalyzed esterification in water-in-oil microemulsions and the catalytic behavior of immobilized lipase in MBGs[J].Colloids Surf.A 2001,194,41-47.
    [34]Jenta T.R.-J.,Batts G.,Rees G.D.Robinson B.H.Biocatalysis using gelatin microemulsion-based organogels containing immobilized chromobacterium viscosum lipase[J].Biotechnol.Bioeng.1997.53,121-131.
    [35]Barry B.W.Novel mechanisms and devices to enable successful transdermal drug delivery[J].Eur J.Pharm Sci.2001.14.101-114.
    [36]Guy R.H..Kalia Y.N.,Delgado-Charro M.B.Iontophoresis:electrorepulsion and Electroosmosis[J].J.Control.Release 2000,64.129-132.
    [37]Nair V.,Panchagnula R.Physicochemical considerations in the iontophoretic delivery of a small peptide:in vitro studies using arginine vasopressin as a model peptide[J].Pharm.Res.2003.48,175-182.
    [38]Kalia Y.N.,Naik A.,Garrisonc J.,Guy R.H.Iontophoretic drug delivery[J].Adv.Drug Deliver Rev.2004.56.619-658.
    [39]Merclin N..Bender J.,Sparr E.,Guy R.H.,Ehrsson H..Engstrom S.Transdermal delivery from a lipid sponge phase--iontophoretic and passive transport in vitro of 5-aminolevulinic acid and its methyl ester[J].J.Control.Release 2004.100.191-198.
    [40]Cavallaro G.,Manna G.L.,Liveri V.T.,Aliotta F.,Fontanella M.E.Structural Investigation of Water/Lecithin/Cyclohexane Microemulsions by FT-IR Spectroscopy[J].J.Colloid Interf.Sci.1995.176.281-285.
    [41]Capitani D.,Serge A.L.,Dreher F.,Walde R,Luisi P.L.,Multinuclear NMR Investigation of Phosphatidylcholine Organogels.J.Phys.Chem.1996.100.15211-15217.
    [42] Schurtenberger P., Magid L. J.. Penfold J.. Heenan R. Shear aligned lecithin reverse micelles: a small-angle neutron scattering study of the anomalous water-induced micellar growth [J]. Langmuir 1990, 6. 1800-1803.
    [43] Shchipunov Yu. A., Shumilina E. V. Lecithin bridging by hydrogen bonds in the organogel [J]. Mater Sci. Eng. 1995, C3, 43-50.
    
    [44] Shchipunov Yu. A., Hoffmann H. Thinning and thickening effects induced by shearing in lecithin solutions of polymer-like micelles [J]. Rheol Acta 2000. 39. 542-553.
    [45] Shchipunov Yu. A., Durrschmidt T., Hoffmann H. Electrorheological effects in lecithin organogels with water and glycerol [J]. J. Colloid Intef. Sci. 1999. 212. 390-401.
    [46] Shchipunov Yu. A., Shumilina E. V., Kon'shin V. V., Chernishov B. N. ~(31)P-NMR investigation of interactions of lecithin with polar solvent [J]. Russ J. Phys. Chem. 1997. 71.564-568.
    [47] Nasseri A. A., Aboofazeli R.. Zia H., Needham T. E. Lecithin-stabilized microemulsion: an organogel for topical application of ketorolac tromethamine.I: phase behavior studies [J]. Iran. J. Pharm. Res. 2003. 2. 59-63.
    
    [48] Nasseri A. A.. Aboofazeli R.. Zia H., Needham T. E. Lecithin-stabilized microemulsion-based organogels for topical application of ketorolac tromethamine. II. in vitro release study [J]. Iran. J. Pharm. Res. 2003. 2. 117-123.
    
    [49] Shchipunov Yu. A., Schmiedel P. Electrorheological phenomena in lecithin -decane-water mixtures. J. Colloid Interf. Sci. 1996. 179, 201-206.
    [50] Shchipunov Yu. A. Lecithin organogel a micellar system with unique properties. Colloid Surf. A2001. 183-185, 541-554.
    
    [51] Heymann E. Studies on sol-gel transformations, I. The inverse sol-gel transformation of methylcellulose in water. Trans. Faraday Soc. 1935. 31. 846-864.
    [52] Sarkar N. Thermal gelation properties of methyl and hydroxypropyl methylcellulose[J].J.Appl.Polym.Sci.1979.24,1073-1087.
    [53]Tate M.C.,Shear D.A.,Hoffman S.W.,Stein D.G.,LaPlaca M.C.Biocompatibility of methvlcellulose-based constructs designed for intracerebral gelation following experimental traumatic brain injury[J].Biomaterials 2001.22.1113-1123.
    [54]Heskins M.,Guillet J.E.Solution properties of poly(N-isopropylacrylamide)[J].J.Macromol.Sci.Chem.A 1968,2.1441-1455.
    [55]Hoffman A.S.,Afrassiabi A.,Dong L.C,Thermally reversible hydrogels:Ⅱ.Delivery and selective removal of substances from aqueous solutions[J].J.Control.Release 1986.4,213-222.
    [56]Hirotsu S.,Hirokawa Y.,Tanaka T.Volume-phase transitions of ionized N-isopropylacrylamide gels[J].J.Chem.Phys.1987.87,1392-1395.
    [57]Feil H.,Bae Y.H.,Feijen J.,Kim S.W.Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers[J].Macromolecules 1993,26.2496-2500.
    [58]Vernon B.,Gutowska A..Kim S.W.,Bae Y.H.Thermally reversiblepolymer gels for biohybrid artificial pancreas[J].Macromol.Symp.1996,109.155-167.
    [59]Bae Y.H..Vernon B..Han C.K..Kim S.W.Extracellular matrix for a rechargeable cell delivery system[J].J.Control.Release 1998.53.249-258.
    [60]Vernon B.,Kim S.W.,Bae H.Y.Insulin release from islets of Langerhans entrapped in a poly(N-isopropylacrylamide-co-acrylic acid)polymer gel[J].J.Biomater.Sci.Polym.Ed.1999,10.183-198.
    [61]Gappa H.,Baudys M.,Koh J.J.,Kim S.W.,Bae Y.H.The effect of zinc-crystallized glucagon-like peptide-1 on insulin secretion of macroencapsulated pancreatic islets[J].Tissue Eng.2001,7,35-44.
    [62]Chae S.Y.,Kim S.W.,Bae Y.H.Effects of cross-linked hemoglobin on functionality and viability of microencapsulated pancreatic islets[J].Tissue Eng.2002.8,379-394.
    [63]Chae S.Y.,Kim S.W.,Bae Y.H.Bioactive polymers for biohybrid artificial pancreas[J].J.Drug Target.2001,9,473-484.
    [64] Grant C. D., Deritter R, Steege K. E.. Fadeeva T. A., Castner E. W. Fluorescence probing of interior, interfacial. and exterior regions in solution aggregates of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers [J]. Langmuir 2005, 21, 1745-1752.
    [65] Alexandridis P., Olsson U., Lindman B. A Record Nine Different Phases (Four Cubic, Two Hexagonal, and One Lamellar Lyotropic Liquid Crystalline and Two Micellar Solutions) in a Ternary Isothermal System of an Amphiphilic Block Copolymer and Selective Solvents (Water and Oil) [J]. Langmuir 1998. 14. 2627-2638.
    [66] Schillen K., Brown W., Johnsen R. M. Micellar Sphere-to-Rod Transition in an Aqueous Triblock Copolymer System. A dynamic light scattering study of translational and rotational diffusion [J]. Macromolecules 1994, 27, 4825-4832.
    
    [67] Wanka G., Hoffmann H., Ulbricht W. Phase Diagrams and Aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions [J]. Macromolecules 1994, 27, 4145-4159.
    
    [68] Alexandridis P., Nivaggioli T., Hatton T. A. Temperature effects on structural properties of Pluronic P104 and F108 PEO-PPO-PEO block copolymer solutions [J]. Langmuir 1995, 11, 1468-1476.
    [69] Alexandridis P.. Holzwarth J. F.. Hatton T. A. Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association [J]. Macromolecules 1994,27. 2414-2425.
    [70] Nivaggioli T., Alexandridis P., Hatton T. A. Fluorescence probe studies of pluronic copolymer solutions as a function of temperature [J]. Langmuir 1995. 11,730-737.
    [71] Alexandridis P., Athanassiou V.. Hatton T. A. Pluronic-P105 PEO-PPO-PEO block copolymer in aqueous urea solutions: micelle formation, structure, and microenvironment [J]. Langmuir 1995,11, 2442-2450.
    [72] Alexandridis P., Hatton T. A. Poly(ethylene oxide)—poly(propylene oxide)—poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at imerfaces:thermodynamics,structure,dvnamics,and modeling[J].Colloids Surf.A 1995.96.1-46.
    [73]Nivaggioli T.,Tsao B.,Alexandridis E,Hatton T.A.Microviscosity in Pluronic and Tetronic Poly(ethylene oxide)-Poly(propylene oxide)Block Copolymer Micelles[J].Langmuir 1995,11,119-126.
    [74]Alexandridis E,Athanassiou V.,Fukuda S.,Hatton T.A.Surface activity of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide)copolymers[J].Langmuir 1994,10.2604-2612.
    [75]赵剑曦,郑欧,林翠英等.温度对Pluronic嵌段共聚物胶团结构的影响[J].功能高分子学报2000,13,177-181.
    [76]林翠英,邱羽.江琳沁等.Pluronic F127和P123嵌段共聚物胶束结构[J].福州大学学报(自然科学版)2000,28,77-81.
    [77]Guo C.,Wang J.,Liu H.Z.,Chen J.Y.Hydration and Conformation of temperature-dependent micellization of PEO-PPO-PEO block copolymers in aqueous solutions by FT-Raman[J].Langmuir 1999.15.2703-2708.
    [78]Guo C.,Liu H.Z.,Wang J.,Chert J.Y.Conformational structure of triblock copolymers by FT-Raman and FTIR spectroscopy[J].J.Colloid Interf.Sci.1999.209,368-373.
    [79]郭晨,博士学位论文.PEO-PPO-PEO嵌段共聚物蔟集及与蛋白质的相互作用[M],中科院过程工程研究所,1999.
    [80]Prud'homme R.K.,Wu G.,Schneider D.K.Structure and rheology studies of poly(oxyethylene-oxypropylene-oxyethylene)aqueous solution[J].Langmuir 1996,12,4651-4659.
    [81]Mortensen K.,Talmon Y.Cryo-TEM and SANS Microstructural Study of Pluronic Polymer Solutions[J].Macromolecules 1995,28,8829-8834.
    [82]Jeon S.I.,Lee J.H.,Andrade J.D.Protein-surface interactions in the presence of polyethylene oxide[J].J.Colloid Interf.Sci.1991.142,149-166.
    [83]Holmberg K.,Tiberg F.,Malmsten M.Grafting with hydrophilic polymer chains to prepare protein resistant surfaces [J]. Colloids Surf. A 1997. 123-124. 297-306.
    [84] Kabanov A.V., Nazarova I. R., Astafieva I. V., Batrakova E. V.. Alakhov V. Y.. Yaroslavov A. A., Kabanov V. A. Structural study on the micelle formation of poly(ethyleneoxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution [J]. Macromolecules 1995, 28. 2303-2314.
    [85] Rapoport N. Y., Herron J. N.. Pitt W. G., Pitina L. Micellar delivery of doxorubicin and its paramagnetic analog. ruboxyl, to HL-60 cells: effect of micelle structure and ultrasound on the intracellular drug uptake [J]. J. Control. Release 1999, 58, 153-162.
    [86] M. Scherlund, K.Welin-Berger,A. Brodin. M. Malmsten, Local anaesthetic block copolymer system undergoing phase transition on dilution withwater [J]. Eur. J. Pharm. Sci. 2001,14, 53-61.
    [87] Lee S. H., Lee J. E., Baek W. Y., Lim J. O. Regional delivery of vancomycin using pluronic F-127 to inhibit methicillin resistant Staphylococcus aureus (MRSA) growth in chronic otitis media in vitro and in vivo [J]. J. Control. Release 2004. 96. 1-7.
    [88] Pisal S. S.. Paradkar A. R., Mahadik K. R. Kadam S. S. Pluronic gels for nasal delivery of Vitamin B_(12). Part I: Preformulation study [J]. Int. J. Pharm. 2004. 270. 37-45.
    [89] Ha J. C., Kim S. Y., Lee Y. M. Poly (ethylene oxide)-poly(propylene oxide)-poly(ethylene xide) (Pluronic)/poly(ε-caprolactone) (PCL) amphiphilic block copolymeric nanospheres: I. Preparation and characterization [J]. J. Control. Release 1999, 62, 381-392.
    
    [90] Kim S. Y.. Ha J. C., Lee Y. M. Poly (ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)/poly(ε-caprolactone) (PCL) amphiphilic block copolymeric nanospheres: Ⅱ. Thermo-responsive drug release behaviors [J]. J. Control. Release 2000, 65, 345-358.
    
    [91] Chung H. J., Lee Y., Park T. G. Thermo-sensitive and biodegradable hydrogels based on stereocomplexed Pluronic multi-block copolymers for controlled protein delivery[J].J.Control.Release 2008.127.22-30.
    [92]Marin A.,Sun H.,Hussemi G.A.,Pitt W.G.,Christensen D.A.,Rapoport N.Y.Drug delivery in pluronic micelles:effect of high-frequency ultrasound on drug release from micelles and intracellular uptake[J].J.Control.Release 2002.84.39-47.
    [93]Husseini G.A.,Christensen D.A.,Rapoport N.Y.,Pitt W.G.,Ultrasonic release of doxorubicin from Pluronic P105 micelles stabilized with an interpenetrating network of N,N-diethylacrylamide[J].J.Control.Release 2002,83,303-305.
    [94]Jeong B.M.,Bae Y.H.,Lee D.S.,Kim S.W.Biodegradable block copolymers as injectable drug-delivery systems[J].Nature 1997,388.860-862.
    [95]Rashkov I.,Manolova N..Li S.M.,Espartero J.L.,Vert M.Synthesis.Characterization.and Hydrolytic Degradation of PLA/PEO/PLA Triblock Copolymers with Short Poly(L-lactic acid)Chains[J].Macromolecules 1996.29.50-56.
    [96]Li S.M.,Rashkov I.,Espartero J.L.,Manolova N.,Vert M.Synthesis.Characterization.and Hydrolytic Degradation of PLA/PEO/PLA Triblock Copolymers with Long Poly(L-lactic acid)Blocks[J].Macromolecules 1996.29.57-62.
    [97]Jeong,B.M.,Bae.Y.H.,Kim,S.W.Thermoreversible Gelation of PEG-PLGA-PEG Triblock Copolymer Aqueous Solutions[J].Macromolecules 1999,32.7064-7069.
    [98]Jeong B.M.,Bae Y.H.,Kim S.W.Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers[J].J.Control.Release 2000,63.155-163.
    [99]Zentner G.M.,Rathi R.,Shih C.,McRea J.C.,Seo M.H.,Oh H.,Rhee B.G.,Mestecky J.,Moldoveanu Z.,Morgan M.,Weitman S.Biodegradable block colpolymers for drug delivery of proteins and water-insoluble drugs[J].J.Control.Release 2001.72,203-215.
    [100]Bromberg L.Novel family of thermogelling materials via C-C bonding between poly(acrylic acid)and poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)[J].J.Phys.Chem.B 1998.102,1956-1963.
    [101]Bromberg L.Polyether-modified poly(acrylic acid):synthesis and applications [J].Ind.Eng.Chem.Res.1998,37,4267-4274.
    [102]Ports A.M.,Jackson S.,Washington N.,Gilchrist P.,Ron E.S.,Schiller M.,Wilson C.G.In vivo determination of the oesophageal retention of smart hydrogel[J].Proc.Int.Syrup.Control.Rel.Bioact.Mater.1997,24,335-336.
    [103]Hoffman A.S.,Dong L.C.A novel approach for preparation of pH-sensitive hydrogels for enteric drug[J].J Control.Release 1991,15,141-152.
    [104]黄月文,罗宣干,卓仁禧.包埋在温度及pH值敏感中的阿司匹林的控制释放研究[J].高分子材料科学与工程,1998,14,144-147.
    [105]Shim W.S.,Yoo J.S.,Bae Y.H.,Lee D.S.Novel Injectable pH and 他emperature sensitive block copolymer hydrogel[J].Biomacromolecules 2005.6,2930-2934.
    [106]Shim W.S.,Kim S.W.,Lee D.S.Sulfonamide-based pH and temperature-sensitive biodegradable block copolymer hydrogels[J].Biomacromolecules 2006,7,1935-1941.
    [107]Han S.K.,Na K.,Bae Y.H.Sulfonamide based pH-sensitive polymeric micelles:physicochemical characteristics and pH-dependent aggregation[J].Colloids Surf.A 2003,214,49-59.
    [108]Kang S.I.,Bae Y.H.pH-induced volume-phase transition of hydrogels containing sulfonamide side group by reversible crystal formation[J].Macromolecules 2001,34,8173-8178.
    [109]Zana R.Surfactant solutions:new methods of investigation[M].NewYore:Marcel Dekker,Inc.1987,209-240.
    [110]Montalvo G.,Valiente M.,Rodenas E.Rheological properties of the L phase and the hexagonal lamellar,and cubic liquid crystals of the CTAB/ benzyl alcohol/water system[J].Langmuir 1996,12,5202-5208.
    [111]Cortes A.B.,Valiente M.,Rodenas E.Properties of the L and lyotropic phases in CTAB/glycerol/water and CTAB/glyceraldehydes/water systems[J]. Langmuir 1999.15.6658-6663.
    [112]Chen C.M..Warr G.G.Rheology of ternary microemulsions[J].J.Phys.Chem.1992,96.9492-9497.
    [113]Zipfel J.,Berghausen J.,Lindner P.Influence of shear on lyotropic lamellar phases with different membrane defects[J].J.Phys.Chem.B 1999.103.2841-2849.
    [114]Soltero J.F.A.,Bautistsa F.,Pecina E.Rheological behavior in the didodecyldimethylammonium bromide/water system[J].Colloid Polym.Sci.2000,278.37-47.
    [115]Jones J.L.,McLeish T.C.B.Concentration fluctuations in surfactant cubic phases:Theory,rheology,and light scattering[J].Langmuir 1999.15.7495-7503.
    [116]Zipfel J.,Lindner P.,Tsianou M.Shear - induced formation of multilamellar vesicles("Onions")in block copolymers[J].Langmuir 1999.15,2599-2602.
    [117]Gradzielski M.,Muller M.,Bergmeier M.Structural and macroscopic characterization of a gel phase of densely packed monodisperse,unilamellar vesicles[J].J.Phys.Chem.B 1999.103.t416-1424.
    [118]Horbaschek K..Hoffmann H..Hao J.C.Classic Lα phase as opposed to vesicle phase in cationicanionic surfactant mixtures[J].J.Phys.Chem.B 2000.104.2781-2784.
    [119]Bergenholtz J.,Wagner N.J.Formation of AOT/brine multilamellar vesicles[J].Langmuir 1996,12,3122-3126.
    [120]Mendes E.,Menon S.V.G.Vesicle to micelle transitions in surfactant mixtures induced by shear[J].Chem.Phys.Letters 1997,275.477-484.
    [121]Kim W.J.,Yang S.M.Microstructures and rheological responses of aqueous CTAB solutions in the presence of benzyl additives[J].Langmuir 2000.16.6084-6093.
    [122]James F.,Steffe P.E.Rheological methods in food process engineering[M].second ed.,Freeman Press,USA.1996.
    [123]Chen Y.U.,Liao M.L..Dunstan D.E.The rheology of K~+-λ-carrageenan as a weak gel [J]. Carbohydr. polym. 2002, 50. 109-116.
    
    [124] Bulcke V. D.. Bogdanov B. N.. Rooze D. Structure and rheological properties of methacrylamide modified gelatin hydrogels [J]. Biomacromolecules 2000. 1. 31-38.
    
    [125] Ould Eleya M. M., Turgeon S. L. Rheology of K-carrageenan and β- lactoglobulin mixed gels [J]. Food Hydrocolloids 2000, 14. 29-40.
    [126] Dong B.. Zhang J., Zheng L. Q.. Wang S. Q., Li X. W., Inoue T. Salt-inducedviscoelastic wormlike micelles formed in surface active ionic liquid aqueous solution [J]. J. Colloid Interf. Sc. 2008, 319. 338-343.
    [127] Mu J. H.. Li G. Z., Jia X. L.. Wang H. X., Zhang G. Y. Rheological Properties and Microstructures of Anionic Micellar Solutions in the Presence of Different Inorganic Salts [J]. J. Phys. Chem. B 2002,106. 11685-11693.
    [128] Montalvo G. Valiente M.. Khan A. Shear-Induced Topology Changes in Liquid Crystals of the Soybean Lecithin/DDAB/Water System [J]. Langmuir 2007. 23. 10518-10524.
    [129] Murase H., Kume T., Hashimoto T., Ohta Y. Time Evolution of Structures under Shear-Induced Phase Separation and Crystallization in Semidilute Solution of Ultrahigh Molecular Weight Polyethylene [J]. Macromolecules 2005. 38. 8719-8728.
    [130] Mezzenga R.. Meyer C. Servais C. Romoscanu A. I.. Sagalowicz L., Hayward R. C. Shear Rheology of Lyotropic Liquid Crystals: A Case Study [J]. Langmuir 2005,21.3322-3333.
    [131]Yang B. S., Russel W. B., Prud'homme R. K. Effect of Hydrophobically Modified Polymers on Shear-Induced Multilamellar Vesicles [J]. Langmuir 2005,21.10038-10045.
    [132] Lee J. H., Gustin J. P., Chen T., Payne G. F.. Raghavan S. R. Vesicle-Biopolymer Gels: Networks of Surfactant Vesicles Connected by Associating Biopolymers [J]. Langmuir 2005. 21. 26-33.
    [133] Marin G. Rheological Measurements [M]. (A.A. Collyer and D. W. Clegg. eds) Elserier, London. 1998, p297
    [134]Van Den Bulcke A.I.,Bogdanov B.,De Rooze N..Schacht E.H.,Cornelissen M.,Berghrnans H..Structural and Rheological Properties of Methacrylamide Modified Gelatin Hydrogels[J].Biomacromolecules 2000.1.31-38.
    [135]Lau B.K.,Wang Q.Q.,Sun w..Li L.Micellization to gelation of a triblock copolymer in water:thermoreversibility and scaling[J].J.Polym.Sci..Part B:Polym.Phys.2004,42,2014-2025.
    [136]Wang Q.Q.,Li L.,Jiang S.P.Effects of PPO-PEO-PPO triblock copolymer on micellization and gelation of a PEO-PPO-PEO triblock copolymer in aqueous solution[J].Langmuir 2005.21,9068-9075.
    [137]Michon C.,CuveIier G.,Launaya B..Parke A.Viscoelastic properties of ι-carrageenan/gelatin mixtures[J].Carbohydrate Polymers 1996.331,161-169.
    [138]Nystrom B.,Walderhaug H.Dynamic Viscoelasticity of an Aqueous System of a Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide)Triblock Copolymer during Gelation[J].J.Phys.Chem.1996,100.5433-5439.
    [1]Haering G..Luisi P.L.Hydrocarbon gels from water-in-oil microemulsions[J].J.Phys.Chem.1986.90,5892-5895.
    [2]Quellet C.,Eicke H.F.Mutual gelation of gelatin and water-in-oilmicroemulsions [J].Chimia 1986,40,233-238.
    [3]Atldnson P.J..Grimson M.J.,Heenan R.K.,Howe A.M.,Robinson B.H.Microemulsion-based gels:a small-angle neutron scattering study[J].Chem.Phys.Lett.1988,151,494-498.
    [4]Atkinson P.J.,Grimson M.J.,Heenan R.K.,Howe A.M.,Robinson B.H.Structure of microemulsion-based organogels[J].J.Chem.Soc.,Chem.Commun.1989,23,1807-1809.
    [5]Atkinson P.J.,Robinson B.H.,Howe A.M.,Heenan R.K.Structure and stability of microemulsion-based organogels[J].J.Chem.Soc.,Faraday Trans.1991,87.3389-3397.
    [6]Caldararu H.,Timmins G.S.,Gilbert B.C.The structure of gelatin water/ oil microemulsion sols and gels.An EPR spin-probe and spinlabeling study[J].Phys.Chem.Chem.Phys.1999,1.5689-5695.
    [7]Bialopiotrowicz T.,Janczuk B.Surface properties of galatin films[J].Langmuir 2002.18,9462-9468.
    [8]Petit C.,Zemb T.h.,Pilen M.P.Structural study of microemulsion-based gels at the saturation point[J].Langmuir 1991.7.223-231.
    [9]Kantaria S.,Rees G.D.,Lawrence M.J.Gelatin-stabilized microemulsion-based organogels:theology and application in iontophoretic transdermal drug delivery [J].J.Control.Release 1999.60,355-365.
    [10]Carnali J.O.Gelation in physical associating biopolymer systems[J].Rheol.Acta 1992.31,399-412.
    [11] Michon C, Cuvelier G.. Launay B. Concentration dependence of the critical viscoelastic properties of gelatin at the gel point [J]. Rheol. Acta 1993. 32. 94-103.
    [12] Hsu S., Jamieson A. M. Viscoelatic behaviour at the thermal sol-gel transition of gelatin [J]. Polymer 1993, 34. 2602-2608.
    [13] Koh M. W. W., Merino L. M., Dickison E. Rheology of acid-induced sodium caseinate gels containing added gelatin [J]. Food Hydrocolloids 2002. 16. 619-623.
    [14] Yoshimura K., Terashima M.. Hozan D., Ebato T., Nomura Y., Ishii Y., Shirai K. Physical properties of shark gelatin compared with pig gelatin [J]. J. Agric. Food Chem. 2000, 48, 2023-2027.
    [15] Wang Y., Wu K. As a whole: crystalline zinc aluminate nanotube arraynanonet [J]. J. Am. Chem. Soc. 2005, 127. 9686-9687.
    [16] Lestage D. J., Schleis D. J.. Urban M. W. Stimuli-responsive surface crystallization of phospholipids from bimodal colloidal particles [J]. Langmuir 2004, 20. 7027-7035.
    [17] Rizzieri R., Baker F. S., Donald A. M. A study of the large strain deformation and failure behaviour of mixed biopolymer gels via in siu ESEM [J]. Polymer 2003, 44, 5927-5935.
    [18] Luisi P. L., Scartazzini R., Haering G., Schurtenberger P. Organogels from water-in-oil microemulsions [J]. Colloid Polym. Sci. 1990. 268, 356-374.
    [19] Quellet C. Eicke H. F.. Sager W. Formation of microemulsion-based gelatin gels [J]. J. Phys. Chem. 1991, 95, 5642-5655.
    [20] Knox W. J., Parshall T. O. The interaction of sodium dodecyl sulfate with gelatin [J]. J. Colloid Interf. Sci. 1970, 33. 16-23.
    
    [21] Fadnavis N. W.. Koteshwar K. An unusual reversible sol-gel transition phenomenon in organogels and its application for enzyme immobilization in gelatin membranes [J]. Biotechnol. Prog. 1999, 15, 98-104.
    [22] Kantaria, S., Rees, G. D., Lawrence, M. J. Formulation of electrically conducting microemulsion-based organogel [J]. Int. J. Pharm. 2003. 250. 65-83.
    [23]凌关庭.食品添加剂手册[M].北京:化学工业出版社.1989.
    [24]王叔淳.食品卫生检验技术手册(上册)[M].北京:化学工业出版社.2002.
    [25]Cordobes A.F.,Mufioz J.,Gallegos C.Linear viscoelasticity of the direct hexagonal liquid crystalline phase for a heptane/nonionic surfactant/ water system[J].J.Colloid Interf.Sci.1997,187.401-417.
    [26]Alfaro M.C..Cordobes A.F.,Munoz J.Dynamic viscoelasticity and flow behavior of a polyoxyethylene glycol nonylphenyl ether/toluene/water system[J].Langmuir 2000.16,4711-4719.
    [27]Shui L.L.,Guo P.Z.,Chen F..Xu G.Y.,Zheng L.Q.The effect of iopamidol on rheological properties of monoglyceride/water system[J].Colloids Surf.A 2005.25,685-690.
    [28]James F.,Steffe P.E.Rheological methods in food process engineering[M].second ed.,Freeman Press,USA.1996.
    [29]Chert Y.U..Liao M.L.,Dunstan D.E.The rheology of K- λ-carrageenan as a weak gel[J].Carbohydr.Polvm.2002.50,109-116.
    [30]Bulcke V.D..Bogdanov B.N..Rooze D.Structure and rheological properties of methacrylamide modified gelatin hydrogels[J].Biomacromolecules 2000.1.31-38.
    [31]Ould Eleya M.M..Turgeon S.L.Rheology of κ-carrageenan and β-lactoglobulin mixed gels[J].Food Hydrocolloids 2000.14.29-40.
    [32]巩方玲,黄明智.明胶表面活性剂的进展.明胶科学与技术[M].2000.20(1).1-9.
    [1]国家药典委员会,中华人民共和国药典[M].北京:化学工业出版社,2000.38.929.
    [2]Sarciaux,J.M.,Acar,L.,Sado.P.A.Using microemulsion formulations for oral drug delicery of therapeutic peptides[J].Int.J.Pharm.1995.120.127-136.
    [3]Lv F.F..Li N.,Zheng L.Q..Tung C.H.Studies on the stability,of the chloramphenicol in the microemulsion free of alcohols.Eur.J.Pharm.Biopharm.[J].2006.62,288-294.
    [4]Schmolka I.V.Artificial skin I.Preparation and properties of Pluronic F-127 gels of treatment of burns[J].J.Biomed.Mater.Res.1972,6.571-582.
    [5]Pandit N.K.,Kisaka J.Loss of gelation abilitity of Pluronic F 127 in the presence of some salts[J].Int.J.Pharm.1996.145.129-136.
    [6]Bohorquez M..Kock C..Tryastad T.,Pandit N.A study of the temperature dependent micellization of Pluronic F127 [J]. J. Colloid. Interf. Sci. 1999. 216. 34-40.
    
    [7] Moore T.. Croy S., Mallapragada S., Pandit N. Experimental investigation and mathematical modeling of Pluronic F127 gel dissolution: drug release in stirred system [J]. J. Control. Release 2000, 67, 191-202.
    
    [8] Ricci E. J., Bentley M. V. L. B.. Farah M.. Bretas R. E. S.. Marchetti J. M. Rheological characterization of Poloxamer 407 lidocaine hydrochloride gels [J]. Eur. J. Pharm. Sci. 2002. 17, 161-167.
    
    [9] Park Y. J.. Yong C. S., Kim H. M.. Rhee J. D., Oh Y. K.. Kim C. K.. Choi H. G. Effect of sodium chloride on the release, absorption and safety of diclofenac sodium delivered by poloxamer gel [J]. Int. J. Pharm. 2003, 263, 105-111.
    [10] Ricci E. J., Lunardi L. O., Nanclares D. M. A., Marchetti J. M. Sustained release of lidocaine from Poloxamer 407 gels [J]. Int. J. Pharm. 2005, 288. 235-244.
    [11] Cordobes A. F., Munoz J., Gallegos C. Linear viscoelasticity of the direct hexagonal liquid crystalline phase for a heptane/ nonionic surfactant/water system [J]. J. Colloid Interf. Sci. 1997, 187,401-417.
    
    [12] Alfaro M. C., Cordobes A. F., Munoz J. Dynamic viscoelasticity and flow behavior of a polyoxyethylene glycol nonylphenyl ether/toluene/water system [J]. Langmuir 2000,16,4711-4719.
    
    [13] Shui L. L.. Guo P. Z.. Chen F., Xu G. Y., Zheng L. Q. The effect of iopamidol on rheological properties of monoglyceride/water system [J]. Colloids Surf. A 2005. 256, 85-90.
    
    [14] Harrison W. J., Aboulgasem G. J. Elathrem F. A. 1., Nixon S. K.. Attwood D.. Price C, Booth C. Micelles and gels of mixed triblock copoly(oxyalkylene)s in aqueous solution [J]. Langmuir 2005. 21, 6170-6178.
    
    [15] Lau B. K.. Wang Q. Q., Sun W.. Li L. Micellization to gelation of a triblock copolymer in water: thermoreversibility and scaling [J]. J. Polym. Sci., Pan B: Polym. Phys. 2004, 42. 2014-2025.
    
    [16] Wang Q. Q., Li L., Jiang S. P. Effects of PPO-PEO-PPO triblock copolymer on micellization and gelation of a PEO-PPO-PEO triblock copolymer in aqueous solution [J]. Langmuir 2005. 21. 9068-9075.
    
    [17] Zhao C. L.. Winnik M. A.. Riess G.. Croucher M. D. Fluorescence probe techniques used to study micelle formation in water-soluble block copolymers [J]. Langmuir, 1990.6.514-516.
    [18] Nivaggioli T.. Alexandridis P.. Hatton. T. A. Yekta. A. Winnik M. A. Fluorescence probe studies of Pluronic copolymer solutions as a function of temperature [J]. Langmuir 1995, 11. 730-737.
    [19] Alexandridis P.. Nivaggioli T.. Hatton T. A. Temperature effects on structural properties of Pluronic P104 and F108 PEO-PPO-PEO block copolymer solutions [J]. Langmuir 1995. 11. 1468-1476.
    [20] Agarwal V.. Singh M.. McPherson G., John V.. Bose A. Freeze fracture direct imaging of a viscous surfactant mesophase [J]. Langmuir 2004. 20. 11-15.
    [21] Mu J. H.. Li G. Z.. J X. L.. Wang. H. X. Zhang G. Y. Rheological properties and microstructures of anionic micellar solutions in the presence of different inorganic salts [J]. J. Phys. Chem. B 2002. 106. 11685-11693.
    [22] Tardi C., Drechsler M.. Bauer K. H., Brandl M. Steam sterilisation of vesicular phospholipid gels [J]. Int. J. Pharm. 2001. 217. 161-172.
    [23] Yang L.. Alexandridis P.. Steytler D. C. Kositza M. J. Holzwarth J. F. Small-Angle Neutron scattering investigation of the temperature-dependent aggregation behavior of the block copolymer Pluronic L64 in aqueous solution [J]. Langmuir 2000, 16. 8555-8561.
    [24] Jebari M. M., Ghaouar N.. Aschi A.. Gharbi A. Aggregation behaviour of Pluronic L64 surfactant at various emperatures and concentrations examined by dynamic light scattering and viscosity measurements [J]. Polym Int. 2006. 55. 176-183.
    [25] Kositza M. J.. Bonne C.. Alexandridis P.. Hatton T. A.. Holzwarth J. F. Micellization dynamics and impurity solubilization of the block-copolymer L64 in an aqueous solution [J]. Langmuir 1999. 15, 322-325.
    [26] Lisi R. De., Lazzara G., Milioto S.. Muratore N. Thermodynamics of Aqueous Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide)/Surfactant Mixtures. Effect of the Copolymer Molecular Weight and the Surfactant Alkyl Chain Length [J]. J. Phys. Chem. B 2004, 108, 18214-18221.
    [27] Scherlund M., Malmsten M.. Brodin A. Stabilization of a thermosetting emulsion system using ionic and nonionic surfactants [J]. Int. J. Pharm. 1998. 173. 103-116.
    
    [28] Wei G., Xu H., Ding P. T.. Li S. M., Zheng J. M. Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies [J]. J. Control. Release 2002, 83, 65-74.
    [29] Yong C. S., Choi J. S., Quan Q. Z.. Rhee J. D.. Kim C. K., Lim S. J.. Kim K. M.. Oh P. S., Choi H. G. Effect of sodium chloride on the gelation temperature, gel strength and bioadhesive force of poloxamer gels containing diclofenac sodium [J]. Int. J. Pharm. 2001, 226, 195-205.
    
    [30] Nystrom B.. Walderhaug H. Dynamic viscoelasticity of an aqueous system of a poly(ethylene oxide)-ploy(propylene oxide)-poly(ethylene oxide) triblock copolymer during gelation [J]. J. Phys. Chem. 1996, 100. 5433-5439.
    [1]Welton T.Room-temperature ionic liquid.solvents for synthesis and catalysis[J].Chem.Rev.1999,99.2071-2084.
    [2]Wilkes,J.S.,Levisky.J.A.,Wilson,R.A.,Hussey,C.L.Dialkylimidazolium chloroaluminate melts:a new class of room-temperature ionic liquids for electrochemistry,spectroscopy and synthesis[J].Inorg.Chem.1982.21.1263-1264.
    [3]Wilkes J.S.,Zaworotko M.J.Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids[J].Chem.Commun.1992,11,965-967.
    [4]Wasserscheid P.,Keim W.Ionic liquids-New "solutions" for transition metal catalysis[J].Angew Chem Int.Ed.2000,39.3773-3789.
    [5]Huddleston J.G.,Willauer H.D.,Swatloski R.P.,Visser A.E.,Rogers R.D.Room temperature ionic liquids as novel media for 'clean' liquid-liquid extraction [J].Chem.Commun.1998,1765-1766.
    [6]Dickinson E.V.,Williams M.E.,Hendrickson S.M.,Masui H.,Murray R.W.Hybrid Redox Polyether Melts Based on Polyether-Tailed Counterions.J.Am.Chem.Soc.1999.121,613-616.
    [7]Gao Y.A.,Li Z.H.,Du J.M.,Han B.X.,Li G.Z.,Hou W.G.Preparation and characterization of inclusion complexes of beta-cyclodextrin with ionic liquid[J].Chem.Euro.J,2005,11,5875-5880.
    [8]Gao Y.A.,Zhao X.Y.,Dong B.,Zheng L.Q.,Li N.,Zhang S.H.Inclusion complexes of beta-cyclodextrin with ionic liquid surfactants[J].J.Phys.Chem.B 2006,110.8576-858I.。
    [9]Eastoe J.,Gold S.,Rogers S.E..Paul A..Welton T.,Heenan R.K.Ionic liquid-in-oil microemulsions[J].J.Am.Chem.Soc.2005.127.7302-7303.
    [10]Anderson J.L.,Pino V.,Hagberg E.C.,Sheares V.V.,Armstrong D.W.Surfactant salvation effects and micelle formation in ionic liquids[J].Chem.Commun.2003,2444-2445.
    [11]Patrascu C.,Gauffre F.,Nallet F.,Bordes R.,Oberdisse J.,de Lauth-Viguerie N.Micelles in ionic liquids:Aggregation behavior of alkyl poly(ethyleneglycol)-ethers in 1-butyl-3-methyMmidazolium type ionic liquids[J].ChemPhysChem 2006.7.99-101.
    [12]Tang J.,Li D.,Sun C.Y.,Zheng L.Z.,Li J,H.Temperature dependant self-assembly of surfactant Brij 76 in room temperature ionic liquid[J].Colloids Surf.A 2006,273.24-28.
    [13]Velasco S.B.,Turmine M.,Di Caprio D.,Letellier P.Micelle formation in ethyl-ammonium nitrate(an ionic liquid)[J].Colloids Surf.A 2006,275,50-54.
    [14]Simone P.M,,Lodge T.P.Micellization ofPS-PMMA diblock copolymers in an ionic liquid[J].Macromol.Chem.Phys.2007.208.339-348.
    [15]He Y.Y.,Li Z.B.,Simone P.,Lodge T.P.Self-assembly of block copolymer micelles in an ionic liquid[J].J.Am.Chem.Soc.2006,128,2745-2750.
    [16]He Y.Y.,Lodge T.P.The micellar shuttle:Thermoreversible,intact transfer of block copolymer micelles between an ionic liquid and water[J].J.Am.Chem.Soc.2006,128.12666-12667.
    [17]Behera K.,Dahiya P..Pandey S.Effect of added ionic liquid on aqueous Triton Ⅹ-100 micelles[J].J Colloid Interf.Sci.2007.307,235-245.
    [18]Chakraborty A.,Seth D.,Chakrabarty D.,Setua R.Sarkar N.Dynamics of solvent and rotational relaxation of coumarin 153 in room-temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate confined in Brij-35 micelles:A picosecond time-resolved fluorescence spectroscopic study[J].J.Phys.Chem.A 2005,109.11110-11116.
    [19]Seth D.,Chakraborty A.,Setua R,Sarkar N.Dynamics of solvent and rotational relaxation of coumarin-153 in room-temperature ionic liquid 1-butyl-3-methyl imidazolium tetrafluoroborate confined in poly(oxyethylene glycol)ethers containing micelles[J].J.Phys.Chem.B 2007,111.4781-4787.
    [20]Gao Y.A.,Zhang J.,Xu H.Y.,Zhao X.Y.,Zheng L.Q.,Li X.W.Structural studies of 1-butyl-3-methylimidazolium tetrafluoroborate/TX-100/p-xylene ionic liquid microemulsions[J].ChemPhysChem 2006,7,1554-15561.
    [21]Gao Y.A.,Li N.,Zheng L.Q.,Bai X.T..Yu L.,Zhao X.Y.Role of solubilized water in the reverse ionic liquid microemulsion of 1-butyl-3-methylimidazolium tetrafluoroborate/TX-100/benzene[J].J.Phys.Chem.B 2007,111,2506-2513.
    [22]Li N.,Gao Y.A.,Zheng L.Q.,Zhang J.,Yu L.,Li X.W.Studies on the micropolarities of bmimBF_4/TX-100/toluene ionic liquid microemulsions and their behaviors characterized by UV-visible spectroscopy[J].Langmuir 2007.23,1091-1097.
    [23]Atkin R.,Warr G.G.Phase behavior and microstructure of microemulsions with a room-temperature ionic liquid as the polar phase[J].J.Phys.Chem.B 2007.111.9309-9316.
    [24]Gao Y.A.,Li N.,Zheng L.Q.,Zhao X.Y.,Zhang J.,Cao Q.The effect of water on the microstructure of 1-butyl-3-methylimidazolium tetrafluoroborate/TX-100/benzene ionic liquid microemulsions[J].Chem.Euro.J.2007,13,2661-2670.
    [25]Adhikari A.,Sahu K.,Dey S.,Ghosh S.,Mandal U.,Bhattacharyya K.Femtosecond solvation dynamics in a neat ionic liquid and ionic liquid microemulsion:Excitation wavelength dependence[J].J.Phys.Chem.B 2007.111,12809-12816.
    [26]Gao Y.A.,Wang S.Q.,Zheng L.Q.,Han S.B.,Zhang X.,Lu D.M.Microregion detection of ionic liquid microemulsions[J].J.Colloid Interf.Sci.2006,301,612-616.
    [27]Gao Y.A.,Li N.,Zheng L.Q.,Zhao X.Y.,Zhang S.H.,Han B.X.A cyclic voltammetric technique for the detection of micro-regions of bmimPF_6/Tween 20 /H_2O microemulsions and their performance characterization by UV-Vis spectroscopy[J].Green Chem.2006.8,43-49.
    [28]Gao Y.A..Han S.B.,Han B.X..Li G.Z.,Shen D.,Li Z.H.TX- 100/water/1 -butyl-3-methylimidazolium hexafluorophosphate microemulsions [J].Langmuir 2005.21,5681-5684.
    [29]Li J.C.,Zhang J.L..Gao H.X.,Han B.X.,Gao L.Nonaqueous microemulsion-containing ionic liquid[bmim][PF_6]as polar microenvironment[J].Colloid Polym.Sci.2005,283.1371-1375.
    [30]Cheng S.Q.,Fu X.G.,Liu J.H.,Zhang J.L.,Zhang Z.F.,Wei Y.L.Study of ethylene glycol/TX-100/ionic liquid microemulsionsn[J].Colloids Surf.A 2007.302,211-215.
    [31]Cheng S.Q.,Zhang J.L.,Zhang Z.F.,Han B.X.Novel microemulsions:ionic liquid-in-ionic liquid[J].Chem.Commun.2007.2497-2499.
    [32]Liu J.H..Cheng S.Q.,Zhang J.L.,Feng X.Y..Fu X.G..Han B.X.Reverse micelles in carbon dioxide with ionic-liquid domains[J].Angew Chem.Int.Ed.2007,46,3313-3315.
    [33]Wang L.Y.,Chen X..Chai Y.C.,Hao J.C..Sui Z.M..Zhuang W.C.Lyotropic liquid crystalline phases formed in an ionic liquid[J].Chem.Commun.2004.2840-2841.
    [34]Wang Z.N..Liu F..Gao Y.,Zhuang W.C.,Xu L.M.,Han B.X.Hexagonal liquid crystalline phases formed in ternary systems of Brij 97-water-Ionic liquids [J].Langmuir 2005.21.4931-4937.
    [35]Evans D.F.,Kaler E.W.,Benton W.J.Liquid crystals in a fused salt:.beta.,.gamma.- distearoylphosphatidylcholine in N-ethylammonium nitrate [J].J.Phys.Chem.1983.87.533-535.
    [36]Tamura-Lis W.,Lis L.J.,Quinn p.J.Structures and mechanisms of lipid phase transitions in nonaqueous media:dipalmitoylphosphatidylcholine in fused salt[J].J.Phys.Chem.1987.91.4625-4627.
    [37]Tamura-Lis W..Lis L.J.,Quinn R J.Structures and mechanisms of lipid phase transition in nonaqueous meida dipalmitoylphosphatidylethanolamine in fused salt[J].Biophys.J.1988.53.489-492.
    [38]Araos M.U..Warr G.G.Self-assembly of nonionic surfactants into lyotropic liquid crystals in ethylammonium nitrate,a room-temperature ionic liquid[J].J.Phys.Chem.B 2005,109,14275-14277.
    [39]Greaves T.L.,Weerawardena A.,Fong C.,Drummond C.J.Formation of amphiphile self-assembly phases in protic ionic liquids[J].J.Phys.Chem.B 2007,111,4082-4088.
    [40]Greaves T.L.,Weerawardena A.,Fong C.,Drummond C.J.Many protic ionic liquids mediate hydrocarbon-solvent interactions and promote amphiphile self-Assembly[J].Langmuir 2007.23,402-404.
    [41]Hao J.C.,Song A.X.,Wang J.Z.,Chen X.,Zhuang W.C.,Shi F.Self-assembled structure in room-temperature ionic liquids[J].Chem.Eur.J.2005.11.3936-3940.
    [42]Kimizuka N.,Nakashima T.Spontaneous self-assembly of glycolipid bilayer membranes in sugar-philic ionic liquids and formation of ionogels[J].Langmuir 2001,17.6759-6761.
    [43]He Y.Y.,Lodge T.P.A thermoreversible ion gel by triblock copolymer self-assembly in an ionic liquid[J].Chem.Commun.2007.2732-2734.
    [44]He Y.Y.,Boswell R G.,Buhlmann P.,Lodge T.P.Ion gels by self-assembly of a triblock copolymer in an ionic liquid[J].J.Phys.Chem.B 2007,111,4645-4652.
    [45]Lee J.,Panzer M.J.,He Y.,Lodge T.P.Frisbie C.D.Ion gel gated polymer thin-film transistors[J].J.Am.Chem.Soc.2007.129.4532-4533.
    [46]Dupont J..Consorti C.S..Suarez R A.Z.,Souza R.F.Preparation of 1-butyl-3-methylimidazolium based room temperature ionic liquids[J].Organic Syntheses 1999,79,236-240.
    [47]Alexandridis P.,Zhou,D.Khan A.Lyotropic liquid crystallinity in amphiphilic block copolymers:temperature effects on phase behavior and structure for poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)copolymers of different composition[J].Langmuir 1996.12,2690-2700.
    [48]Svensson B.,Alexandridis P.,Olsson U.Self-assembly of a poly(ethylene oxide)/poly(propylene oxide)block copolymer(Pluronic P104.(EO)_(27)(PO)_(61)(EO)_(27))in the presence of water and xylene[J].J.Phys.Chem.B 1998,102,7541-7548.
    [49]Cammarata L..Kazarian S.G..Salter P.A..Welton.T.Molecular states of water in room temperature ionic liquids[J].Phys.Chem.Chem.Phys.2001.3,5192-5200.
    [50]Lopez-Pastor M..Ayora-Canada M.J..Valcarcel M.,Lendl B.Association of methanol and water in ionic liquids elucidated by infrared spectroscopy using two-dimensional correlationand multivariate curve resolution[J].J.Phys.Chem.B 2006,110,10896-10902.
    [51]Dominguez-Vidal A..Kaun N..Ayora-Cafiada M.J.,Lendl B.Probing intermolecular interactions in water/ionic liquid mixtures by far-infrared spectroscopy[J].J.Phys.Chem.B 2007.111,4446-4452.
    [52]Bowers J.,Butts C.P..Martin P.J..Vergara-Gutierrez M.C..Heenan R.K.Aggregation behavior of aqueous solutions of ionic liquids[J].Langmuir 2004.20.2191-2198.
    [53]Dopont J.On the solic.Liquid and solution structural organization of imidazolium ionic liquids[J].J.Braz.Chem.Soc.2004.15.341-350.
    [54]Holmqvist P.,Alexandridis P.,Lindman B.,Modification of the microstructure in block copolymer-water-"oil" systems by varying the copolymer composition and the "oil" type:small-angle Ⅹ-ray scattering and deuterium-NMR investigation[J].J.Phys.Chem.B 1998,102.1149-1158.
    [55]Zheng L.,Guo C.,Wang J.,Liang X.,Bahadur P.,Chen S.,Ma J.,Liu H.Micellization of pluronic L64 in salt solution by FTIR spectroscopy[J].Vib.Spectrosc.2005.39.157-162.
    [56]Mata J.P.,Majhi P.R.,Guo C.,Liu H.Z.,Bahadur P.Concentration.temperature,and salt-induced micellization of a triblock copolymer Pluronic L64in aqueous media[J].J.Colloid Interf.Sci.2005.292,548-556.
    [57]Alexandridis P.,Holzwarth J.F.Differential scanning calorimetry investigation of the effect of salts on aqueous solution properties of an amphiphilic block copolymer(Poloxamer)[J].Langmuir 1997,13.6074-6082.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700