用户名: 密码: 验证码:
青藏高原湖泊沉积正构烷烃单体氢同位素比值的气候意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分别在青藏高原南部的大枪勇错、空姆错,中部的纳木错以及东北部的克鲁克湖和小柴达木湖钻取了浅岩芯,通过对沉积物中正构烷烃的提取分析和单体氢同位素比值的测定来探讨该类生物标志物单体δD值的气候指示意义。
     通过将青藏高原南北断面湖泊表层沉积物中陆源正构烷烃(n-C25、n-C27、n-C29、n-C31)的δD值与当地生长季节大气降水的δD值进行比较,发现两者有很好的相关性,说明陆源沉积正构烷烃主要记录了生长季节降水的同位素信号。正构烷烃n-C25、n-C27与大气降水间氢同位素表观分馏在-45‰至-70‰之间,平均分馏值是-57‰;正构烷烃n-C29、n-C31与大气降水间氢同位素表观分馏在-70‰至-95‰之间,平均分馏值是-82‰。这四种陆源生物标志物与降水间的氢同位素表观分馏沿断面都稳定。通过对比欧洲南北断面的-130‰表观分馏值,可以看出青藏高原南北断面陆源沉积正构烷烃与大气降水间的表观氢同位素分馏小很多。
     通过将青藏高原南北断面湖泊表层沉积物中水生生物来源的正构烷烃(n-C17、n-C19、n-C21、n-C23)的δD值与当地湖水的δD值进行比较,发现两者不具有相关性,说明沉积物中水生生物来源的正构烷烃没有记录源水的同位素信号。藻类来源的正构烷烃n-C17、n-C19与湖水间的氢同位素分馏在-30‰至-170‰之间,沉水/浮游植物来源的正构烷烃n-C21、n-C23与湖水间的氢同位素分馏在-40‰至-160‰之间,沿断面分馏均不稳定。通过对比欧洲南北断面稳定的-157‰分馏值,可以看出不同地区源水与沉积物中水生生物来源的正构烷烃间的氢同位素分馏可能不一定稳定在-157‰。
     通过将青藏高原南部空姆错的时间跨度约50年、7年间隔的岩芯剖面中陆源正构烷烃(n-C25、n-C27、n-C29、n-C31)的δD值与当地浪卡子气象站和拉萨气象站的气候要素进行比较,发现这些生物标志物单体的δD值与年平均气温相关,与生长季节平均气温显著相关,说明陆源沉积正构烷烃单体δD值主要记录了生长季节的气温信号,具有作为古温度代用指标的潜力。
To explore the climatic implication of compound-specific hydrogen isotope ratios of sedimentary n-alkanes, the author sampled shallow sediment cores respectively from the climatically and environmentally distinct basins Qiangyong Glacier Lake,Kongmu Co Lake,Nam Co Lake, Keluke Lake and Xiao Qaidam Lake along a S-N transect on the Tibetan Plateau for the extraction and analysis of these biomarkers.
     δD values of terrigenous n-alkanes (n-C25, n-C27, n-C29 and n-C31) extracted from recent lake surface sediments from the five lakes along the S-N transect are compared to that of precipitation spanning a wide range from -167‰to -51‰and clearly correlate withδD values of meteoric water during the growth, indicating that terrigenous n-alkanes record the precipitation signal during the growth. The fractionation between precipitation and alkanes of n-C25 and n-C27 cover a range from -45‰to -70‰whilst that between precipitation and alkanes of n-C29 and n-C31 vary from -70‰to -95‰, both being fairly constant along the S–N Tibetan transect with the mean at -57‰and -82‰, respectively. By comparison with the fractionation of -130‰along the S–N European transect, it implies that the hydrogen isotopic fractionation between meteoric water and terrestrial n-alkanes along the Tibetan transect represent distinct character.
     δD values of aquatic derived n-alkanes (n-C17, n-C19, n-C21 and n-C23) extracted from recent lake surface sediments from the five lakes along the S-N transect are compared to that of lake water spanning a wide range from -135‰to -22‰and the results show that these biomarkers do not record lake water signal. The fractionation between lake water and algae derived alkanes of n-C17 and n-C19 cover a range from -30‰to -170‰whereas that between lake water and submerged/floating plants derived alkanes of n-C21 and n-C23 varies from -40‰to -160‰, both covering a wide range along the S–N Tibetan transect with the mean at -94‰and -93‰, respectively. By comparison with the constant fractionation of -157‰along the S–N European transect, it implies that the hydrogen isotope fractionation between source water and sedimentary aquatic n-alkanes may not be necessarily constant at -157‰in different regions.
     δD values of terrigenous n-alkanes (n-C25, n-C27, n-C29 and n-C31) extracted from a short sediment profile spanning the past near-50 years at 7-year resolution from Kongmu Co Lake on the southern Tibetan Plateau are compared to the climate elements of Langkazi and Lhasa weather stations and clearly correlate with mean annual air temperature and significantly correlate with mean growing season air temperature, indicating that these biomarkers record the air temperature signal during the growth and have the potential to be used as a paleotemperature proxy.
引文
1 Bourbonniere R A, Meyers P A. Anthropogenic influences on hydrocarbon contents of sediments deposited in eastern Lake Ontario since 1800. Environmental Geology, 1996, 28(1): 22-28.
    2 Brassell S C, Eglinton G, Marlowe I T, et al. Molecular stratigraphy: A new tool for climatic assessment. Nature, 1986, 320: 129-133.
    3 Brincat D, Yamada K, Ishiwatari R, et al. Molecular-isotopic stratigraphy of long chain n-alkanes in Lake Baikal Holocene and glacial age sediments. Organic Geochemistry, 2000a, 31: 287-294.
    4 Brincat D, Yamada K, Ishiwatari R, et al. Molecular-isotopic stratigraphy of long-chain n-alkanes in Lake Baikal Holocene and glacial age sediments. Organic Geochemistry, 2000b, 31(4): 287-294.
    5 Bull I D, vanBergen P F, Nott C J, et al. Organic geochemical studies of soils from the Rothamsted classical experiments-V. The fate of lipids in different long-term experiments. Organic Geochemistry, 2000, 31: 389-408.
    6 Burgoyne T W, Hayes J M. Quantitative production of H2 by pyrolysis of gas chromatographic effluents. Analytical Chemistry, 1998, 70: 5136-5141.
    7 Chikaraishi Y, Naraoka H. Compound-specific δD-δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry, 2003, 63: 361-371.
    8 Collister J W, Rieley G, Stern B, et al. Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide mechanism. Organic Geochemistry, 1994, 21: 619-628.
    9 Craig H. Isotopic variations in meteoric waters. Science, 1961, 133: 1702-1703.
    10 Cranwell P A. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change. Freshwater Biol, 1973(3): 259-265.
    11 Cranwell P A, Eglinton G, Robinson N. Lipids of aquatic organisms as potential contributors to lacustrine sediments--II. Organic Geochemistry, 1987, 11(6): 513-527.
    12 Dansgaard W. The abundance of 18O in atmospheric water and water vapor. Tellus, 1953, 5: 461-469.
    13 Dansgaard W. Stable isotopes in precipitation. Tellus, 1964, 16: 436-468.
    14 Dawson D, Grice K. Stable hydrogen isotopic composition of hydrocarbons in torbanite (Late Carboniferous to Late Permian) deposited under various climatic conditions. Organic Geochemistry, 2004, 35: 189-197.
    15 Eglinton G, Hamilton R J. Leaf epicuticular waxes. Science, 1967, 156(3780): 1322-l 335.
    16 Ehhalt D, Knot K, Nagel J F, et al. Deuterium and oxygen-18 in rain water. Journal of Geophysical Research, 1963, 68: 3775-3780.
    17 Evershed R P, Dudd S N, Charters S, et al. Lipids as carriers of anthropogenic signals from prehistory. Philosophical Transactions of the Royal Society of London series B-Biological sciences 1999, 354: 19-31.
    18 Feng X H, Epstein S. Climatic temperature records in δD data from tree-rings. Geochimica et Cosmochimica Acta, 1995, 59(14): 3029-3037.
    19 Ficken K J, Li B, Swain D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry, 2000, 31(7-8): 745-749.
    20 Fisher E, Oldfield F, Wake R, et al. Molecular marker records of land use change. Organic Geochemistry, 2003, 34(1): 105-119.
    21 Flanagan L B, Comstock J P, Ehleringer J R, et al. Comparison of modeled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L. Plant Physiology, 1991, 96: 588-596.
    22 Freeman K H, Colarusso L A. Molecular and isotopic record of C4 grassland expansion in the late Miocene. Geochimica et Cosmochimica Acta, 2001, 65(9): 1439-1454.
    23 Gagosian R B, Pehzer E T, Merrill J T. The importance of atmospheric input of terrestrial organic material to deep sea sediments. Organic Geochemistry, 1986, 10: 661-669.
    24 Gat J R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences, 1996, 24: 225-262.
    25 Gehre M, Geilmann H, Richter J, et al. Continuous flow H-2/H-1and (18)O/O-16 analysis of water samples with dual inlet precision. Rapid Communications in Mass Spectrometry, 2004, 18(22): 2650-2660.
    26 Han J, Calvin M. Hydrocarbon Distribution of Algae and Bacteria and Microbiological Activity in Sediments. Proc Nat Acad Sci USA, 1969, 64(2): 436-443.
    27 Hilkert A W, Douthitt C B, Schluter H J, et al. Isotope ratio monitoring gas chromatography/mass spectrometry of D/H by high temperature conversion isotope ratiomass spectrometry. Rapid Communication in Mass Spectrometry, 1999, 13: 1226-1230.
    28 Hou J Z, D'Andrea W J, MacDonald D, et al. Hydrogen isotopic variability in leaf waxes among terrestrial and aquatic plants around Blood Pond, Massachsetts (USA). Organic Geochemistry, 2007, 38: 977-984.
    29 Hou S G, Masson-Delmotte V r, Qin D H, et al. Modern precipitation stable isotope vs. elevation gradients in the High Himalaya. Comment on"A new approach to stable isotope-based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene"by David B. Rowley et al.[Earth Planet. Sci. Lett.,2001,188:253-268]. Earth and Planetary Science Letters, 2003, 209: 395-399.
    30 Huang Y, Shuman B, Wang Y, et al. Hydrogen isotope ratios of individual lipids in lake sediments as novel tracers of climatic and environmental change: a surface sediment test. Journal of Paleolimnology, 2004, 31: 363-375.
    31 Huang Y, Street-Perrott F A, Metcalfe S E, et al. Climatic change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance. Science, 2001, 293(31): 1647-1651.
    32 Ishiwatari R, Hirakawa Y. Organic geochemistry of the Japan Sea sediments-1: bulk organic matter and hydrocarbon analyses of Core KH-793, C-3 from the Oki Ridge for paleoenvironment assessments. Journal of Oceanography, 1994, 50: 179-195.
    33 Jacob J, Huang Y S, Disnar J-R, et al. Paleohydrological changes during the last deglaciation in Northern Brazil. Quaternary Science Reviews, 2007, 26: 1004-1015.
    34 Jaffe R, Elisme T, Cabrera A C. Geochemistry of seasonally flooded rain forest soils molecular composition and early diagenesis of lipid components. Organic Geochemistry, 1996, 25(1): 9-17.
    35 Kuyper S M M M, Pancost R D, Sinninghe-Damster J S. A large and abrupt fall in atmospheric CO2 concentration during Cretaceous times. Nature, 1999, 399: 342-345.
    36 Liu W G, Huang Y S. Compound specific D/H ratios and molecular distributions of higher plant leaf waxes as novel paleoenvironmental indicators in the Chinese Loess Plateau. Organic Geochemistry, 2005, 36: 851-860.
    37 Liu W G, Yang H, Li L W. Hydrogen isotopic compositions of n-alkanes from terrestrial plants correlate with their ecological life forms. Oecologia, 2006, 150(2): 330-338.
    38 Madureira L A S, van-Kreveld S A. Late Quaternary high-resolution biomarker and other sedimentary climate proxies in a northeast Atlantic core. Paleoceanography, 1997, 12: 255-269.
    39 Madureira L A S, vanKreveld S A, Eglinton G, et al. Late Quaternary high-resolution biomarker and other sedimentary climate proxies in a northeast Atlantic core. Paleoceanography, 1997, 12(2): 255-269.
    40 Meyers P A, Ishiwatari R. Lacustrine organic geochemistry--an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry, 1993, 20(7): 867-900.
    41 Naafs D, vanBergen P F, Boogert S J, et al. Solvent-extractable lipids in an acid forest soil: variations with depth and season. Soil Biology & Biochemistry, 2004, 36: 297-308.
    42 Nott C J, Xie S, Avsejs L A, et al. n-Alkane distributions in ombrotrophic mires as indicators of vegetation change related to climatic variation. Organic Geochemistry, 2000, 31(2-3): 231-235.
    43 Oldfield F. Past Global Changes (PAGES): Status Report and Implementation Plan. Global Change Report. Sweden, Stockholm: IGBP, 1998, 45: 1-112.
    44 Oros D R, Standley L J, Chen X J, et al. Epicuticular wax compositions of predominant conifers of western North America. ZEITSCHRIFT FUR NATURFORSCHUNG C-A JOURNAL OF BIOSCIENCES 1999, 54(1-2): 17-24.
    45 Oupont L M, Mook W G. Palaeoclimate analysis of 2H/1H ratios in peat sequences with variable plant composition. Chemical Geology, 1987, 66(1): 323-333.
    46 Pelejero C. Terrigenous n-alkane input in the South China Sea: high-resolution records and surface sediments. Chemical Geology, 2003, 200(1-2): 89-103.
    47 Person A, Mc-Nichol A P, Benitez-Nelson B C, et al. Origins of lipid biomarkers in Santa Monica Basin surface sediment:A case study using compound specific δ14C analysis. Geochimica et Cosmochimica Acta, 2001, 65: 3123-3137.
    48 Qu W C, Dickman M, Wang S M, et al. Lake typology based on the use of sediment alkanes in the east and west basins of Taihu Lake, China. Hydrobiologia, 1998, 364: 219-223.
    49 Rieley G, Collier R J, Jones D M, et al. The biogeochemsitry of Ellesmere lake,UK.1. Source correlation of leaf wax inputs to the sedimentary lipid record. Organic Geochemistry, 1991, 17(6): 901-912.
    50 Sachse D, Radke J, Gleixner G. Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability. Geochimica et Cosmochimica Acta, 2004, 68(23): 4877-4889.
    51 Sachse D, Radke J, Gleixner G. delta D values of individual n-alkanes from terrestrialplants along a climatic gradient - Implications for the sedimentary biomarker record. Organic Geochemistry, 2006, 37(4): 469-483.
    52 Schefuss E, Ratmeyer V, Stuut J B W, et al. Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic. Geochimica Et Cosmochimica Acta, 2003, 67(10): 1757-1767.
    53 Schiegl W E. Deuterium content of peat as a paleoclimate recorder. Science, 1972, 175: 512-513.
    54 Schiegl W E. Climatic significance of deuterium abundance in growth rings of Picea. Nature, 1974, 251: 582-584.
    55 Schimmelmann A, Lewan M D, Wintsch R P. D/H isotope ratios of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types I, II, and III. Geochimica et Cosmochimica Acta, 1999, 63: 3751-3766.
    56 Schouten S, Ossebaar J, Schreiber K, et al. The effect of temperature,salinity and growth rate on the stable hydrogen isotopic composition of long chain alkenones produced by Emiliania huxleyi and Gephyrocapsa oceanica. Biogeosciences, 2006, 3: 113-119.
    57 Sessions A L. Seasonal changes in D/H fractionation accompanying lipid biosynthesis in Spartina alterniflora. Geochimica et Cosmochimica Acta, 2006, 70: 2153-2162.
    58 Sessions A L, Burgoyne T W, Schimmelmann A, et al. Fractionation of hydrogen isotopes in lipid biosynthesis. Organic Geochemistry, 1999, 30: 1193-1200.
    59 Simoneit B R T, Cardoso J N, Robinson N. An assessment of terrestrial higher molecular weight lipid compounds in aerosols particulate matter over the South Atlantic from about 30°~70°S. Chemosphere, 1991a, 23(4): 447-465.
    60 Simoneit B R T, Sheng G Y, Chen X J, et al. Molecular marker study of extractable organic matter in aerosols from urban areas of China. Atmospheric Environment, 1991b, 25(10): 2111-2119.
    61 Smith F A, Freeman K H. Influence of physiology and climate on δD of leaf wax n-alkanes from C3 and C4 grasses. Geochimica Et Cosmochimica Acta, 2006, 70: 1172-1187.
    62 Street-Perrott F A, Huang Y, Perrott R A, et al. The impact of lower atmospheric CO2 on tropical mountain ecosystem. Science, 1997, 278: 1422-1426.
    63 Tang X L, Bi X H, Sheng G Y, et al. Seasonal variation of the particle size distribution of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) in urban aerosol of Guangzhou, China. Environmental Monitoring and Assessment, 2006, 117(1-3): 193-213.
    64 Thompson L G, Yao T D, Mosley-Thompson E, et al. A high-resolution millennial record of the south Asian monsoon from Himalayan ice cores. Science, 2000, 289: 1916-1919.
    65 Tian L D, Yao T D, Stievenard M, et al. Deuterium in precipitation and relevant climate in west China. Journal of Glaciology and Geocryology 1999, 21(4): 357-361.
    66 Tian L D, Yao T D, Sun W Z, et al. Relationship between δD and δ18O in precipitation on north and south of the Tibetan Plateau and moisture recycling. Science in China,Ser.D, 2001, 44(9): 789-796.
    67 Villanueva J, Grimalt J O, Cortijo E, et al. A biomarker approach to the organic matter deposited in the North Atlantic during the last climatic cycle. Geochimica et Cosmochimica Acta, 1997, 61: 4633-4646.
    68 Viso A C, Pesando D, Bernard P, et al. Lipid Components of The Mediterranean Seagrass Posidonia-oceanicaI. Phytochemistry, 1993, 34(2): 381-387.
    69 Volkman J K, Farrington J W, Gagosian R B, et al. Lipid composition of coastal sediments from the Peru upwelling region. Advances in Organic Geochemistry, 1995: 228-240.
    70 Wershaw R L, Friedman I, Heller S J. Hydrogen isotope fractionation of water passing through trees. Organic Geochemistry, 1970, 3: 55-67.
    71 Williams W D. Chinese and Mongolian saline lakes-a limnological overview. Hydrobiologia, 1991, 210: 39-66.
    72 Xie S, Nott C J, Avsejs L A, et al. Paleoclimate records in compound-specific δD values of a lipid biomarker in ombrotrophic peat. Organic Geochemistry, 2000a, 31: 1053-1057.
    73 Xie S, Yi Y, Huang J, et al. Lipid distribution in a subtropical southern China stalagmite as a record of soil ecosystem response to paleoclimate change. Quaternary Research, 2003b, 60: 340-347.
    74 Xie S C, Chen F H, Wang Z Y, et al. Lipid distributions in loess-paleosol sequences from northwest China. Organic Geochemistry, 2003, 34(8): 1071-1079.
    75 Xie S C, Evershed R P. Peat molecular fossils recording paleoclimatic matter in replacement. Chinese Science Bulletin, 2001, 46(20): 1749-1752.
    76 Xie S C, Yao T D, Kang S C, et al. Geochemical analyses of a Himalayan snowpit profile: implications for atmospheric pollution and climate. Organic Geochemistry, 2000b, 31(1): 15-23.
    77 Yakir D, DeNiro M J, Rundel P W. Isotopic inhomogeneity of leaf water: Evidence and implications for the use of isotopic signals transdiced by plants. Geochimica etCosmochimica Acta, 1989, 53: 2769-2773.
    78 Yamada K, Ishiwatari R. Carbon isotopic compositions of long-chain n-alkanes in the Japan Sea sediments: implications for paleoenvironmental changes over the past 85 ka. Organic Geochemistry, 1999, 30: 367-377.
    79 Zhang Z, Zhao M, Yang X, et al. A hydrocarbon biomarker record for the last 40 kyr of plant input to Lake Heqing, southwestern China. Organic Geochemistry, 2004, 35: 595-613.
    80 Zhang Z H, Sachs J P. Hydrogen isotope fractionation in freshwater algae:I.Variations among lipids and species. Organic geochemistry, 2007, 38: 582-608.
    81 Zhang Z H, Zhao M X, Lu H Y, et al. Lower temperature as the main cause of C4 plant declines during the glacial periods on the Chinese Loess Plateau. Earth and Planetary Science Letters, 2003, 214: 467-481.
    82 Zheng M, Wan T S M, Fang M, et al. Characterization of the non-volatile organic compounds in the aerosols of Hong Kong-identification, abundance and origin. Atmospheric Environment, 1997, 31: 227-237.
    83 万国江. 现代沉积的 210Pb 计年. 第四纪研究, 1997, 17(3): 230-239.
    84 万国江. 现代沉积年分辨的 137Cs 计年—以云南洱海和贵州红枫湖为例. 第四纪研究, 1999, 19(1): 73-80.
    85 中国科学院中国植被图编辑委员会. 1:1000000 中国植被图集,北京: 科学出版社, 2001, 1-260.
    86 王志远, 刘占红, 易轶, 等. 不同气候和植物区现代土壤类脂物分子特征及其意义. 土壤学报, 2003, 40(6): 967-970.
    87 王志远, 谢树成, 陈发虎. 临夏塬堡黄土地层 S1古土壤中的正构烷烃及其古植被意义 第四纪研究, 2004, 24(2): 231-235.
    88 王红梅, 刘育燕, 王志远. 四川剑门关侏罗-白垩系红层分子化石的古环境和古气候意义. 地球科学-中国地质大学学报, 2001, 26(3): 229-234.
    89 王谋, 李勇, 黄润秋, 等. 青藏高原腹地植物碳同位素组成对环境条件的响应. 山地学报, 2005, 23(3): 274-279.
    90 田立德, 姚檀栋, 余武生, 等. 青藏高原水汽输送与冰芯中稳定同位素记录. 第四纪研究, 2006, 26(2): 145-152.
    91 朱大岗, 孟宪刚, 赵希涛, 等, 2004. 西藏纳木错地区第四纪环境演变, 北京: 地质出版社.
    92 李明财, 易现峰, 李来兴, 等. 基于稳定碳同位素技术研究青藏高原东部高寒区植被的光合型. 西北植物学报, 2004, 24(6): 1052-1056.
    93 李相博, 陈践发, 张平中, 等. 青藏高原(东北部)现代植物碳同位素组成特征及其气候信息. 沉积学报, 1999, 17(2): 325-329.
    94 汪青春, 张国胜. 柴达木地区春小麦生长季光能和光合特征分析. 甘肃农林科技, 1997(4): 4-6.
    95 宗浩, 王成善, 黄川友, 等. 纳木错流域自然生态特征与生物资源保护研究. 成都理工大学学报(自然科学版), 2004, 31(5): 551-557.
    96 施为光. 开发羊卓雍湖水电站对生态环境的影响. 湖泊科学, 1995, 7(2): 178-184.
    97 段水强. 德令哈盆地湖泊湿地变化与生态需水初步研究. 中国农村水利水电, 2005(9): 22-23.
    98 胡玉民, 崔向红. 德令哈市地下水资源开发利用浅析. 青海环境, 2002, 12(4): 161-162.
    99 梁斌, 谢树成, 顾延生, 等. 安徽宣城更新世红土正构烷烃分布特征及其古植被意义. 中国地质大学学报, 2005, 30(2): 129-133.
    100 盛国英, 蔡克勤, 阳学贤, 等. 合同察汗淖(碱)湖沉积物的长链不饱和酮及其古气候意义. 科学通报, 1998, 43(10): 1090-1093.
    101 傅家谟, 盛国英. 分子有机地球化学与古气候,古环境研究. 第四纪研究, 1992, 12(4): 306-320.
    102 傅家谟, 盛国英. 环境有机地球化学初探. 地学前缘, 1996, 3: 127-132.
    103 彭先芝, 贾蓉芬. 西峰与段家坡黄土剖面中有机质的特征及古环境信息. 地理科学, 2001, 21(1): 36-41.
    104 游庆龙, 康世昌, 李潮流, 等. 青藏高原纳木错气象要素变化特征. 气象, 2007, 33(3): 54-60.
    105 孙世洲, 孔令韶. 青海省大柴旦盆地植被. 西北植物学报, 1992, 12(1): 59-69.
    106 张干, 盛国英, 傅家谟, 等. 固城湖 GS-1 孔 11.87-12.28cm 古环境变更线的分子有机地球化学证据. 科学通报, 1999, 44(7): 775-779.
    107 杨群. 分子古生物学原理与方法. 北京:科学出版社, 2003,1-15.
    108 谢树成, 王志远, 王红梅, 等. 末次间冰期以来黄土高原的草原植被景观:来自分子化石的证据. 中国科学(D 辑), 2002, 32(1): 28-35.
    109 谢树成, 姚檀栋, 康世昌, 等. 青藏高原希夏邦马峰地区雪冰有机质的气候与环境意义. 中国科学(D 辑), 1999, 29(5): 457-465.
    110 谢树成, 梁斌, 郭建秋, 等. 生物标志化合物与相关的全球变化. 第四纪研究, 2003, 23(5): 521-528.
    111 谭淑琼, 安姬, 刘瑛. 拉萨地区农业气候资源分析. 西藏农业科技, 2007, 29(3): 31-33.
    112 闫巍, 张宪洲, 石培礼, 等. 青藏高原高寒草甸生态系统 CO2 通量及其水分利用效率特征. 自然资源学报, 2006, 21(5): 756-767.
    113 陈拓, 杨梅学, 冯虎元, 等. 青藏高原北部植物叶片碳同位素组成的空间特征. 冰川冻土, 2003, 25(1): 83-87.
    114 龚庆杰, 吴良基, 吴时国, 等. 南海长链烯酮化合物检测及 U37k 值的应用. 地球化学, 1999, 28(1): 51-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700