用户名: 密码: 验证码:
聚偏氟乙烯、高铝水泥/填料复合材料双极板的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双极板是质子交换膜燃料电池(PEMFC)的关键部件之一,其制作成本和性能直接影响着PEMFC的商业化和性能。无孔石墨双极板因性能优异而被广泛采用,但由于复杂的制备及后续机加工工艺,生产石墨双极板的成本很高,其他各种替代双极板材料的研制一直非常活跃。聚合物/填料复合材料双极板因其制作工艺简单,可以一次性复合模压成型直接得到带流场的双极板,易于实现大规模生产,而成为目前PEMFC双极板发展的主流和最具前景的发展方向。目前,有关聚合物/填料复合材料双极板的研制大都集中在树脂基碳复合材料上,这类双极板具有优异的耐腐蚀性能,但仍然存在电导率和机械强度较低的缺点。寻求石墨等碳质类导电填料的替代材料,与聚合物树脂复合制备性能优良的低成本PEMFC双极板,便成为PEMFC双极板开发研究中的一项重要课题。另外,燃料电池的增湿普遍采用的是外增湿,外增湿直接增加了燃料电池电堆的体积,内增湿是目前主要的研究方向,特别是改变双极板的结构或材料来赋予其增湿功能。
     为此,本论文在借鉴实验室近年来研制碳化硅钛(Ti_3SiC_2)的工作基础上,为进一步扩大Ti_3SiC_2的应用范围,采用Ti_3SiC_2作导电填料,与聚偏氟乙烯树脂(PVDF)复合模压制备导电复合材料,研究该复合材料的导电性、导热性、机械强度和热稳定性等,以期制备出满足PEMFC运行要求的双极板。另外,论文采用高铝水泥为粘结剂,Ti_3SiC_2与石墨混合作导电填料,通过模压工艺制备出一种新型复合材料双极板,在优化该复合材料性能、开发其内增湿功能方面进行了初步的探索。
     首先,采用PVDF作胶粘剂,分别与石墨、TiC和Ti_3SiC_2复合模压制备PVDF基导电复合材料。以渗流理论描述复合材料的导电性能,通过考察导电填料种类及Ti_3SiC_2颗粒粒径对复合材料渗流阂值高低、渗流转变区域宽度的影响,结合对复合材料微观结构的分析,确立了PVDF基导电复合材料的导电机理,为制备PVDF/填料复合材料双极板奠定理论基础。
     采用石墨、TiC及Ti_3SiC_2作导电填料,分别与PVDF复合于相同的工艺制度下模压制备PVDF/填料复合材料,考察了导电填料种类对PVDF/填料复合材料物理性能的影响。实验结果表明导电填料含量为80Wt%时,PVDF/Ti_3SiC_2复合材料导电性能优于PVDF/TiC及PVDF/石墨复合材料,其力学、导热及热膨胀性能介于两者之间。由此,我们认定Ti_3SiC_2可以取代石墨及TiC作导电填料与PVDF复合制备性能优良的燃料电池双极板。
     以Ti_3SiC_2作导电填料,PVDF树脂为粘结剂,制备了PVDF/Ti_3SiC_2复合材料双极板。对Ti_3SiC_2含量、Ti_3SiC_2颗粒粒径、Ti_3SiC_2颗粒级配以及模压工艺条件对复合板导电性能、导热性能、机械性能和体积密度等的影响进行了系统考察。实验结果表明,在Ti_3SiC_2质量含量为80%、粗细Ti_3SiC_2颗粒质量比值为4:1及适当的工艺条件下,所制的PVDF/Ti_3SiC_2复合材料双极板的导电及力学性能指标均超过公认的PEMFC双极板性能要求,其导热及耐腐蚀性能还有待提高。
     为进一步优化PVDF/Ti_3SiC_2复合材料双极板的性能,同时降低PVDF/Ti_3SiC_2复合材料双极板的制作成本,分别考察了第二相导电填料石墨及TiC的掺入对PVDF/Ti_3SiC_2复合材料性能的影响。实验结果表明随着TiC含量增加,复合材料的导电及导热性能出现先升高后降低的趋势,而力学性能则出现单调上升的趋势。随着石墨含量增加,复合材料的导电性能先降低后升高,导热性能得以较大程度地提高,而力学性能线性降低。
     采用高铝水泥作为粘结剂,Ti_3SiC_2与石墨混合作导电填料,通过室温模压的方法制备了高铝水泥/填料导电复合材料。对其基本物理性能包括体积电导率、抗弯强度、体积密度、吸水率及耐酸腐蚀性能进行了测量,并对其物相组成及微观结构进行了表征。实验结果表明:在Ti_3SiC_2质量含量为40%、高铝水泥质量含量为20%及适当的工艺条件下,高铝水泥/填料复合材料双极板的体积电导率、抗弯强度及耐腐蚀性能基本上可以满足质子交换膜燃料电池的使用要求,并且具有约4wt%的含水量,有一定的自增湿功能。
Bipolar plate is one of the critical components of proton exchange membrane fuel cell (PEMFC), which influences not only the performance but also the cost of the stack. At the present time, the non-porous graphite bipolar plate has been adopted extensively because of its excellent properties, however, its manufacturing technology is relatively complicated and it is expensive to mill flow channels, so its production cost is very high. Extensive efforts have been made to develop alternative materials and bipolar plates. Due to low cost, ease of manufacturing, low gas permeability , as well as high corrosion resistance, polymer/filler composite bipolar plate was considered to be one of good candidates for non-porous graphite bipolar plate. However, at the present time, little research has been done to develop new polymer/filler composite bipolar plates except for carbon-based composite bipolar plates, which has comparatively low electrical conductivity and mechanical strength. Therefore, seeking new conducive filler for the substitution of carbon and manufacturing novel low cost composite bipolar plate with high performance has been an important topic for the development of bipolar plate. In addition, humidifying through external equipment is generally adopted currently, which increase the volume of the fuel cell stack. So, it is a considerable direction to humidify the NAFION membrane through internal equipment, for example, changing the materials or structure of bipolar plate to give it humidifying function. Therefore, with the background mentioned above and in order to develop the application field of titanium silicon carbide (Ti_3SiC_2), two kinds of new composite bipolar plates are investigated in this thesis.
     Firstly, the polyvinylidene fluoride (PVDF)-based conductive composites have been fabricated by compression molding technique. The percolation theory is applied to explain the conduction mechanism of the composite, the influences of conductive fillers' categories and particle size of Ti_3SiC_2 on the percolation threshold and percolation transition zone are discussed, also the microstructure of the PVDF-based conductive composite was analyzed by scanning electron microscope (SEM).
     With PVDF as the adhesive, graphite, titanium carbide (TiC) and Ti_3SiC_2 as conductive filler respectively, the PVDF/filler composite was prepared by compression molding technique. The effect of conductive fillers' categories on the physical properties of PVDF/filler composite was investigated. The experimental results show that for a content of PVDF of 20 Wt%, the volume conductivity of PVDF/Ti_3SiC_2 composite is the highest among PVDF/Ti_3SiC_2 composite, PVDF/TiC composite and PVDF/graphite composite. The other physical properties of PVDF/Ti_3SiC_2 composite, such as flexural strength, thermal conductivity, thermal expansion coefficient and volume density, were between PVDF/TiC composite and PVDF/graphite composite. Therefore, Ti_3SiC_2 was considered a good candidate to prepare composite bipolar plate with excellent performance.
     PVDF/Ti_3SiC_2 composite bipolar plate was manufactured by compression molding technique using Ti_3SiC_2 as conductive filler and PVDF as the adhesive. The effects of Ti_3SiC_2 content, the particle size of Ti_3SiC_2, the particle grade of Ti_3SiC_2 and compression molding technological conditions on electrical conductivity, flexural strength, thermal conductivity, volume density and water absorption ratio of the composite were systematically investigated. The experimental results indicate that, with 80 wt% Ti_3SiC_2, the mass ratio of coarse Ti_3SiC-2 particle to fine Ti_3SiC_2 particle was 4:1 and under appropriate technological conditions, the volume conductivity and flexural strength of the self-prepared PVDF/Ti_3SiC_2 composite bipolar plate are both higher than the target value established by American Department of Energy for PEMFC bipolar plate. As a result, the PVDF/Ti_3SiC_2 composite bipolar plate appears to be a good candidate for PEMFC bipolar plate. However, its thermal and corrosion resistant properties are needed to be improved further.
     To further optimize the physical properties and reduce the production cost of PVDF/Ti_3SiC_2 composite bipolar plate, the effect of second phase conductive filler such as TiC or graphite on physical properties of PVDF/Ti_3SiC_2 composite was investigated.The results indicate that as TiC content increases, the volume conductivity and thermal conductivity of the composite firstly increase and then decrease, and the flexural strength of the composite increases monotonously. As graphite content increases, the volume conductivity of the composite firstly decrease and then increases, the thermal conductivity of the composite increases comparatively fastly, and the flexural strength of the composite decreases linearly.
     Alumina cement/filler conductive composite, which will be used as the bipolar plate of proton exchange membrane fuel cell (PEMFC), was prepared by compression molding technique at room temperature using alumina cement as adhesive and Ti_3SiC_2 combined with graphite as conductive filler. The fundamental physical properties of the composite such as the volume conductivity, the flexural strength, the corrosion current density, the volume density and water absorption ratio were measured, and morphology of these composites were investigated by scanning electron microscope (SEM),the phase composition was also investigated by X-ray diffraction technique(XRD). The results indicate that the electrical conductivity, the flexural strength and the corrosion current density of the composite bipolar plate can meet PEMFC requirements when graphite content is 40wt%, alumina cement content is 20wt% and under appropriate technological conditions. The water absorption ratio of composite bipolar plate is about 4wt% which makes it possess self- humidifying function during the operating process of fuel cell.
引文
[1]衣宝廉.燃料电池:原理·技术·应用.北京:化学工业出版社,2003.
    
    [2]杨遇春.燃料电池及相关材料新进展(一)[J].稀有金属,1999,23(2):121-124.
    
    [3] A.J. Appleby. Fuel cell technology and innovation [J]. Journal of Power Sources, 1992,37(1-2): 223-239.
    
    [4]A.J. Appleby, F.R. Foulkes. Fuel cell handbook. VanNostrand Reinhold, New York, 1989:341-344.
    
    [5]EG&G Technical Services,Inc,Science Application International Corporation. Fuel Cell Handbook (Sixth Edition). U.S.Department of Energy (DOE), 2002.11.
    
    [6]顾登平,童汝亭.化学电源.北京:高等教育出版社,1993:99-100.
    
    [7] H.P. Dhar. On solid polymer fuel cell, Jouranal of Electroanalytical Chemistry [J], 1993, 357(1-2): 237-250.
    
    [8]李国欣.新型化学电源导论.上海:复旦大学出版社,1992:510-512.
    
    [9]郭炳坤,李新海,杨松青.化学电源——电池原理及制造技术.长沙:中南大学出版社,2003.
    
    [10]陈延禧.聚合物电解质燃料电池的研究进展[J].电源技术,1996,20(1):21-27.
    
    [11]林维明.燃料电池系统.北京:化学工业出版社,1996:1-2.
    
    [12]刘建,周光月,郑恩华,等.燃料电池的研究与开发(I)[J].贵金属,1999,20(4):57-61.
    
    [13]K.B.Prater. Polymer electrolyte full cells review of recent developments [J]. Journal of Power Sources, 1994,51: 129-144.
    
    [14]衣宝廉.质子交换膜型燃料电池(PEMFC)—国内外状况与主要技术问题[J].电源技术,1997,21(2):80-85.
    
    [15]韩明.离子交换膜燃料电池初步研究[J].电源技术,1996,20(6):238-242.
    
    [16] K. Strasser. Mobile fuel cell development at Siemens [J]. Journal of Power Sources, 1992, 37(1-2):209-219.
    
    [17]M.Warshay. The fuel cell in space: yesterday, today and tomorrow [J]. Journal of Power Sources, 1990,29:193.
    
    [18]农宝廉.燃料电池——高效、环境友好的发电方式[M].北京:化学工业出版社,2001:1-2.
    
    [19]Allen Hermann, Tapas Chaudhuri, Priscila Spangnol. Bipolar plates for PEM fuel cells: A review [J]. International Journal of Hydrogen Energy, 2005, 30:1297-1302.
    
    [20]张海峰,衣宝廉,候明,等.质子交换膜燃料电池双极板的材料与制备[J].电源技术,2003,27(2):129-133.
    
    [21]Joyce S. Cooper. Design analysis of PEMFC bipolar plates considering stack manufacturingand environment impact [J]. Journal of Power Sources, 2004, 129:152-169.
    
    [22] Jianhua Huang, D.G. Baird, J.E. McGragh. Development of fuel cell bipolar plates from??graphite filled wet-lay thermoplastic composite materials [J]. Journal of Power Sources, 2005,150(4): 110-119.
    
    [23] V. Mehta, J.S. Cooper. Review and analysis of PEM fuel cell design and manufacturing [J].Journal of Power Sources, 2003, 114(1): 32-53.
    
    [24] R.L.Borup, N.E.Vanderborgh. Design and testing criteria for bipolar plate materials for PEMfuel cell applications [J], Mater. Res. Soc. Symp. Proa, 1995, 393:151-155.
    
    [25]由宏新,何广利,丁信伟,等.质子交换膜燃料电池金属双极板材料研究进展[J].中国腐蚀与防护学报,2003,6:375-378.
    
    [26]骆兵,倪红军,黄明宇,等.PEMFC双极板材料及其工艺[J].电源技术,2006,2:162-164.
    
    [27] Cisar Alan J, Murphy Oliwr J, Jeng Kingtsai. Lightweight metal bipolar plates and methodsfor making the same [P]. US Patent: 6203936, 2001.
    
    [28] Li Yang, Meng Wenjin, Swathirajan, etal. Corrosion resistant PEM fuel cell [P]. US Patent:RE37284E.2001.
    
    [29] Thomas, Ieuan. Bipolar plate for fuel cells [P]. GB: WO0022689, 2001.
    
    [30]福居康,松野雅典,斋藤实.低温燃料电池分离器及其生产方法[P].CN:1273699A,2000.
    
    [31] A Mokohyama, T Takeda. Polymer electrolyte membrane fuel cell with bipolar plate havingmolded polymer projections [P]. US Patent: 5798188, 1998.
    
    [32] Emanuelson R C, Luoma W L, Taylor W A. Separator plate for electrochemical cells [P].US Patent: 4301222,1981.
    
    [33]Stewart R C. Carbon-graphite component for an electrochemical cell and method for makingthe component [P]. US Patent: 4670300, 1987.
    
    [34]Besmann M T, Klett W J, Henry J J. Carbon/Carbon composite bipolar plate for protonexchange membrane fuel cells [J]. J Electrochemical Society, 2000, 147(11): 4083-4086.
    
    [35]Grasso. Composite article [P]. US Patent: 6039823, 2000.
    
    [36]倪红军,廖萍,李飞,等.质子交换膜燃料电池双极板模具[P].CN200410041857.4,2004.
    
    [37] Lawrance R J, Richard J. Low cost bipolar current collector-separator for electrochemical cells [P]. US Patent: 4214969, 1980.
    
    [38] Wilson M S, Busick D N. Composite bipolar plate for electrochemical cells [P]. US Patent: 6248467B 1,2001.
    
    [39] Heinzel A, Mahlendorf F, Niemzig O, etal. Injection moulded low cost bipolar plates for PEM fuel cells [J]. J Power Sources, 2004, 131: 35-40.
    
    [40]Cho E A, Jeon U S, Ha H Y, etal. Characteristics of composite bipolar plates for polymer electrolyte membrane fuel cell [J]. J Power Sources, 2004, 125: 178-182.
    
    [41]邹彦文,张杰,贺俊,等.质子交换膜燃料电池复合材料双极板的研究[J].新型炭材料,2004.4:303-308.
    
    [42]孙斌,邹彦文,张杰,等.热塑性树脂基碳素复合材料双极板的研究[J].电源技术,2006,??7:588-590.
    
    [43]邹彦文,张杰,贺俊,等.复合材料双极板质子交换膜燃料电池[J].电源技术,2005,129(11):734-736.
    
    [44] F. Mighri, M.A. Huneault, M.F. Champagne. Electrically conductive thermoplastic blendsfor injection and compression molding of bipolar plates in the fuel cell application[J]. PolymerEngineering and Science, 2004,44(9):1755-1765.
    
    [45]Wolf H, M Willert-Porada. Electrically conductive LCP-carbon composite with low carboncontent for bipolar plate application in polymer electrolyte membrane fuel cell [J]. J PowerSources, 2006, 153: 41-46.
    
    [46]Wu Man,Shaw L L. On the improved properties of injection-molded, carbon nanotube-filledPET/PVDF blends [J]. J Power Sources, 2004, 153: 37-44.
    
    [47]Man Wu,Shaw L L. A novel concept of carbon-filled polymer blends for applications in PEMfuel cell bipolar plates [J]. Int J Hydrogen Energy, 2005, 30:373-380.
    
    [48] Zafar Iqbal, Jeff Pratt, Jim Matrunich, etal. Nanocomposite for fuel cell bipolar plate [P]. USPatent: 6572997B 1,2003.
    
    [49]Bisaria M K, Andrin P, Abdou M, etal. Injection moldable conductive aromatic thermoplasticliquid crystalline polymeric compositions [P]. US Patent: 6379795, 2002.
    
    [50]Saito K, Hagiwara A, Tanno F. Separator for polymer electrolyte fuel cells and processes forproduction thereof [P]. US Patent: 6242124, 2001.
    
    [51]潘朝光,李国华,许莉,等.石墨/聚丙烯复合板的导电和阻气性能[J].塑料工业,2003,12:40-43.
    
    [52]Laconti A B, Griffith A E, Cropley C C, etal. Titanium carbide bipolar plate forelectro-chemical devices[P]. US Patent: 6083641,2000.
    
    [53]Davis H J. Composite bipolar plate separator structures for polymer electrolyte membrane(PEM) electrochemical and fuel cells [P]. GB: 2359186,2001.
    
    [54] D.S. Watkins, K.W. Dircks, D.G. Epp. Fuel cell fluid flow field plate. U.S.Patent: 5108849,1992.
    
    [55] M.S. Wilson. Fuel cell with interdigitated porous flow-field. U.S. Patent: 5641586, 1997.
    
    [56] M.S.Wilson. Fuel cell with interdigitated porous flow-field. Journal of Power Sources, 1998,70(2): 285
    
    [57] M.S. Wilson, C. Zawodzinski. Fuel cell with metal screen flow-field. U.S.Patent: 6207310,2001.
    
    [58] S. Gamburzev, B. Christopher, A.J. Appleby. Low platinum loading, lightweight PEM fuelcells. Fuel Cells Bulletin, 1999, 2(6): 6-8.
    
    [59] D.P. Wilkinson, G.J. Lamont, H.H. Voss, etal. Embossed fluid flow field plate forelectrochemical fuel cells. U.S. Patent: 5521018, 1996.
    
    [60]李世波,成来飞,王东,等.层状Ti_3SiC_2陶瓷的组织结构及力学性能.复合材料学报,2002,19(6):20-24.
    
    [61]田军.石墨晶体结构及石墨层间化合物对摩擦性能的影响.新型碳材料1995,(4):54-58.
    
    [62]江东亮主编.精细陶瓷材料.北京:中国物质出版社,2000:169-171.
    
    [63]王泽杨.聚偏二氟乙烯(PVDF)及其制品[J].江苏化工,1996,24(2):53-55.
    
    [64]彭家惠,杨光,改性高铝水泥及其制品研究[J].房材与应用,1999,(4):3-5.
    
    [65]张雄伟,黄锐.高分子复合导电材料及其应用发展趋势[J].功能材料,1997,25(6):492-499.
    
    [66]R.M.Norman. Conductive Rubbers and plastics [M]. Elsevier, New York, 1970.
    
    [67]HJ.Mair. Polymers-Electrically conducting mouldings. Kunststoff, 1983, 73(9):516-519.
    
    [68]B.Webling. Electrically conductive polymer. Kunststoff, 1986, 76(10):930-936.
    
    [69]G.H.Kleinheins. Radiation crosslinked conductive polymers and their applications. Kunststoff, 1984, 74(12):737-740.
    
    [70]张雄伟,黄锐.LDPE/炭黑复合导电材料PTC/NTC效应形成机理的探讨.成都科技大学学报,1994.5:38-44.
    
    [71]J.C.Scott, P.Pfluger, M.T.Krounbi. Electron-Spin-Resonance studies of pyrrolr polymers: Evidence for bipolarons. Phys. Rev. B, 1983,28:2140-2145.
    
    [72]R.J.Waltman, J.Bargon, A.F.Diaz. Electrochemical studies of some conducting polythiophene films. J. Phys. Chem, 1983, 87:1459.
    
    [73]陈其道,卢建平,洪啸吟.导电高分子材料的新进展.材料科学学报,1997,6:587-593.
    
    [74]N.Basecu, Z.X.Liu, D.Moses. High electric conductivity in doped polyacetylene. Nature,1987,327:403-405.
    
    [75]敬松.离子导电高分子.化工新型材料,1994,5:25-27.
    
    [76]左胜武.聚乙烯基石墨纳米复合材料的制备、结构和导电行为及机理研究.四川大学博士论文,2004,5.
    
    [77]吴刚.填充类导电复合材料结构与动态粘弹行为研究.浙江大学博士论文,2004,4.
    
    [78]曾戎,曾汉民.导电高分子复合材料导电通路的形成.材料工程,1997,10:9-13.
    
    [79]卢金荣,吴大军,陈国华.聚合物基导电复合材料几种导电理论的评述.塑料,2004,33(5):43-47.
    
    [80]Mark Weber, Musa R. Kamal. Estimation of the volume resistivity of electrically conductive composites. Polymer Composite, 1997, 18(6):711-725.
    
    [81]雀部博之编.导电高分子材料.北京:科学出版社,1989.
    
    [82]F.Brouers. Percolation threshold and conductivity in metal-insulator composite mean-field theories. J. Phys. C: Solid State Phys., 1987, c17:7183-7193.
    
    [83]陈兵,吴科如,姚武.碳纤维水泥基复合材料导电性能研究.混凝土与水泥制品,2002,6:36-39.
    
    [84]许晓秋,李景庆,张爽男,等.聚合物基PTC热敏导电材料的性能及机理研究.材料科学与工艺,2003,11(3):297-300.
    
    [85]赵若冬,刘宗浩,许莉,等.高性能NG/PF复合双极板制备.应用化工,2006,35(3):185-188.
    
    [86]赵择卿,陈小立.高分子材料导电和抗静电技术及应用.北京:中国纺织出版社,2006.
    
    [87]王彦明,王威强,李爱菊,等.碳纤维增强酚醛树脂/石墨复合材料双极板的低温热模压实验研究.材料科学与工程学报,2006,24(2):218-222.
    
    [88]Barsoum M W, El-Raghy T, Rawn C J, et al. Thermal Properties of Ti_3SiC_2. J. Phys. Chem.Solids, 1999, 60: 429-439.
    
    [89]El-Raghy T, Barsoum M W, Zavaliangos A, etal. Processing and Mechanical Properties ofTi_3SiC_2, Part Ⅱ: Effect of Grain Size and Deformation Temperature. J.Amer.Cer.Soc, 82, 1999,2855-2859.
    
    [90]方昆凡 主编.工程材料手册-非金属材料卷.北京:北京出版社,2000.
    
    [91]李侃社,王琪.聚合物复合材料导热性能的研究.高分子材料科学与工程,2002,18(4):10-14.
    
    [92]沈烈,张稚燕,王家俊.填充型聚合物基复合材料的导电和导热性能.高分子材料科学与工程,2006,22(4):107-109.
    
    [93]Kingery W D. The thermal conductivity of ceramic dielectrics. New York: John Wiley &Sons Inc, 1959.
    
    [94]Kogut L, Komvopoulos K. Electrical contact resistance theory for conductive rough surfaces separated by a thin insulating film. Journal of Applied Physics, 2004, 95(2):576-585.
    
    [95]Mikrajuddin A, Shi F G, Kim H K, etal. Size-dependent electrical constriction resistance for contacts of arbitrary size from Sharvin to Holm limits. Materials Science in Semiconductor Processing, 1999,2(4):321-327.
    
    [96]刘宗浩,许莉,王宇新.石墨/酚醛树脂复合板与碳纸间接触电阻.化工学报,2006,57(2):403-408.
    
    [97]关振铎,张中太,焦金生.无机材料物理性能.北京:清华大学出版社,2001.
    
    [98]陶珍东,郊少华.粉体工程与设备[M].北京:化学工业出版社,2003.
    
    [99]陆厚根,粉体工程导论[M].上海:同济大学出版社,1993.
    
    [100]郭仁炳,规则球粒堆积体的孔隙度[J].地球科学-中国地质大学学报.1994,19(4):503-508.
    
    [101]张金栋,施剑林.氧化铝粉料的颗粒级配对成型行为和烧结的影响.无机材料学报,1997,12(2):175-180.
    
    [102]吕环,高东红.牙科复合树脂中无机填料双峰混合体的堆积性能.中国粉体技术,2006,6 (6):1-6
    
    [103]刘宗浩,王宇新.石墨颗粒级配对复合板导电及阻气性能的影响.电源技术,2006,130(1):48-50.
    
    [104]梁国正,顾媛娟.模压成型技术.北京:化学工业出版社,2000,175-215.
    
    [105]刘宗浩.用于PEMFC的石墨/聚合物复合材料双极板研究.天津大学博士论文,2005,12.
    
    [106] S. Stucki, G.G. Scherer, S.Schlagowski, E. Fischer. PEM water electrolyser:evidence for membrane failure in 100kW demonstration plants. J. Appl.Electrochem., 1998,28: 1041-1049.
    
    [107]黄悼,屠海令,张冀强等.质子交换膜燃料电池的研究开发与应用.北京:冶金工业出版社,2000.p57,p66.
    
    [108] H.E. Vandan, H.V Bekkum. Preparation of platinum on activated carbon. J.Catalysis,1991, 131:335-340.
    
    [109] R. Hornung, G. Kappelt. Bipolar plate materials development using Fe-based alloys for solid polymer fuel cells. J. Power Sources, 1998, 72: 20-21.
    
    [110] Kyoung-Hwan Choi,Dong-Hyun Peck, et al. Water transport in polymer membranes for PEMFC [J]. J Power Sources, 2000, 86:197-201.
    
    [111] Miachon S, Aldebert P. Internal hydration H_2/O_2100cm~2 polymer electrolyte membrane fuel cell[J],Journal of Power Sources, 1995,56:31-36.
    
    [112] Carl A.Reiser, Ion exchange membrane fuel cell power plant with water management pressure differentials[P],US5,853,909( 1998,12,29).
    
    [113] Carl A.Reiser, Richard D.Sawyer, Solid polymer electrolyte fuel cell stack water management system[P],US4,769,297( 1988,9,6).
    
    [114] Otto J Adlhart. Fuel cell system utilizing ion exchange membranes and bipolar plates [P], US4, 175,165(1979,11,20).
    
    [115] Gerald J Koncar, Leonard G Marianowski, Proton exchange membrane fuel cell separatorplate[P],US5,942,347(1999,8,24).
    
    [116] SHEN chunhui, Pan Mu, Wu Qiong, etal. Performance of an aluminate cement /graphiteconductive composite bipolar plate. Journal of Power Sources, 2006, 159(2):1078-1083.
    
    [117] SHEN chunhui, PAN mu,YUAN qin, YUAN runzhang. Studies on Preparation andPerformance of Sodium Silicate/Graphite Conductive Composites, Journal of CompositeMaterials,2006,40(9):839-848.
    
    [118] SHEN chunhui, PAN mu, YUAN runzhang. Sodium Silicate/Graphite conductive compositebipolar plates for proton exchange membrane fuel cell , Journal of Power Sources,2006,162(1):460-463.
    
    [119]叶青,胡国君,张泽南.掺石墨水泥基导电材料的物理性能研究.硅酸盐通报,1995,6:37-40.
    
    [120]王零森.特种陶瓷.长沙:中南工业大学出版社,2000.5.
    
    [121]陈兵,张东.新型水泥基复合材料的研究与应用.新型建筑材料,2000,4:28-30.
    
    [122]叶青,胡国君.水泥基复合功能材料的研究与开发.材料科学与工程,1995,13(2):62-65.
    
    [123]黄世峰,徐荣华,刘福田等.水泥基功能复合材料研究进展及应用[J].硅酸盐通报,2003(4):58-63.
    
    [124]Weiping Ma, Paul W.Brown. Mechanical behavior and microstructural development in phosphate modified high alumina cement. Cement and Concrete Research, 1992, 22:1192-1200.
    
    [125]T.Chotard, N.Gimet-Breart, A.Smith, etal. Application of ultrasonic testing to describe the hydration of calcium aluminate cement at the early age. Cement and Concrete Research, 2001, 30:405-412.
    
    [126]H.H.M.Darweesh. Limestone as an accelerator and filler in limestone-substituted alumina cement. Ceramics International, 2004, 30:145-150.
    
    [127]Y.E1 Hafiane, A.Smith, J.P.Bonnet, etal. Effect of a carboxylic acid on the rheological behavior of an aluminous cement paste and consequences on the properties of the hardened material. Journal of European Ceramic Society, 2005, 25:1143-1147.
    
    [128] A.Smith, Y.El Hafiane, J.P.Bonnet, etal. Role of a small addition of acetic acid on the setting behavior and on the microstructure of a calcium aluminate cement. J.Am.Ceram.Soc, 2005, 88(8):2079-2084.
    
    [129]金志浩,高积强,乔冠军.工程陶瓷材料.西安:西安交通大学出版社,2000,9.
    
    [130]沈威,黄文熙,闵盘荣.水泥工艺学.武汉:武汉工业大学出版社,2002,1.
    
    [131]胡曙光 等编著.特种水泥.武汉:武汉工业大学出版社,1999,2.
    
    [132] Karen L.Scrivener, Jean-Louis Cabiron, Roger Letourneux. High-performance concretes from calcium aluminate cements [J].Cement and Concrete Research, 1999, 29(8): 1215-1223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700