用户名: 密码: 验证码:
沙基型浅埋煤层保水开采技术及其适用条件分类
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西部煤炭开发区具有煤层浅埋、水资源短缺、环境脆弱的特征,在大规模开采条件下,保水开采是一事关西部矿区可持续发展的核心保障技术。论文深入分析了国内外研究现状,并基于神东煤田的地质条件,采用理论分析、物理模拟、数值计算、三维固液耦合模拟等方法和手段,对浅埋煤层覆岩移动规律和裂隙分布特征进行了综合研究,从理论上分析了浅埋煤层保水开采的机理,由此确定了保水开采的关键,找出了浅埋煤层保水开采的基本条件,初步形成了一套以工作面快速推进、工作面有效支护及工作面局部防渗处理为核心的浅埋煤层保水开采技术。在此基础上,进一步对沙基型浅埋煤层保水开采适用条件进行了细致地分类,计算并开发了各分类相应的技术工艺与参数,并将其成功应用于保水开采的工程实践。
     主要研究成果如下:
     (1)初步形成沙基型浅埋煤层保水开采的分类体系。尝试采用多因素综合指标分析方法,对浅埋煤层保水开采条件进行分类。以裂隙带高度作为综合指标,以岩层综合强度、岩体完整性指数、采动影响指数作为相关因素,推导出长壁工作面和短壁工作面导水裂隙带高度的计算公式,并根据覆岩裂高、岩柱与基岩厚度的不同,把沙基型浅埋煤层划分为三个类别、七个区域(安全防水区、长壁容易区、长壁中等区、长壁困难区、短壁多硐连续区、短壁多硐间隔区、短壁单一采硐区)。
     (2)初步形成沙基型浅埋煤层保水开采的技术体系。首次提出“渗流确定采速”的方法和开切眼处“台阶式渐进开采”方式,创新出短壁连采工作面三种布置模式:多硐连续式、多硐间隔式、单一采硐式,并针对保水开采各分类的特征,确定出相应的技术工艺与参数。研究表明:长壁面保水开采适宜速度为10~25 m/d、切眼台阶渐进范围大于200 m、采高4.0~6.0 m、支护阻力为5000~8500 kN;短壁面保水开采适宜速度大于35 m/d、台阶渐进范围大于150 m、采高为3.0~6.0 m、支护阻力为7500~9500 kN。
     (3)沙基型浅埋煤层保水开采的分类体系与技术体系在神东矿区浅埋煤层32201、12404工作面保水开采工程实践中的应用表明:采动对上覆含水层的超前影响范围一般为20.0 m,水位受采动影响下降5~10 m左右,最大下降幅度4 m/d左右;采后3~4 d水位便开始回升,在4~15 d内水位回升最快,回升率0.1~0.3 m/d,50 d左右便基本趋于稳定。工作面安全推过强富水区。
Western Coalmine Area of China has the characteristic of shallow coal seam,short water source and vulnerable entironment. So aquifer-protective mining might be one key safeguarding technology that has a bearing on continuous development of Western Coalmine Area when a large scale of exploitation is in progress. Therefore, on the base of geological condition of Shendong Coalfield and the analyse of status both at home and abroad, the moving law of overlying strata & the distributing characteristic of crannies above shallow coal seam have aggregately been analyzed by means of many methods & measures, such as theoretical analyse, physical simulation, numerical calculation, three-dimensional solid-liquid coupling simulation etc. And the rationale of aquifer protective mining in shallow sand-bedrock-coal seam has been analyzed in theory. Then the linchpin & basic qualification of aquifer protective mining have been brought forward. Consequently, a preliminary suit of aquifer protective mining technology, which takes rapid advancing, rational support and partial impervious measure of working face for its core, has been formed. The useable conditions have been classified carefully. Moreover, relative technics & parameters of aquifer protective mining in shallow sand-bedrock-coal seam has been calculated and innovated, and been applied in engineering practice of aquifer protective mining successfully.
     Innovative achievements of this dissertation have been displayed as follows:
     (a) The analytical method of synthetic index with multi-factors has been selected to attempt classify the condition applied to aquifer protective mining in shallow coal seam. Height of water transmitting crannies has been selected as the synthetic index of classification. Synthetic intensity of overlying strata, mining disturbing influence & integrity of strata have been taken for primary relative factors of synthetic classifying index. Moreover, the calculative formulation of water transmitting crannies’height in long-wall & short-wall working face respectively has been derived. Then the shallow sand-bedrock-coal seam has been classified to three sorts or seven regions (i.e. secures waterproof mining section; easy mining section of long wall, moderate mining section of long wall, difficult mining section of long wall; continuous multi-rooms section of short wall, placed multi-rooms section of short wall, and single room section of short wall) by aggregate comparison among height of cranny zone, ribbon of rock and thickness of bedrock. Consequently, the classifying system of aquifer protective mining in shallow sand-bedrock-coal seam has been educed.
     (b) The method of defining mining velocity by seepage velocity & the model of sidestep advancing mining at open-off cut has been put forward for the first time. And new arrangement mode of short wall continuous mechanical mining working face (Continuous multi-rooms, placed multi-rooms and single room of lay-out pattern) has been innovated. And aiming at each sort character of aquifer protective mining, the technical parameters & technics of each sort condition have been educed. Consequently the technical system of aquifer protective mining in shallow sand-bedrock-coal seam has been formed. It has been shown that in long-wall working face, the rational advancing velocity of aquifer protective mining is about from 10 meters to 25 meters per day, the adjusting scope of sidestep advavcing mining at open-off cut is generally more than 200 meters, the mining height is from 4 meters to 6 meters, and the supporting force might be from 5000 kN to 8500 kN; while, in short-wall working face, the rational advancing velocity of aquifer protective mining is more than 35 meters per day, the adjusting scope of sidestep advavcing mining at open-off cut is more than 150 meters, the mining height is from 3 meters to 6 meters, and the supporting force might be from 7500 kN to 9500 kN.
     (c) Engineering practice of aquifer proactive mining in working faces No. 32201 & No. 12404 respectively has been done in intensive water-bearing area of Shendong Mine Area by using the classifying system & technical system of aquifer protective mining. And the aquifer protective mining in this working faces has been successful. It has been shown by observation on-site & analysis of data that pre-affected scope on overlying aquifer due to mining is commonly 20 meters, while, ground water above working face might be infiltrated down quickly. Along with the close of key rock block, water level begins to rise again after 3 days or 4 days, and recovers at the fastest velocity after from 4 days to 15 days; recovery ratio is from 0.1 to 0.3 meter per day. Water level might be driven to stable after about 50 days. Two working face has passed successfully through intensive water-bearing area of safety.
引文
[1] 程晓冰.水资源保护概况[J].水资源保护,2001,66(4): 8-12.
    [2] 王安.现代化亿吨矿区生产技术[M].北京:煤炭工业出版社,2005.
    [3] 杨宏科,范立民.榆神府煤矿区地质生态环境综合评价[J].煤田地质与勘探,2003,31(6): 6-8.
    [4] 聂伟雄.浅埋煤层长壁保水开采探究[J].煤矿现代化,2005,67(4): 29-30.
    [5] 黄庆享.浅埋薄基岩长壁开采顶板结构及岩层控制研究[M].中国矿业大学出版社,2000.
    [6] 范立民,王国柱.萨拉乌苏组地下水及采煤影响与保护[J].采矿技术,2006,6(3): 422-428.
    [7] 范立民,蒋泽泉.榆神矿区保水采煤的工程地质背景[J].煤田地质与勘探,2004,32(5): 32-35.
    [8] 叶贵钧,张莱,李文平等.陕北榆神府矿区煤炭资源开发主要水工环境及防治对策[J].工程地质学报,2000,8(4): 447-455.
    [9] 张少春,张杰,肖永福.保水采煤合理推进距离实验研究[J].陕西煤炭,2005,(1): 17-19.
    [10] 范立民.论保水采煤问题[J].煤田地质与勘探,2005,33(5): 50-53.
    [11] 师本强,侯忠杰.陕北榆神府矿区保水采煤方法研究[J].煤炭工程,2006,(1): 63-65.
    [12] 师本强,侯忠杰.榆神府矿区保水采煤的实验与数值模拟研究[J].矿业安全与环保,2005,32(4):11-13.
    [13] 范立民.榆神府煤田开发可持续发展的基本模式[A].环境地质研究(第四辑)[C].北京:地震出版社,1999: 145-151.
    [14] 冯洪渊,高新春.厚松散层薄基岩煤层矿压显现规律[J].郑州煤炭管理干部学院学报,2000,15(3): 93-96.
    [15] 黄庆享,刘腾飞.浅埋煤层开采隔水层位移规律相似模拟研究[J].煤田地质与勘探,2006,34(5):34-37.
    [16] 杨伟峰,隋旺华.薄基岩条带开采工程地质力学模型试验研究[J].中国矿业大学学报,2004,33(2): 170-173.
    [17] 陈平定,张少春,张杰.保水采煤煤柱稳定性的数值模拟[J].陕西煤炭,2005,(3): 17-19.
    [18] 张杰,侯忠杰.浅埋煤层导水裂隙发展规律物理模拟分析[J].矿山压力与顶板管理,2004,(4): 32-34.
    [19] 师本强,侯忠杰.陕北榆神府矿区保水采煤方法研究[J].煤炭工程,2006.(1): 63-65.
    [20] 杨鹏,冯武林.神府东胜矿区浅埋煤层涌水溃沙灾害研究[J].煤炭科学技术,2002,30(增): 65-69.
    [21] BOOTH, COLIN JOHN: A NUMERICAL MODEL OF GROUNDWATER FLOW ASSOCIATED WITH AN UNDERGROUND COAL MINE IN THE APPALACHIAN PLATEAU, PENNSYLVANIA [D]. PENNSYLVANIA STATE UNIVERSITY, 1984.
    [22] Bumb, AMar Chand: Unsteady Flow of Methane and Water in Coalbeds [D]. Laramie: University of Wyoming, 1987.
    [23] Sidle R C., Kamil I., Sharma A., et al.: Stream response to subsidence from underground coal mining in central Utah [J], ENVIRONMENTAL GEOLOGY, 2000, 39 (3-4): 279-291.
    [24] Zipper C., Balfour W., Roth R., et al.: Domestic water supply impacts by underground coal mining in Virginia, USA[J], ENVIRONMENTAL GEOLOGY, 1997, 29 (1-2): 84-93.
    [25] Arn, Thomas: Numerical recording of flow in fractured rock [D]. SWITZERLAND: EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH, 1989.
    [26] Fraser W W.: Environmental Management at Namew Lake [J]. CIM Bulletin, 1991, 84(949): 27-32.
    [27] Wunsch, David Robert: Ground-water Geochemistry and its Relationship to the Flow System at the Unmined Site in the Eeastern Kentucky Coal Field [D]. Lexington: UNIVERSITY OF KENTUCKY, 1992.
    [28] Booth C., Spande E D., Pattee C T., et al.: Positive and negative impacts of longwall mine subsidence on a sandstone aquifer [J]. ENVIRONMENTAL GEOLOGY, 1998, 34(2-3): 223-233.
    [29] Booth C J., Bertsch L P.: Groundwater geochemistry in shallow aquifers above longwall mines in Illinois, USA [J]. HYDROGEOLOGY JOURNAL, 1999, 7(6): 561-575.
    [30] Booth C J.: Groundwater as an environmental constraint of longwall coal mining [J], ENVIRONMENTAL GEOLOGY, 2006, 49(6): 796-803.
    [31] PESSARAN, G.: ORIGIN OF MINE WATER [D]. UNITED KINGDOM: UNIVERSITY OF NOTTINGHAM, 1988.
    [32] Karaman A., Carpenter P J., Booth C J.: Type-curve analysis of water-level changes induced by a longwall mine [J], ENVIRONMENTAL GEOLOGY, 2001, 40(7): 897-901.
    [33] Karaman A., Akhiev S S., Carpenter P J., et al.:A new method of analysis of water-level response to a moving boundary of a longwall mine[J], WATER RESOURCES RESEARCH, 1999, 35(4): 1001-1010.
    [34] Kim J M., Parizek R R., Elsworth D, et al.: Evaluation of fully-coupled strata deformation and groundwater flow in response to longwall mining [J], INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 1997, 34(8): 1187-1199.
    [35] Walker J S.: Case study of the effects of longwall mining induced subsidence on shallow ground water sources in the Northern Appalachian coalfield [R]. United States, Bureau of Mines, 1988.
    [36] Aldous P J.: GROUND-WATER MOVEMENT IN ABANDONED COAL MINED AQUIFERS USING FLUORESCENT DYES TRACING [J], Ground Water, 1988, 26 (2): 172-178.
    [37] Matetic, Rudy J., Trevits, Michael A., Swinehart, Thomas: Case study of longwall mining and near-surface hydrological response [C]. American Mining Congress Coal Convention. Coal Mining Technology, Economics and Policy. Pittsburgh: American Mining Congress Science Press, 1991:445-472.
    [38] CHOUBEY V D.: HYDROGEOLOGICAL AND ENVIRONMENTAL-IMPACT OF COAL-MINING, JHARIA COALFIELD, INDIA [J], ENVIRONMENTAL GEOLOGY AND WATER SCIENCES, 1991, 17 (3): 185-194.
    [39] Liu J., Elsworth D., Matetic R J.: Evaluation of the post-mining groundwater regime following longwall mining [J].HYDROLOGICAL PROCESSES, 1997, 11(15): 1945-1961.
    [40] ELSWORTH D., LIU J.: TOPOGRAPHIC INFLUENCE OF LONGWALL MINING ON GROUNDWATER SUPPLIES [J], GROUND WATER, 1995, 5(4): 33(5): 786-793.
    [41] Booth C J., Curtiss A M., Demaris P J., et al.: Anomalous increases in piezometric levels in advance of longwall mining subsidence [J], ENVIRONMENTAL & ENGINEERING GEOSCIENCE, 1999, 5(4): 407-417.
    [42] 马立强.沙基型浅埋煤层导水通道裂隙分布特征及控制技术研究[D].徐州:中国矿业大学博士论文,2007.
    [43] 范立民.保水采煤是神府东胜煤田开发可持续发展的关键[J].地质科技管理,1998,15 (5): 28-29.
    [44] ZHANG Dong-sheng(张东升), LIU Yu-de(刘玉德), WANG An(王 安), WANG Yi(王 义): Preventing and controlling techniques of ecological environments in Shan-Xi and Inner Mongolian mine are [C]. JOURNAL OF COAL SCIENCE & ENGINEERING. Vol.13 No.4 Dec. 2007. 471-475.
    [45] 黄庆享.浅埋煤层采动厚砂土层破坏规律模拟[J].长安大学学报(自然科学版),2003,23(4): 82-83.
    [46] 李凤仪,王继仁,刘钦德.薄基岩梯度复合板模型与单一关键层解算[J].辽宁工程技术大学学报,2006,25(4): 524-526.
    [47] 范立民等.厚煤层综采区冒落(裂)带高度的确定[J].中国煤田地质,2000,12(3):31-33.
    [48] 范立民,蒋泽泉,许开仓.榆神矿区强松散含水层下采煤隔水岩组特性的研究[J].中国煤田地质, 2003,15(4): 25-30.
    [49] 范立民等.榆神矿区厚松散含水层下采煤隔水层特性的研究[J].中国煤田地质,2003,15(4): 25-27.
    [50] 夏斐.榆神府矿区基岩风化带对提高煤层开采上限的作用[J].中国煤田地质,1999,11(4): 47-48.
    [51] 浦海.保水采煤的隔水关键层模型及力学分析[D].徐州:中国矿业大学博士论文,2007.
    [52] 范立民,蒋泽泉.烧变岩地下水的形成及保水采煤新思路[J].煤炭工程,2006,(4): 40-41.
    [53] 蒋泽泉.榆神府矿区烧变岩及其地下水资源特征[J].陕西煤炭,2005,24(4): 20-22.
    [54] 范立民.神府煤田烧变岩地下水资源概况与开发建议[J].中国地质,1996,(4): 20-21.
    [55] 于双忠.煤矿工程地质研究[M].徐州:中国矿业大学出版社,1991.
    [56] 于双忠,彭向峰,李文平等.煤矿工程地质学[M].北京:煤炭工业出版社,1994.
    [57] 刘祖典.黄土力学与工程[M].西安:陕西科学技术出版社,1997.
    [58] 叶贵钧,张莱,李文平等.陕北榆神府矿区煤炭资源开发主要水工环问题及防治对策[J].工程地质学报,2000,08(04): 446-455.
    [59] 李文平,叶贵钧,张莱等.陕北榆神府矿区保水采煤工程地质条件研究[J].煤炭学报,2000,25(5):449-454.
    [60] 邹喜正.煤矿巷道围岩稳定性分类[M].徐州:中国矿业大学出版社,1995.
    [61] 邓彬,顾小芳.裂隙岩体中水运动规律及数值模拟研究现状[J].黑龙江水专学报,2005,32(4): 77-80.
    [62] 陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报,1999,13(4): 299-308.
    [63] 周宏伟,谢和平.岩石节理张开度的分形描述[J].水文地质工程地质,1999,(1): 1-4.
    [64] 詹美礼,速宝玉.接触型裂隙水力等效张开度研究[J].岩土力学,1997,18(1): 40-46.
    [65] 张有天.岩石水力学与下程[M].北京:中国水利水电出版社.2005.
    [66] 卢刚,周志芳.裂隙网络渗流理论的软硬互层状岩体渗流分析[J].水电能源科学,2006,24(4): 41-45.
    [67] 张勤,陈志坚,朱代洪等.层状裂隙岩体稳定分析中的主要问题[J].岩土工程学报,2001,23(6): 753-756.
    [68] 陈志坚,卓家寿.样本单元法及层状含裂隙岩体力学参数的确定[J].河海大学学报,2000,28(1): 14-17.
    [69] 孙广忠.地质工程理论与实践[M].北京:地震出版社,1996.
    [70] 工洪涛,聂永丰,李雨松.耦合岩体主干裂隙和网络状裂隙渗流分析及应用[J].清华大学学报(自然科学版),1998,38(12): 23-26.
    [71] Tsang Y W., Tsang C F.: Channel model of flow through fractured media [J]. Water Resour Resear, 1987, 23(3): 56- 60.
    [72] Berkowitz B.: Percolation theory and its application to froundwater hydrology [J]. Water Resour Resear, 1993, 29(4): 775- 794.
    [73] 周创兵,熊文林.论岩体的渗透特性[J].工程地质学报,1996,4(2): 69-74.
    [74] 蔡升华,李方柱.裂隙岩体渗流破坏规律研究[J].电力勘测, 2000,26(2): 4-7.
    [75] 肖明.三维非均质岩体各向异性渗流场分析[J].武汉水利电力大学学报,1995,28(4): 418-424.
    [76] 沈洪俊,张奇.岩石面糙率的分布及其对裂隙水流的影响[J].河海大学学报, 1998,26(6): 57-61.
    [77] Lomize G M.: Flow in fractured rocks. Mosoow: Gesenernoizdat, 1951.
    [78] Louis C.: A study of nroundwater flow in jonited rock and its influence on the stability of rock masses. In: Muler, eds. Rock Mech Res Rep 10, London: Imp. Coll., 1969.
    [79] Neuzil C E., Tracy J V.: Plow throunh fractures. Water Resour Resear, 1981, 17(1): 191-194.
    [80] Tsane Y W., Witherspoon P A.: Hydromechanical behavior of a deformable rock fracture subject to normal stress. J of Geophys Research, 1981, 86(B10): 9187-9298.
    [81] Tsane Y W., Witherspoon P A.: The dependence of fracture mechanical and fluid flow properties on fractune rounhness and sample size. J of Geophvs Research, 1983, 88(B3): 2359-2366.
    [82] Tsane Y W.: The effect of tortuositv on fluid flow throunh a single fracture. Water Resour Resear, 1984, 20(9): 1209-1215.
    [83] Elsworth D., Goodman R E.: Characterization of rock fissure hydraulic conductivity using idealized wall roughness profiles. Int J Rock Mech Min Sci & Geomech Abstr, 1986, 23(3): 233-243.
    [84] 吴清高.岩体的渗流特性定量分析方法[J].山西建筑,2005,31(18): 111-112.
    [85] Barton N., Bandis S., Bakhtar K.: Strennth deformation and conductivity couplinn of rock joints. Int J Rock Mech Min Sci & Geomech Abstr, 1985, 22(3): 121-140.
    [86] Walsh J B.: Effect of pore pressure and confining pressure on fracture permeability. Int J Rock Mech Min Sci & Geomech Abstr, 1981, 18: 429-435.
    [87] 闫厉,董小刚.高等数学[M].西南交通大学出版社,2005.
    [88] 杨晓平.概率论与数理统计[M].北京理工大学出版社,2007.
    [89] 刘玉德,张东升,王旭锋等.一种浅埋薄基岩煤层短壁连采技术适用条件的分类方法:中国,200810080815. X. 2008-02-29.
    [90] Nolte D D., et a1.: The fractal geometry of flow paths in natural fractures in rock and the approach to percolation, Fractals in Geophysics, 1989.
    [91] Louis C.: Rock hydraulics. Rock Mechanics. 1974.
    [92] 耿克勤,刘光廷,陈兴华.节理岩体的渗透系数与应变、应力的关系[J].清华大学学报,1996,36(1): 107-112.
    [93] 王涛.基于直接法节理网络模拟的三维离散单元法计算[J].岩石力学与工程学报,2005,24(10): 1649-l653.
    [94] 钱鸣高,缪协兴,许家林,茅献彪.岩层控制的关键层理论[M].中国矿业大学,2003.
    [95] 赵国旭,谢和平,马伟民.宽厚煤柱的稳定性研究[J].辽宁工程技术大学学报,2004,(23)1: 38-40.
    [96] 王传团,张绍敏.回采巷道合理煤柱尺寸的确定[J].煤矿开采,2002,(7)4: 49-51.
    [97] 陈金国.不稳定围岩区段煤柱尺寸的确定[J].矿山压力与顶板管理,2000(4): 40-41.
    [98] 陈炎光,陆士良,孙忠治等.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994,5.
    [99] 李位民,宋子安,翟德元.特大型现代化矿井建设与工程实践[M].北京:煤炭工业出版社,2001.12.
    [100] 翟德元.美国长壁工作面开采体系及其主要参数的确定[J].煤炭科学技术,1998,(26)7: 52-55.
    [101] 樊克恭,翟德元.几何弱结构巷道稳定性分析[J].煤炭工程,2004(9): 64-66.
    [102] 程洪良,冯振山.确定小区段煤柱宽度的实测方法[J].煤炭工程,1999,(6)2: 37-38.
    [103] 程国明,黄侃,王思敬等.细长窄煤柱破坏机理的数值分析[J].岩土力学,2004,(25)2: 266-269.
    [104] 张耀荣,高慧,高进等.影响护巷煤柱宽度的因素分析[J].煤炭工程,2001,(10)1: 11-13.
    [105] 贾光胜,康立军.综放开采采准巷道护巷煤柱稳定性研究[J].煤炭学报,2002,(27)1: 6-10.
    [106] 张和生,吕福祥,孟庆春.山西石炭二迭系煤田井工开采对水资源的影响及治理对策[J].煤矿环境保护,1999,13(3): 33-36.
    [107] 叶青.神东现代化矿区建设与生产技术[M].徐州:中国矿业大学出版社 2002.
    [108] 樊德久.短壁机械化开采技术在神东矿区的应用与研究[D].阜新:辽宁工程技术大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700