用户名: 密码: 验证码:
超积累植物筛选及污染土壤植物修复过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超积累植物是植物提取修复的核心,同时也是污染环境修复领域研究的热点与前沿。针对目前已发现的超积累植物数量与对重金属提取种类较少的现状,并根据修复实践的需求,本研究确立了以超积累植物的筛选为主要研究内容并就一些强化措施进行了初步探索,同时根据已报道的植物修复研究的阶段性成果,对污染土壤植物修复的基本概念、原理、方式、强化机制等相关的修复过程进行了系统总结,结果如下:
     (1)超积累植物应同时具有四个基本特征,即临界含量特征、转移特征、耐性特征和富集系数特征。
     (2)龙葵和球果蔊菜是Cd超积累植物,在Cd投加浓度为25mg/kg条件下,其茎和叶中Cd含量分别为103.80mg/kg和124.57mg/kg及107.70mg/kg和150.10mg/kg。植物体内积累的Cd主要分布在茎和叶中。这2种植物不具有同时超积累Pb、Cu或Zn的能力。
     (3)施加鸡粪后植物对Cd的提取率提高了35.7%~97.0%;采用开花期收获超积累植物的复种方式,植物提取率可以提高到1.43倍和1.75倍。
     (4)以杂草为筛选对象,将成为筛选超积累植物的一个突破口。
     (5)盆栽筛选试验具有可操作性强、易于实施等优点,是筛选超积累植物值得尝试的一种方法。
     (6)现发现的超积累植物几乎均来源于污染区,本研究表明,未污染区也可能存在超积累植物。
     (7)栽培措施对植物修复效果有较大影响,与现代农业高新技术相结合是植物修复技术成功应用于修复实践的一条捷径。
To screen out a series of ideal hyperaccumulators that can effectively remedy contaminated soils by heavy metals is the main groundwork of phytoremediation engineering and the first step of its commercial application on a large scale, which is also front field of contaminated environment remediation. In view of that the amount of discovered hyperaccumulators and their hyperaccumulated the types of heavy metals are short at present, the identification of hyperaccumulators and some strengthen measures were carried by using pot-culture, block method and sample-analyze experiment, and the basic conception, theory, manner and relevant enhancement mechanism of phytoremediation were systematically summarized based on published documents, the results as below:
     (1) The characteristics that critical concentration, translation, tolerance and accumulation coefficient are indispensable properties of hyperaccumulators.
     (2) Solanum nigrum L. and Rorippa globoga(Turcz.) Thell. are Cd hyperaccumulators, and the concentrations of Cd accumulated in stems and leaves were 103.80mg/kg,124.57mg/kg and 107.70mg/kg,150.10mg/kg respectively on the condition of 25mg/kg Cd was added. Cd is mainly distributed in stems and leaves of the plants, but they could not hyperaccumulate Pb, Cu or Zn simultaneously.
     (3) The remediation efficiency of phytoextraction could be enhanced 35.7%~97.0% and 43.0%~75.0% through added chicken manure to soil and the multiple cropping that transplant hyperaccumulators after them be cropped at their flowering stage.
     (4) It will make a great breakthrough in the identification of hyperaccumulators based on weed species.
     (5) The field pot-culture experiment should be a new tentative method to screen out hyperaccumulative species in view of its obvious advantages such as simple operation, low cost and so on.
     (6) It is possible that hyperaccumulators would be found in an unpolluted area though documented hyperaccumulators discovered in contaminated sites.
     (7) It was suggested that the adoption of modernization agriculture technology will be a short cut to the commercial apply of phytoremediation to heavy metals.
引文
1 Alkorta I,Garbisu C.Phytoremediation of organic contaminants in soils.Bioresource Technology.2001,79:273-276
    2 Baker AJM. Accumulators and excluders - strategies in the response of plants to heavy metals. J Pant Nutr. 1981, 3: 643-54
    3 Baker AJM, McGrath SP, Sidoli CMD, Reeves RD. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resources, Conservation and Recycling.1994,11:41-49
    4 Baker AJM, Protor J, Van Balgooy M M J. Hyperaccumulation of nickel by the flora of ultramafics of Palawan,Republic of Philippines.Proceedings of the First International Conference on Serpentine Ecology.Andover,UK:Intercept Ltd.1996, 291-303
    5 Baker AJM, Reeves RD, Hajas ASM. Heavy metal accumulation and tolerance in british population of the metallophyte Thlaspi caerulescens J & C Presl(Brassicaceae).New Phytol. 1994, 127:61-68
    6 Baker HG. The evolution of weeds.Annual of review of ecological system.1974,5:1-24
    7 Barr DD,Aust SD. Mechanisms white rot fungi use to degrade pollutants.Environ Sci Technol. 1994,28:79-87
    8 Betts KS. Native aquatic plants remove explosives. Environ Sci & Technol. 1997,31: 304A
    9 Bi YL, Li XL, et al. Growth and nutrient uptake of arbuscular mycorrhizal maize in different depths of soil overlying coal fly ash. Chemosphere. 2003, 50(6): 863-869
    10 Brewin LE, Mehra A, Lynch PT, Farago ME. Mechanisms of copper tolerance by Armeria maritima in Dolfrwynog Bog, North wales-initial studies. Environmental Geochemistry and Healty. 2003, 25: 147-56
    11 Brooks RR, Lee J, Reeves R D. Detection of nickliferous rocks by analysis of herbarium species of indicator plants. Journal of Geochemical Exploration. 1977, 7:49-77
    12 Brooks RR,Chambers MF,Nicks LJ, Robinson BH. Phytoming. Trends in Plant Science. 1998, 3(9): 359-362
    13 Brown SL,Chaney RL, Angle JS, et al.Pytoremediation potential of Thlaspicaerulescens and bladder campion for zinc-and cadmium-contaminated soil. Journal of Environmental Quality. 1994,23:1151-1157
    14 Brown SL,Chaney RL, Angle JS, et al.Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci Soc Am. J. 1995, 59:125-133
    15 Chaney RL. Plant uptake of inorganic waste constituents. In: Parr J F eds. Land treatment of hazardous wastes. Noyes Data Corporation. Park Ridge. New Jersey. USA, 1983,48-53
    16 Chaney RL, Malik M, Li YM. Phytoremediation of soil metals. Current Opinions in Biotechnology. 1997,8: 279-284
    17 Chaudhry GR. Biological degradation and bioremediation of toxic chemicals. Dioscorides Press Portland, Oregon. 1994, 7-17
    18 Curl EA. The rhizosphere, Berlin: Springer-verlag. 1986
    19 Dahmani-Muller H,Van OF,Gelie B, et al.Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental Pollution.2000,109:231-238
    20 Dahmani-Muller H,Oort FV, Balabane M.Metal extraction by Arabidopsis halleri grown on an unpolluted soil amended with various metal-bearing solids: a pot experiment. Environmental Pollution.2001,114:77-84
    21 ETCS(European Topic Centre Soil). Topic report—Contaminated sites. European Environment Agency. 1998, 142
    22 Field JA,de Jong E,Feijoo-costa G,de Bont JAM. Screening for ligninolytic fungi applicable to the biodegradation of xinobiotics.Trends in Biotechnology. 1993,11:44-49
    23 Galli U,Meier M,Brundd C. Effects of cadium on non-mycorrhizal and mycorrhizal Norway spruce seedlings(Picea Dabies(L.)Karst.) and its ectomycorrhizal fungus (Laccaria laccata Scop.Ex.Fr.). Bk.And Br.:Sulphate reduction thiols and distribution of the heavy metal.New Phytol. 1993,125:837-843
    24 Galli V,Schueep H,Brunold C. Heavy metal bindings by mycorrhizal fungi.Physiol.Plantarum. 1994,94:247-253
    25 Gao J,Carrison AW, Hoehamer C,et al. Uptake and phytotransformation of o,p’-DDT and p,p’-DDT by axenically cultivated aquatic plants.J. Agric. Food Chem. 2000, 48:6121-6127
    26 Garbisu C, Alkorta I. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology. 2001, 77(3): 229-236
    27 Garrison AW, Nzengung VA, Avants JK,et al. Phytoremediation of p,p’-DDT and the enantiomers of o,p’-DDT.Environ.Sci. & Technol. 2000, 34:1663-1670
    28 Hasegawa I,Terada E,Sunairi M, et al. Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1). Plant and Soil. 1997, 196: 277-286
    29 Hata Kka A. Lignin-modifying enzymes from selected white-rot fungi:production and role in lignin degradation.FEMS Microbiology Reviews.1994,13:125-135
    30 Hathaway DE. Molecular mechanism of herbicide selectivity, Oxford :Oxford University Press. 1989
    31 Hitchcock DR, Watson C. Using rotifer population demographic parameters to assess impacts of the degradation product from trinitrotoluene phytoremediation. Ecotoxicology and Environmental Safety.2003,55(2):143-151
    32 Huang JW, Cunningham SD. Lead phytoextraction: Species variation in lead uptake and translocation. New Phytol. 1996. 134: 75-84
    33 Ince NJ, Assessment of toxic interactions of heavy metals in binary mixtures: a statistical approach . Arch. Environ. Contamn. Toxicol. 1999,36: 365-372
    34 Jarvis MD, Leung DWM. Chelated lead transport in Pinus radiata: an ultrastructural study. Environmental and Experimental Botany. 2002, 48(1): 21-32
    35 Joner EJ and Leyval C. Uptake of 109Cd by roots and hyphae of a Glomus mosseae/Trifolium subterranean mycorrhiza from soil aminded with high and low concentration of cadmium .New Phytologist. 1997,135:352-360
    36 Jones DL. Organic acids in the rhizosphere: a critical review. Plant and Soil. 1998, 205: 25-44
    37 Cooper KM and Tinker PB. Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas.Ⅱ.Uptake and translocation of phosphorus zinc and sulphur.New Phytologist. 1978,81:43-52
    38 Karenlampi S,Schat H, Vangronsveld J, Verkleij JAC, et al.Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils.Environmental Pollution.2000,107:225-231
    39 Kight B, Zhao FJ, McGrath SP, et al. Zinc and cadmium uptake by thehyperaccumulator Thlaspi caerulescens and in contaminated soils and its effects on the concentration and chemical speciation of metals in soil sohution. Plant and Soil, 1997, 197: 71-78
    40 Koch M,Mummenhoff K,Hurka H.Systematics and evolutionary history of heavy metal tolerant Thlaspi caerulescens in Western Europe. Biochemical Systematics and Ecology.1998,26:823-838
    41 Kochian LV, Pence NS, Letham DLD, et al. Mechanisms of metal resistance in plants:saluminum and heavy metals. Plant and Soil. 2002, 247:109-119
    42 Koppolu L, Clements LD. Pyrolysis as a technique for separating heavy metals from hyperaccumulators. PartⅠ: Preparation of synthetic hyperaccumulator biomass. Biomass and Bioenery. 2003, 24(1): 69-79
    43 Kramer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC. Free histidine as a metal chelator in plants that accumulate nickel. Nature. 1996,379: 635-638
    44 Kruger EL, Anhalt JC, Sorenson D. Atrazine degradation in pesticide contaminated soils. Phytoremediation of soil and water contaminants. American Chemical Society. Washington DC. 1997,54-64
    45 Lasat MM, Pence NS, Garvin DF, Ebbs SD, Kochian LV. Molecular physiology of zinc transfer in the Zn hyperaccumulator Thlaspi caerulescens. J. Exp. Bot. 2000,51: 71-79
    46 Leong J. Siderophores:their biochemistry and possible role in control of plant pathogens.Ann.Rev.phytopathol.1986,24:187-209
    47 Li YM, Chaney R, Brewer E, Roseberg R, Angle JS, Baker A.Development of a technology for commercial phytoextraction of nickel:economic and technical considerations.Plant and Soil.2003,249:107-115
    48 Licht LA, McCutcheon SC, Wolfe NL, et al. Phytoremediation of organic and nutrient contaminants. Environmental Science and Technology. 1995, 29: 318-323
    49 Lombi E,Zhao FJ,Dunham SJ, et al. Cadium accumulation in population of Thlaspi caerulescens and Thlaspi geosingense. New Phytol.2000,145:11-20
    50 Lombi E, Zhao FJ, McGrath SP,et al.Physiological evidence for a high-affity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytologist.2001,149:53-60
    51 Lombi E, Tearall K L, Howarth J R et al., Influence of iron status on cadmium andzinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiology. 2002, 128: 1359-1367
    52 Long XX,Yang XE,Ye ZQ,Ni WZ,Shi WY.Differences of uptake and accumulation of Zinc in four species of Sedum.Acta Botanica Sinica.2002,44(2):152-157
    53 Ma LQ, Kenneth MK, Tu C, et al. A fern that hyperaccumulates arsenic. Nature,2001,409(6820):579
    54 Madrid MS, Kirkham MB, Heavy metal displacement in chelate-irrigated soil during phytoremediation. Journal of Hydrology. 2003, 272(4): 107-119
    55 Mahujchariyawong J,Ikeda S.Modelling of environmental phytoremediation in eutrophic river-the case of water hyacinth harvest in Tha-chin River, Thailand.Ecological Modelling.2001,142:121-134
    56 Mattina MI, Lannucci-Berger W, Mussante C, White JC. Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environmental Pollution. 2003,124:375-378
    57 McGrath SP, Shen ZG, Zhao FJ.Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soil. Plant and Soil. 1997, 188:153-159
    58 Medina VF, McCutcheon SC. Phytoremediation: an ecological solution to organic chemical contamination. Ecological Engineering. 2002, 18(5):647-658
    59 Meerts P, Isacker NV. Heavy metal tolerance and accumulation in metallicolous and non-metallicolous population of Thlaspi caerulescens from continental Europe. Plant Ecology. 1997, 133:221-231
    60 Meerts P, Grommesch C. Soil seed banks in a heavy-metal polluted grassland at Prayon(Belgium). Plant Ecology. 2001,155:35-45
    61 Meerts VB, Saumitou-Laprade P, Salis P, et al. Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant and Soil.2003, 249:9-18
    62 Meharg AA,Cairney JWG. Ectomycorrhizas-extending the capabilities of rhizosphere remediation? Soil Biology & Biochemistry. 2000, 32:1475-1484
    63 Mulligan CN,Yong RN, Gibbs BF. Remediation technologies for metal-contaminated soils and ground water:an evaluation. Engineering Geology.2001,60:193-207
    64 Mulln MD,Wolf DC,Beveridge TT,Bailey GW. Sorption of heavy metals by the soil fungi Aspergillus miger and Mucor rouxii.Soil Biol Biochem. 1992,24:129-135
    65 Newman LA, Strand SE, Gordon MP. Uptake and biotransformation of trichloroethylene by hubrid poplars. Environ Sci Technol. 1997, 31(4): 1062-1065
    66 Ortiz DF, Ruscitti T, McCue KF, Ow DW. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J. Biol. Chem. 1995, 270: 4721-4728
    67 Ouyang Y. Phytoremediation: Modeling plant uptake and contaminat transport in the soil-plant-atmosphere continuum. Journal of Hydrology. 2002, 266: 66
    68 Palmgren MG, Kramer U. A long way ahead: understanding and engineering plant metal accumulation. Trends in Plant Science. 2002, 7(7): 309-315
    69 Pena L, Seguin A. Recent advances in the genetic transformation of trees, Trends in Biotechnology. 2001, 19(12): 500-506
    70 Perronnet K, Schwartz C, et al. Availability of cadmium and zinc accumulated in the leaves of Thlaspi caerulescens incorporated into soil. Plant and Soil. 2000, 227: 257-263
    71 Piechalak A, Tomaszewska B, Baralkiewicz D. Accumulation and detoxification of lead ions in legumes. Phytochemistry. 2002, 60(2): 153-162
    72 Pilon-Smits E, Pilon M. Phytoremediation of metals using transgenic plants. Critical Reviews in Plant Science.2002, 21(5): 439-456
    73 Pollard AJ, Powell KD. The genetic basics of metal hyperaccumulation in plants. Critical Review in Plant Sciences. 2002, 21(6): 539-566
    74 Poschenrieder C, Bech J, Llugany M, Pace A, Fenes E, Barcelo J. Copper in plant species in a copper gradient in Catalonia(North East Spain) and their potential for phytoremediation. Plant and Soil. 2001; 230: 247-56
    75 Prasad MNV. Phytoremediation of metal-polluted ecosystems:hope for commercialization.Russian Journal of Plant Physiology. 2003,50(5):686-700
    76 Reeves RD, Baker AJM. Metal accumulating plants. In: Raskin, I., Ensley, B.D.(Eds.), Phytoremediation of Toxic Metals: Using Plant to Clean Up the environment. John Wiley, New York.2000
    77 Reilly C. Accumulation of copper by some Zambian plants.Nature, 1967,215:667
    78 Ricken B,Honfner W. Effects of arbuscular mycorrhizal fungi(AMF) on heavy metal tolerance of alfalfa(Medicago satival L.) and oat(Avena sativa L.) on a sewage-sludge treated soil.Z Pflanzenernahr Bodenk.1996,159:189-194
    79 Rio MD, Font R, Almela C. Heavy metals and arsenic uptake by willd vegetationin the Guadiamar river area after the toxic spill of the Aznalcollar mine. Journal of Biotechnology. 2002,98(1): 125-137
    80 Robinson BH, Chiarucci A, Brooks,RR. Hyperaccumulator—Alyssum bertolonii. Journal of Geochemical Exploration.1997, 57:75-86
    81 Robinson BH,Russell C,Hedley M,Clothier B. Cadmium adsorption by rhizobacteria:implications for New Zealand pastureland.Agriculture,Ecosyst and Environ. 2001,87:315-321
    82 Robinson B, Duwig C, Bolan N, et al. Uptake of arsenic by New Zealand 82 watercress(Lepidium sativum). The Science of The Total Environment. 2003, 301(3): 67-73
    83 Rugh CL, Wilde HD, Stack NM. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc. Natl. Acad. Sci. USA. 1996, 93: 3182-3187
    84 Ruiz JM, Romero L. First evidence of arsenic phytoremediation. Trends in Plant Science. 2002, 7(9): 384-396
    85 Sanderman E, Loos MA. Enumeration of 2,4-D-degrading microorganisms in soils and crop plant rhizospheres using indicator media:high populations associated with sugarcane(Scaccharam officinarum).Chemosphere. 1984, 13:1073-1084
    86 Salt DE, Blaylock MB, Kumar NPBA, et al. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology. 1995, 13: 468-474
    87 Salt DA,Smith RD,Raskin I. Phytoremedition.Annual Review of Plant Physiology and Plant Molecular Biology. 1998,49:643-668
    88 Salt DE. Phytoextraction: present applications and future promise. In: Wise DL, et al. (eds.), Bioremediation of Contaminated Soils. New York, Marcel Dekker.2000
    89 Salhani SN, Boulyga SF, Stengel E. Phytoremediation of selenium by two helophyte species in subsurface flow constructed wetland. Chemosphere. 2003, 50(8): 967-973
    90 Sanderman E,Loos MA. Enumeration of 2,4-D-degrading microorganisms in soils and crop plant rhizospheres using indicator media:high populations associated with sugarcane(Scaccharam officinarum).Chemosphere.1984,13:1073-1084
    91 Sarand I, Timonen S, Nurmiaho-Lassila EL, et al. Microbial biofilms and catabolic plasmid harbouring degradative fluorescent pselldomonads in Scotspine mycorrhizospheres developed on petroleum contaminated soil. FEMs Micro Ecol. 1998, 27:115~126
    92 Schnoor JL,Licht LA, Mccutcheon LS, Wolfe NL, Carreira LH.Phytoremediation of organic and nutrient contaminants. Environmental Science and Technology.1995,29(7):318-323
    93 Schwartz C, Morel JL, et al. Root development of the Zinc-hyperaccumulator plant Thlaspi caerulescens as affected by metal origin, content and localization in soil. Plant and Soil. 1999, 208: 103-115
    94 Schwartz C,Echevarria G,Morel JL.Phytoextraction of cadmium with Thlaspi caerulescens. Plant and Soil.2003,249:27-35
    95 Scott JA,Sage GK,Palmer SJ,Powell DS. Cadmium adsorption by bacterial capsular polysaccharide coatings.Biotech Lett. 1986,8:711-714
    96 Scott JA,Palmer ST. Sites of cadmium uptake in bacteria used for biosorption.Appl Microbiol Biotechnol. 1990,33:221-225
    97 Seregin IV, Kozhevnikova AD, Kazyumina EM, Ivanov VB. Nickel toxicity and distribution in Maize roots. Russian Journal of Plant Physiology. 2003, 50(5): 711-717
    98 Shu WS, Zhang ZQ, Huang LN, LanCY, Ye ZH. Pb,Zn and Cu tolerance and accumulation in populations of Paspalum distichum. ACTA Scientiarum Naturallium Universitatis Sunyatseni.2000,39(3):82-86
    99 Silver S,Phung LT. Bacterial heavy metal resistance:new surprises.Ann. Rev. Microbiol. 1996,50:753-789
    100 Singer AC, Crowley DE, Thompson IP. Secondary plant metabolites in phytoremediation and biotransformation. Trends in Biotechnology. 2003,21(3): 123-130
    101 Singhal V, Rai JPN. Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents. Bioresource Technology. 2003, 86(3): 221-225
    102 Smith SE,Read DJ. Mycorrhizal symbiosis. London :Acadmic Press.1997
    103 Stoltz E, Greger M. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environmental and Experimental Botany. 2002,47: 271-280
    104 Sung K, Munster CL, Rhykerd R et al. The use of vegetation to remediate soil freshly contaminated by recalcitrant contaminants. Water Research. 2003, 37:2408-2418
    105 Sung KJ, Yavuz CM, Drew MC. Heat and mass transfer in the vadose zone with plant roots. Journal of Contaminant Hydrology. 2002, 57(2): 99-127
    106 Tam PCF. Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius.Mycorrhiza. 1995,5:181-187
    107 Turnau K. Mycorrhiza in toxic metal polluted sites.Wiadomosli Botaniczne.1993,37:43-58
    108 Turnau K,Kottke I,Dexheimer J. Toxic element filtering in Rhizopogon rosedus/Pinus sylverstris mycorrhizas collected from calamine dumps.Mycol. Res. 1996, 100:16-22
    109 Turnau K. Heavy metal content and localization in mycorrhizal Euphorbia cyparissias from zinc wastes in Southern Roland. Acta Soci. Bot. Poloniae. 1998,67:105-113
    110 Visoottiviseth P,Francesconi K, Sridokchan W. The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environmental Pollution. 2002,118: 453-461
    111 Wenzel WW, Unterbrunner R, Sommer P, Sacco P. Chelate-assisted phytoextraction using canola(Brassica napus L.) in outdoors pot and lysimeter experiment. Plant and Soil.2003, 249:83-96
    112 Wenzel WW, Bunkowski M, Puschenrerter M, Horak O. Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environmental Pollution. 2003, 123: 131-138
    113 White PJ. Phytoremeditaion assisted by microorganisms. Trends in Plant Science. 2001, 6(11): 502-514
    114 Whiting SN, Leale JR, McGrath SP, et al. Zinc accumulation by Thlaspi caerulescens from soils with different Zn availability: a pot study. Plant and Soil.2001, 236:11-18
    115 Williams JB. Phytoremediation in wetland ecosystems: progress, problems, and potential. Critical Review in Plant Sciences. 2002, 21(6): 607-635
    116 Wolfe AK, Bjornstad DJ. Why woul anyone object? An exploration of social aspects of phytoremediation accepbility. Critical Reviews in Plant Science.2002, 21(5): 429-438
    117 Wong H K T, Gauthier A, Nriagu J O, Dispersion and toxicity of metals from abandoned gold mine tailings at Goldenville, Nova Scotia, Canada. Thescience of the environment. 1999, 228: 35-47
    118 Wong MH. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere. 2003,50: 775-780
    119 Zhao FJ,Hamon RE,Lombi E,et al. Characteristics of cadium uptake in two contrasting ecotype of the hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany.2002,53:535-543
    120 Zhao FJ, Lombi E, McGrath SP. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil.2003, 249:37-43
    121 Zhou Qixing, Sun Tieheng. Effects of chromium (VI) on extractability and plant uptake of fluorine in agricultural soils of Zhejiang Province, China. Water, Air, and Soil Pollution. 2002, 133(14): 145-160
    122陈辉蓉,吴振斌,贺锋,程旺元.植物抗逆性研究进展.环境污染治理技术与设备.2001,2(3):7-13
    123程国玲,李培军,王凤友,周启星,台培东.多环芳烃污染土壤的植物与微生物修复研究进展.环境污染治理技术与设备.2003,4(6):30-36
    124陈建刚,刘汉湖.土壤中农药污染的植物-微生物联合修复.江苏环境科技.2001,14(4):14-15
    125陈世宝,朱永官,杨俊诚.土壤-植物系统中磷对重金属生物有效性的影响机制.环境污染治理技术与设备.2003,4(8):1-7
    126陈素华,孙铁珩,周启星.微生物与重金属间的相互作用及其应用研究.应用生态学报. 2002.13(2):239-242
    127陈素华.矿山废弃物中重金属污染行为及其对白菜品质的影响.中国科学院研究生院博士论文.2003
    128陈同斌,韦朝阳,黄泽春,黄启飞,鲁全国,范稚莲.砷超富集植物蜈蚣草及其对砷的富集特征.科学通报. 2002,47(3): 207-210
    129陈万义,王明安.对我国植物源农药研发的思考.现代农药.2002,2:1-4
    130董艺娉,崔岩山,王庆仁.单一与复合污染条件下两种敏感性植物对Cd、Zn、Pb的吸收效应.生态学报.2003,23(5):1018-1024
    131窦贻俭,李春华编著.环境科学原理.南京:南京大学出版社.1998
    132戴树桂主编.环境化学.北京:高等教育出版社.2000
    133冯斌,谢先其.基因工程技术.北京:化学工业出版社.2000
    134冯保民,麻密.植物络合素及其合酶在重金属抗性中的功能研究进展.应用与环境生物学报.2003,9(6):657-661
    135高拯民主编.土壤-植物系统污染生态研究.北京:中国科学技术出版社.1986
    136高祥照,马文奇,马常宝,张福锁,王运华.中国作物秸秆资源利用现状分析.华中农业大学学报.2002,21(3):242-247
    137郭水良,李扬汉.杂草的基本特点及其在丰富栽培地生物多样性中的作用.资源科学. 1996,(3):48-53
    138郭水良,黄朝表,边媛,林国平.金华市郊杂草对土壤重金属元素的吸收与富集作用(Ⅰ)—6种重金属元素在杂草和土壤中的含量分析.上海交通大学学报(农业科学版). 2002,20(1): 22-29
    139顾继东.国外环境生物技术的发展和展望.生物技术通报. 1999,6:8-12
    140韩鲁佳,闫巧娟,刘向阳,胡金有.中国农作物秸秆资源及其种用现状.农业工程学报.2002,18(3):87-91
    141华珞,陈世宝,白玲玉,韦东普.有机肥对镉锌污染土壤的改良效应.农业环境保护.1998,17(2):55-59,62
    142黄会一,蒋德明,张春桂,张有标.沈阳镉土地区生物治理的研究.见:高拯民主编,土壤-植物系统污染生态研究.1986,79-85
    143孔令韶.植物对重金属元素的吸收积累及忍耐、变异.环境科学.1982, 1: 65-69
    144郝立勤.国外鸡粪加工处理技术现状.云南环境科学.1996,15(2):50-51
    145何振立,周启星,谢正苗.污染及有益元素的土壤化学平衡.北京:中国环境科学出版社. 1998
    146何平安,李荣主编.中国有机肥料养分志.北京:中国农业科学出版社.1999
    147江玉和主编.普通化学(第二版).北京:高等教育出版社.1992
    148江行玉,赵可夫.植物重金属伤害及其抗性机理.应用与环境生物学报. 2001, 7(1): 92-99
    149蒋玉根.农艺措施对降低污染土壤重金属活性的影响.土壤.2002,3:145-148
    150姜理英.典型香薷属植物对铜的耐性和吸收特性及污染土壤植物修复机理研究.浙江大学博士论文.2003
    151蒋彬.超积累植物在治理土壤重金属污染中的应用.昭通师范高等专科学校学报.2002,24(5):32-34
    152蒋先军,骆永明,赵其国,葛元英.镉污染土壤植物修复的EDTA调控机理.土壤学报.2003,40(2):205-209
    153李书心主编.辽宁植物志(上、下).沈阳:辽宁科学技术出版社.1988,1992
    154李扬汉.植物学.上海:上海科学技术出版社.1988
    155卢显华,尹华,彭辉,张娜.石油降解菌的筛选及其降解能力的研究.环境污染治理技术与设备.2003,4(12):12-16
    156欧善华主编.常见植物400种.上海:上海教育出版社.1990
    157马奇祥,李正先等编著.玉米病虫草害防治彩色图说.北京:中国农业出版社.2001
    158全国农业植保总站编.中国农田杂草图册(第1集).北京:化学工业出版社.1997
    159林昌善,吴聿明.环境生物学.北京:中国环境科学出版社.1986.
    160林谷成主编.土壤.北京:农业出版社.1983
    161刘小梅,吴启堂,李秉滔.超富集植物治理重金属污染土壤研究进展.农业环境科学学报.2003,22(5):636-640
    162刘威,束文圣,蓝崇钰.宝山堇菜(Viola baoshanensis):一种新的镉超富集植物.科学通报.2003,45(19):2046-2049
    163刘秀梅,等. 6种植物对Pb的吸收与耐性研究.植物生态学报. 2002, 26:533-537
    164刘世亮,骆永明,曹志洪,丁克强,蒋先军.多环芳烃污染土壤的微生物与植物联合修复研究进展.土壤.2002,5:257-263
    165刘云国,李欣,徐敏,甘海明.土壤重金属镉污染的植物修复与土壤酶活性.湖南大学学报.2002,29(4):108-113
    166刘文菊,张西科,张福锁.根分泌物对根际难溶性镉的活化作用及对水稻吸收、运输镉的影响.生态学报.2000, 3: 448-451
    167娄来清,沈振国.金属硫蛋白和植物螯合肽在植物重金属耐性中的作用.生物学杂志.2001, 18(3):1-4
    168鲁如坤主编.土壤农业化学分析方法.北京:中国农业科技出版社.2000
    169罗春玲,沈振国.植物对重金属的吸收和分布.植物学通报.2003,20(1):59-66
    170骆永明.金属污染土壤的植物修复.土壤.1999,5:261-265
    171骆永明.强化植物修复的螯合诱导技术及其环境风险.土壤. 2000,4: 57-61
    172龙新宪,杨肖娥,叶正钱.超积累植物的金属配位体及其在植物修复中的应用.植物生理学通迅.2003,39(1):71-77
    173马育华主编.田间试验和统计方法.北京:农业出版社.1990
    174牟金明,李万辉,张凤霞,姜岩.根系分泌物及其作用.吉林农业大学学报. 1996, 18(4): 114-118
    175倪才英,陈英旭,骆永明,田光明.紫云英对重金属胁迫的响应.中国环境科学.2003,23(5):503-508
    176沈宏,严小龙.根分泌物研究现状及其在农业与环境领域的应用.农村生态环境.2000,16(3):51-54
    177沈德中编著.污染土壤的生物修复.北京:化学工业出版社,环境科学与工程出版社.2002.321-330
    178沈德中.污染土壤的植物修复.生态学杂志.1998,17(2):59-64
    179沈振国,陈怀满.土壤重金属污染生物修复的研究进展.农村生态环境.2000,16(2):39-44
    180束文圣,杨开颜,张志权,杨兵.湖北铜绿山古铜矿冶煤渣植被与优势植物的重金属含量研究.应用与环境生物学报.2001,7(1):7-12
    181孙铁珩,区自清,李培军.城市污水土地处理系统研究.北京:科学出版社.1997
    182孙铁珩,周启星.污染生态学的研究前沿与展望.农村生态环境, 2000,16(3):42-45,50
    183孙铁珩,周启星,李培军.污染生态学.北京:科学出版社.2001
    184唐世荣.超积累植物.农业环境与发展.1996,13(3):14-18
    185唐世荣,黄昌勇,朱祖祥.超积累植物与找矿.物探与化探.1997,21(4):263-267
    186唐世荣.超积累植物在时空科属内的分布特点及寻找方法.农村生态环境. 2001, 17(4): 56-60
    187陶守林,黄贤文,秦光才,罗胜中,刘玉旭.论农作物种子包衣技术的推广与应用.种子.2002,4:61-62
    188涂书新,孙锦荷,郭智芬,谷峰.植物根系分泌物与根际营养关系评述.土壤与环境.2000,9(1):64-67
    189王庆仁,崔岩山,董艺婷.植物修复—重金属污染土壤整治有效途径.生态学报.2001,21(2):326-331
    190王果,李建超,杨佩玉,高树芳,方玲.有机物料影响下土壤溶液中镉形态及其有效性研究.环境科学学报.2000,20(5):621-626
    191王学峰,朱桂芬.重金属污染研究进展.环境科学与技术.2003,1:54-56
    192王伯辉等编写.农田杂草识别与防除图谱.广西科学技术出版社.2001
    193王枝荣主编.中国农田杂草原色图谱.北京:农业出版社.1996
    194韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展.生态学报. 2001, 7: 1196-1203
    195魏树和,周启星,王新. 18种杂草对重金属的超积累特性研究.应用基础与工程科学学报. 2003,11(2):152-160
    196魏树和,周启星,张凯松,梁继东.根际圈在污染土壤修复中的作用与机理分析.应用生态学报. 2003, 14(1), 143-147
    197魏树和,周启星.重金属污染土壤植物修复基本原理及强化措施探讨.生态学杂志. 2004,23(1):65-72
    198吴燕玉,陈涛,张学询.沈阳张士灌区镉的污染生态研究.见:高拯民主编,土壤-植物系统污染生态研究.1986,295-301
    199武正华.土壤重金属污染土壤植物修复研究进展.盐城工学院学报.2002,15(2):53-57
    200夏家淇主编.土壤环境质量标准详解.北京:中国环境科学出版社.1996
    201夏北成.环境污染物生物降解.北京:化学工业出版社.2002
    202夏汉平,蔡锡安.采矿地的生态恢复技术.应用生态学报.2002,13(11):1471-1477
    203肖文一,陈铁保著.农田杂草及防除.北京:农业出版社.1982
    204谢铭.转基因植物作为生物反应器的新进展.广西农业科学.2002,2:95-97
    205邢前国,潘传斌,张太平.重金属污染土壤的植物修复技术.生态科学.2003,22(8):275-279
    206许国章和樊金明.重金属中毒发肾脏病.新医学.1996,2:232-233
    207许嘉琳,杨居荣编著.陆地生态系统中的重金属.北京:中国环境科学出版社.1995
    208杨柳春,郑明辉,刘文彬.有机物污染环境的植物修复研究进展.环境污染治理技术与设备. 2002, 6:1-7
    209杨仁斌,曾清如,周细红,铁柏青,刘声扬.植物根系分泌物对铅锌尾矿污染土壤中重金属的活化效应.农业环境保护.2000,19(3):152-155
    210杨守仁,郑丕尧.作物栽培学概论.北京:中国农业出版社.1989
    212杨守仁著.杨守仁水稻文选.沈阳:辽宁科学技术出版社.1998
    213杨文钰主编.农学概论.北京:中国农业出版社.2002
    214杨肖娥,龙新宪,倪吾钟.超积累植物吸收重金属的生理及分子机制.植物营养与肥料学报. 2002, 8(1): 8-15
    215杨肖娥,龙新宪,倪吾钟,等.东南景天(Sedum alfredii H.):一种新的锌超积累植物.科学通报. 2002,47(13):1003-1006
    216杨晔,陈英旭,孙振世.重金属胁迫下根际效应的研究进展.农业环境保护.2001,20(1):55-58
    217严光生,谢学锦.“化学定时炸弹”与可持续发展.中国地质.2001,28(1):13-18
    218余莉萍,尹华,彭辉.环境生物技术的应用及发展趋势.城市环境与城市生态.2002,15(2): 52-54
    219赵亚平,马秀玲,万立斌,陶发章.鸡粪的有效利用.中国家禽.2000,22(8):44-45
    220张宪政,陈凤玉.植物生理学.长春:吉林科学技术出版社. 1996
    221张玉秀,柴团耀, Gerard Burkard.植物耐重金属机理研究进展.植物学报. 1999,41(5):451-457
    222张红辉,石传勇.种衣刘研究的新进展.种子.2002,4:39-40
    223张玲.根分泌物与土壤能力.生物学通报.2000,35(9):17
    224仲维科,樊耀波,王敏健.我国农作物的重金属污染及其防止对策.农业环境保护.2001,20(4):270-272
    225周东美,邓昌芬.重金属污染土壤的电动修复技术研究进展.农业环境科学学报.2003,22(4):505-508
    226周启星.复合污染生态学.北京:中国环境科学出版社. 1995
    227周启星.污染土地就地修复技术研究及应用.见:中国人口资源环境与可持续发展战略研究.北京:中国环境科学出版社.2000, 1676-1681
    228周启星,黄国宏.环境生物地球化学及全球环境变化.北京:科学出版社.2001
    229周启星,宋玉芳.植物修复的技术内涵及展望.安全与环境学报. 2001,1(3): 48-53
    230周启星.污染土壤修复的技术再造与展望.环境污染治理技术与设备.2002, 3(8): 36-40
    231周启星,任丽萍,孙铁珩,等.某铅锌矿开采区土壤镉的污染及有关界面过程.土壤通报.2002,33(4): 300-302
    232周启星,宋玉芳等著.污染土壤修复原理与方法.北京:科学出版社.2004
    233朱行.世界转基因作物发展现状和趋势.饲料博览.2002,3:19-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700