用户名: 密码: 验证码:
土地开发整理区土壤质量遥感定量评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国当前开展的土地开发整理是党中央国务院根据我国现阶段经济发展水平做出的战略决策,其中耕地保护,提高耕地土壤质量是一个重要方面。随着不同级别的土地开发整理项目的开展,对于土地开发整理项目的验收评价,尤其是项目完成后土壤质量的定量评价,变得越来越重要。目前对土地开发整理后土壤质量评价工作做的很少,一方面是土壤质量评价标准尚未统一,另一方面是进行土壤质量评价需要很大的人力物力财力和时间,所以这项工作很少很难深入开展。遥感技术以其快速、准确、经济、可周期性观测等优点,在土壤有机质监测、土壤水分监测、土地利用变化监测、植被指数监测等方面的成功运用,为土地开发整理工作中的土壤质量评价提供了新的思路和技术保障。
     依据《土地开发整理项目验收规程》(TD/T1013—2000)和《全国第二次土壤普查技术规程》,本文提出并建立涵括土壤物理指标、化学指标、生物指标等方面的土地开发整理区土壤质量遥感定量评价指标体系,对土壤有机质含量、地表温度、蒸散量、土壤水分、土壤侵蚀、植被指数盖度等进行提取,该体系将为土地开发整理项目验收及土壤质量评价提供理论和技术的支持,同时利用遥感技术对土地开发整理后土壤质量评价也是一个新的研究领域,将丰富我国土地整理理论,促进数字农业和精准农业的发展。
     土壤有机质是反映土壤肥力的重要指标。本文以SPOT, TM/ETM多光谱影像为数据源,进行星地同步实验、采集土样以及测定分析处理土样光谱曲线,建立多光谱遥感影像与土壤有机质定量多项式及BP神经网络反演模型,模型反演精度高,可推广应用,反演结果表明土壤肥力提高而且分布均匀,与土样测定结果相符,土地整理效果显著,克服了传统人工采样的费时费力的弊端。研究证明在湖南丘陵区土壤有机质等成分与实测样本点反射率、影像样本点反射率均有对应的拟合关系,尤其是在红光、近红外波段拟合效果最好,拟合度达到0.8以上
     温度、蒸散量与土壤质量密切相关,本研究结合SEBAL模型,利用TM/ETM遥感数据对湖南丘陵区的土地开发整理项目区的地表温度、蒸散量在空间分布进行了探索,实验表明,SEBAL模型可以合理、有效地绘制出研究区的土壤温度、蒸散量分布图,反演结果真实有效。这是首次利用地表温度、蒸散量来反演土地开发整理区的土壤质量。
     植被指数与土壤侵蚀程度是决定土壤质量的重要指标。本文利用面向对象技术对湖南丘陵区的土地开发整理项目区进行土地利用类型遥感识别,提出TM影像提取植被指数算法研究,对实验区的植被指数进行解译,利用3S技术分析土地利用动态变化、土壤侵蚀动态变化以及土壤侵蚀变化与土壤质量之间的关系。研究结果表明,经过土地开发整理后,植被覆盖度大幅增加,土壤侵蚀情况有明显的改善。
     以湖南省湘潭县杨嘉桥乡和常德市汉寿县南台村两个土地整理开发区为实验区,对土壤有机质含量、地表温度、蒸散量、土壤水分以及土壤侵蚀、植被指数等土壤质量遥感评价指标进行信息提取和综合分析,采用综合指数法对研究区土壤质量各项遥感评价指标进行分级定权,利用本文建立的土地开发整理区土壤质量遥感评价体系对研究区土壤质量进行综合评价分析,评价结果与实际相符。研究成果在该领域实现了理论方法和技术创新,将是土地开发整理项目中进行土壤质量评价的发展趋势。
The policy of land developing and consolidating in our co-untry is a strategic decision made by the CPC Central Committee under the state council based on the current level of economic development of China. Cultivated land protection and improvement of soil quality is the important aspect. With the development of the different levels of land developing and consolidating project, evaluations for these projects, especially the soil quality quantitative evaluations after consolidating is becoming more and more important. Evaluations for the soil quality after land developing and consolidating are very few. There are two reasons. On is the soil quality evaluation standards having not unified, on the other hand, soil quality evaluation takes a lot of manual labor and time, material and financial resources, so it is very difficulty and few people do the job. Remote sensing technology has been used successfully in many aspects such as the soil organic matter, soil moisture, land use change monitoring and vegetation index monitoring and so on for the advantages of rapid, accurate, economic, and can be periodic observation, provides a new train of thought and technical support for soil quality evaluation of land development and consolidation.
     Based on the land development projects acceptance regulation and the second soil survey technical regulation of China, the idea is put forward innovatively for the first time that using Remote Sensing technology to establish soil quality evaluation index system including soil physical, chemical indicators, biological indicators for the land development and consolidation area, and extracting the soil organic matter, the surface temperature, evaporation, soil moisture, soil erosion, vegetation coverage index and so on. This theory and technology support for the soil quality evaluation is provided after land consolidation. At the same time, it is a new research field to using the remote sensing technology in soil quality evaluation after land development and consolidation, it will also enrich the land consolidation theory of China, promoting the formation of land consolidation evaluation theoretical system, promoting the development of digital agriculture and precision agriculture
     Using the SPOT, TM/ETM multi-spectrum image as data sources for the first time by collecting soil samples from field to do indoor analysis, determining the field soil sample spectrum curve at the same time, to analysis the spectral curve and build up multispectral remote sensing image and quantitative polynomial and the BP neural network inversion model of soil organic matter. Model inversion accuracy is high, the inversion results show that the soil organic matter content increased obviously after land consolidation, the soil fertility improved and the distribution is uniform, the inversion results consistent with the sample determination results, land leveling effect is remarkable. Validation for the first time in Hunan hilly region of soil organic matter composition such as reflectivity, image sample points and the measured sample points reflectivity has the corresponding fitting relationship, especially in the red light and near infrared band best fitting effect, fitting degree reaches more than0.8.
     Temperature and evaporation are closely related with soil quality. Using SEBAL model and TM/ETM remote sensing data for the surface temperature and evaporation in spatial distribution in development and consolidation project area of Hunan hilly land has carried on the exploration. The results show that the SEBAL model can map the project area soil temperature profile or evaporation reasonably and effectively in the region and the inversion results is real and effective. It is the first time that inversing the temperature and evaporation with soil quality of land developing and consolidating.
     Vegetation index and soil erosion degree are the most important indicators of the soil quality. Object-oriented technology has been used to identify the types of land use remote sensing in Hunan's hilly area of land development and consolidation project area, the algorithm research of TM images extracting the vegetation index is been put forward, interpreting the vegetation index in the study area, using the3S technology to analyzing the dynamic variation of land using, soil erosion and the relationship between the changes of soil erosion and soil quality. The results show that after the land development and consolidation, vegetation coverage is increased, soil erosion is greatly improved.
     Two land consolidation development experimental regions are Xiangtan county of Hunan province Yang Jiaqiao township and Changde HanShou county NanTai village, by acquiring remote sensing images and field soil samples collected before and after land consolidation, the measured spectral data, extracting the soil quality evaluation index information of remote sensing for the first time in Hunan hilly region of soil organic matter content, surface temperature, evaporation, soil moisture and soil erosion, vegetation index etc. This paper Classified and Weighted the soil quality evaluation index of remote sensing with comprehensive index, evaluated and analyzed the soil quality of the study region used the soil quality evaluation index system. The innovation of theory and technology is provided, the evaluation results is in line with the actual.It will be a development trend of soil quality evaluation in the land development and consolidation project.
引文
[1]王庆芳.丘陵区土地整理对土壤质量的影响研究[D].山东农业大学,2010.
    [2]国土资源部耕地保护司,国土资源部土地整理中心编.土地开发整理相关文件汇编[M].中国大地出版社,2001.
    [3]高向军主编.土地整理理论与实践[M].地质出版社,2003.
    [4]陈胜华,段建国.浅析现代意义土地整理的内容[J].山西高等学校社会科学学报,2004,12:57-58.
    [5]张正峰,陈百明.土地整理的效益分析.农业工程学报[J].2003,19(2):210-213.
    [6]郭云开.基于遥感技术的土地复垦工程量评价研究[J],测绘通报,2008(4):17-206.
    [7]郭志刚.遂宁市天福镇土壤质量地球化学评价[D].成都理工大学,2009.
    [8]刘永生.华北平原土壤重金属元素空间自相关研究[D].中国地质大学,2013.
    [9]张静.陕北农牧交错带荒漠化土地植被恢复重建过程土壤效应研究[D].西北农林科技大学,2010.
    [10]高晓晶.北京市房山区土壤质量评价研究[D].首都师范大学,2007.
    [11]黄勇,杨忠芳.土壤质量评价国外研究进展[J].地质通报,2009(1):34-38.
    [12]汪媛媛,杨忠芳,余涛.土壤质量评价研究进展[J].安徽农业科学,2011(12):25-29.
    [13]严世光,廖铁军.土壤质量及其时空变异[J].安徽农业科学,2010(1):33-38.
    [14]黄勇.杨忠芳.土壤质量评价国外研究进展[J].地质通报,2009(1):18-23.
    [15]伏耀龙.岷江上游干旱河谷区土壤质量评价及侵蚀特征研究[D].西北农林科技大学,2013.
    [16]Fox G A, Sabbagh G J.Estimation of soil organic matter from red and near-infrared remotely sensed data using a soil line Euclidean distance technique[J]. Soil Science Society of America Journal,2002,66:1922-1929.
    [17]Lee WS, Sanchez JF, Mylavarapu RS,et al. Estimating chemical properties of Florida soil using spectral reflectance[J].Transactions of the American Society of Agricultural Engineers,2003,46:1443-14530.
    [18]Zhu D-S, Wu D, Song H-Y,et al. Determination of organic matter contents and pH values of soil using near infrared spectroscopy[J].Transactions of the Chinese Society of Agricultural Engineering,2008,24(6):1896-1990.
    [19]程鹏飞,刘良云.近红外光谱技术实时测定土壤中总氮及磷含量的初步研究 [J].光谱学与光谱分析,2008(2):295-2980.
    [20]DalalR C, HenryR J. Simultaneous determination of moisture, organic carbon and total nitrogen by near-infraredreflectance spectrophotometry [J].SoilScience Society ofAmerica Journal,2006,50:120-1230.
    [21]刘伟东,高光谱遥感土壤信息提取研究[D].中科院遥感应用研究所,2002.
    [22]Stone E R, Baungardner M F.Characteristic variations in reflectance of surface soils[J].Soil Sci.Soc.Am.J.,1981,45:1161-1165.
    [23]Chen F, Kissel D E, West L T,et al.Field-scale mapping of surface soil organic carbon using remotely sensed imagery [J]. Soil Science Society of America Journal,2000,64:746-753.
    [24]Mibau A,Stout J C,Graae B J,et al.Ahierarehieal fralllework for integting invisibility experiments ineorporating different factors and spatial scales[J].Biological invasions,2009,11(4):941-950.
    [25]张娟娟.土壤养分信息的光谱估测研究[D].南京农业大学,2009.
    [26]Huang C, Wylie B, Yang L, et al. Derivation of a tasseled cap transformation based on Landsat 7 at satellite reflectance[J]. International Journal of Remote Sensing,2002,23,1741-1748.
    [27]张科利,刘宝元,蔡永明.土壤侵蚀预报研究中的标准小区问题论证[J].地理研究,2000(1):35-39.
    [28]刘振忠.遥感影像融合在水土流失动态监测中的研究与应用[D],华中科技大学,2009.
    [29]郭云开.土地开发整理工程的遥感评价方法研究与应用[D],中南大学,2008.
    [30]王万茂,张颖.土地整理与可持续发展[J],中国人口·资源与环境,2004,14(1):13-17.
    [31]张晋,土壤光谱特性的研究[D],西北农林科技大学,2008.
    [32]Dunn B W, Beecher H G, Batten G D, Ciavarella S. The potential of near-infrared reflectance spectroscopy for soil analysis-a case study from the Riverine Plain of south-eastern Australia[J]. Australian Journal of Experimental Agriculture,2002, 42:607-614.
    [33]McCarty G W, Reeves III J B, Reeves V B, Follett R F, Kimble J M. Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement[J]. Soil Science Society of America Journal,2002,66:640-646.
    [34]张睿,神经网络在土壤有机质直接测定中的应用研究[D],山西农业大学,2005.
    [35]Condit H R. The Spectral Reflectance of American soils[J]. Photo-grammetric Engineering,1970(36):955-966.
    [36]戴昌达.中国主要土壤光谱反射特性分类与数据处理的初步研究[A].见:遥感文选[C].北京:科学出版社,1981.
    [37]王绍庆.土壤和水体反射光谱特性及其应用[A].见:童庆禧等主编.中国典型地物波谱及其特征分析[C].北京:科学出版社,1990.611-618.
    [38]徐金鸿,徐瑞松,夏斌,土壤遥感监测研究进展[J].水土保持研究,2006(02):22-27.
    [39]Daniel K W, Tripathi N K, Honda K. Artificial neural network analysis of laboratory and in situ spectra for the Estimation of macronutrients in soils of Lop Buri (Thailand) [J]. Australian Journal of Soil Research,2003,41:47-59.
    [40]Udelhoven T, Emmerling C, Jarmer T. Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression:a feasibility study [J]. Plant Soil,2003,251:319-329.
    [41]胡平香,出露潮滩土壤含水量探测遥感方法初探[D],南京师范大学,2006
    [42]EniGNjoku, Thorns J.Jackon, Venkataraman Lakshim, et al. Soil Moisture Retrieval from AMSR-E[J].IEEE, Transaction on Geoscience and Remote Sensing,2003,41 (2):215-229.
    [43]历华,基于多源遥感数据的城市热岛研究[D],中南大学,2007.
    [44]Hill J,and Schiitt B.Mapping complex patterns of erosion and stability in dry Mediterranean ecosystems [J].Remote Sensing of Environment,2000(74): 557-569.
    [45]朱蕾.松花湖流域水土流失与湖泊富营养化研究[D],吉林大学,2009.
    [46]朱惇.遥感和GIS技术支持下的区域土壤侵蚀评价与时空变化分析[D],华中农业大学,2010.
    [47]宋根鑫,翟石艳.基于GIS、RS的黄土高原USLE模型改进方法[J].地理空间信息,2009(3):45-56.
    [48]张红炼.城市有机垃圾的热解特性及其生物碳的土壤改良效应研究[D],重庆大学,2013.
    [49]王月容.洞庭湖退田还湖区钱粮湖垸景观格局、土壤质量与土地承载力研究[D],华中农业大学,2010.
    [50]程彬.松辽平原黑土有机质及相关元素遥感定量反演研究[D],吉林大学,2007.
    [51]李红军,雷玉平,郑力.SEBAL模型及其在区域蒸散研究中的应用[J].遥感技术与应用,2005(03):28-33.
    [52]丁美青,郭云开,陈松岭.等土地复垦整理植被覆盖度的遥感评价[J].遥感技术与应用,2010(1):102-106.
    [53]强建华,赵鹏祥,陈国领.基于NDVI的油松天然林生长状况的遥感监测研究[J).西北林学院学报,2007,22(1):149-151.
    [54]唐怡,刘良云,黄文江,等.土壤背景对冠层NDVI的影响分析[J].遥感技术与应用,2006,21(2):142-148.
    [55]沈善敏.中国土壤肥力[M].北京:中国农业出版社,1998.
    [56]周勇,张海涛,汪善勤,等.江汉平原后湖地区土壤肥力综合评价方法及其应用[J].水土保持学报,2001(4):70-74.
    [57]Singer MJ, Ewing S. Soil Quality [A].In:Sumner ME. ed. Handbook of Soil Science[C].New York:CRC Press,1999(3):271-298.
    [58]Pennock D J, Anderson D W, et al. Landscape-scale changes in indicators of soil quality due to cultivation in Saskatchewan, Canada[J].Geoderma,1994(4):1-19.
    [59]邓良基.遥感基础与应用[M].北京:中国农业出版社,2002.
    [60]Smith J L, Halvorson J J, et al. Using multiple-variable indi-cator kriging for evaluating soil quality [J].Soil Sci. Soc. Amer. J.,1993,57:743-749.
    [61]冷疏影,李秀彬.土地质量指标体系国际研究的新进展[J].地理学报,1999,54(2):177-185.
    [62]刘晓冰,刑宝山.土壤质量及其评价指标[J].农业系统科学与综合研究,2002(2):4-6.
    [63]张国印.河北平原土壤总质量评价和方法初探[D].中国农业大学,2006.
    [64]李伟,张书慧.近红外光谱法快速测定土壤碱解氮、速效磷和速效钾含量[J].农业工程学报,2007,23(1):55-59.
    [65]李民赞.基于可见光光谱分析的土壤参数分析.农业工程学报[J],2003(5):36-410.
    [66]丁文广,陈劲松.土壤养分的可见光谱研究.中国农学通报[J],2011,27(12):117-123.
    [67]徐永明,蔺启忠.基于高分辨率反射光谱的土壤营养元估算模型.土壤学报[J],2006,43(5):709-716.
    [68]Brunet D, Bernoux M, Barthes B G. Comparison between predictions of C and N contents in tropical soils using a Vis-NIR spectrometer including a fibre-optic probe versus a NIR spectrometer including a Sample transport module [J]. Biosystems Engineering,2008,100:448-452.
    [69]Reeves J, Mccarty G. The potential of NIRS as a tool for spatial mapping of soil compositions [J]. In Near Infrared Reflectance International Conference Proceedings,1999(6):58-60.
    [70]陆婉珍.现代近红外光谱分析技术[M].北京:中国石化出版社,2000.
    [71]Viscarra Rossel R A, Walvoort D J J, McBratney A B, Janik L J, Skjemstad J O. Visible, near infrared-mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties[J]. Geoderma,2006,131: 59-75.
    [72]张雪红,田庆久.基于连续统去除法的冬小麦叶片氮积累量的高光谱评价[J].生态学杂志,2010(01):55-61.
    [73]程街亮.土壤高光谱遥感信息提取与二向反射模型研究[D],浙江大学,2008.
    [74]丁美青,肖红光.基于BP神经网络的土地开发整理区土壤有机质含量遥感定量反演[J].湘潭大学自然科学学报,2012(02):23-27.
    [75]韩阳.长白山地区森林土壤含水量定量遥感研究[D],东北师范大学,2010.
    [76]Ben-Dor, E., Chabrillat, S., Dematte, J. A. M., et al.Using Imaging Spectroscopy to study soil properties[J].Remote Sensing of Environ-ment,2009,113(38-55).
    [77]Brown, Jesslyn, Wardlow, et al.The Vegetation Drought Response Index (VegDRI):A New Integrated Approach for Monitoring Drought Stress in Vegetation [J].GIScience & Remote Sensing,2008,45(1):16-46.
    [78]Bayarjargal, Y., Karnieli, A., Bayasgalan, M., et al.A comparative study of NOAA-AVHRR derived drought indices using change vector analysis[J].Remote Sensing of Environment,2006,105(1):9-22.
    [79]Gao, Bo-Cai. NDWI--A normalized difference water index for remote sensing of vegetation liquid water from space [J].Remote Sensing of Environment,1996, 58(3):257-266.
    [80]Ghulam, A., Qin, Q. M., Teyip, T., et al. Modified perpendicular droug ht index (MPDI):a real-time drought monitoring method[J].Isprs Journal of Photogrammetry and Remote Sensing,2007a,62(2):150-164.
    [81]Huete, A. R., Jackson, R. D., Post, D. F.SPECTRAL RESPONSE OF A PLANT CANOPY WITH DIFFERENT SOIL BACKGROUNDS [J].Remote Sensing of Environment,1985,17(1):37-53.
    [82]Ji, Lei, Peters, Albert J. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices[J].Remote Sensing of Environment,2003,87(1):85-98.
    [83]刘培君,张琳,艾里西尔·库尔班,等.卫星遥感估测土壤含水量的一种方 法[J].遥感学报,1997(2):135-138.
    [84]蔡国印.基于MODIS数据的地表温度、热惯量反演研究及其在土壤水分、地气间热交换方面的应用[D].北京:中国科学院研究生院(遥感应用研究所),2006.
    [85]李建龙,刘培君,朱明.利用遥感技术动态监测大面积农田土壤水分研究[J].安全与环境学报,2006(02):36-41.
    [86]王志辉,易善桢.不同指数模型法在水体遥感提取中的比较研究[J].科学技术与工程,2007,7(4):534-537.
    [87]丁凤.一种基于遥感数据快速提取水体信息的新方法[J].遥感技术与应用,2009(2):167-171.
    [88]Gu, Yingxin, Hunt, Eric, Wardlow, Brian, et al.Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data[J].Geophysical Research Letters,2008,35(22).
    [89]Hosseini, Mehdi,Saradjian, Mohammad Reza. Multi-index-based soil moisture estimation using MODIS images[J].International Journal of Remote Sensing,2011,32(21):6799-6809.
    [90]范文义,李明泽.荒漠化地区土壤含水量的遥感定量反演[J].应用生态学报,2008(05):33-39.
    [91]Fox, Garey A., Sabbagh, G J., Searcy, S. W., et al. An Automated Soil Line Identification Routine for Remotely Sensed Images[J].Soil Sci. Soc. Am. J.,2004,68(4):1326-1331.
    [92]丁美青,郭云开,彭文澜.等基于多时相.TM的土地整理区土壤含水量遥感评价[J].地理与地理信息科学,2012(2):19-20.
    [93]喻素芳.荒漠化地区土壤含水量遥感信息模型的研究[D],东北林业大学,2005.
    [94]Allen R QTrezza R,Tasumi M. Analytical integrated functions for daily solar radiation on slopes [J]. Agricultural and Forest Meteorology,2006,139(2):55-73.
    [95]张晓涛,康绍忠,王鹏新.估算区域蒸发蒸腾量的遥感模型对比分析[J].农业工程学报,2006(03):73-76.
    [96]刘朝顺.区域尺度地表水热的遥感模拟及应用研究[D],南京信息工程大学,2008.
    [97]川高峰,王介民.遥感技术在陆面过程研究中的应用进展[J].地球科学进展,2001,16(3):359-366.
    [98]郭晓寅.黑河流域蒸散发分布的遥感研究[J].自然科学进展,2005,15(10): 1266--1270.
    [99]洪刚,李万彪.卫星遥感估算淮河流域区域能量通量的方法研究[J].北京大学学报,2001,37(5):693-700.
    [100]韩丽娟,王鹏新.植被指数一地表温度构成的特征空间研究,中国科学D辑,2005,35(4):371-377.
    [101]辛晓洲,用定量遥感方法计算地表蒸散[D],中国科学院研究生院,2003.
    [102]邢炜光,遥感蒸散估算研究进展[J].安徽农学通报,2012(06):55-59.
    [103]刘雅尼,武建军.地表蒸散遥感反演双层模型的研究方法综述[J].干旱区地理,2005,28(1):65-71.
    [104]李召良,Petitcolin.F,张仁华,等.一种从中红外和热红外数据中反演地表比辐射率的物理算法,中国科学(E辑),2000,30(增刊):18-26.
    [105]Bastiaanssen W G M, Menenti M, Feddes R A, et al. A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL)-1. Formulation [J]. Journal of Hydrology,1998,(212/213):198-212.
    [106]陈云浩,李晓兵.陆面日蒸发散量计算的两层阻抗遥感模型[J].武汉大学学报,2005,30(12):1075-1079.
    [107]Allen R G, Tasumi M, Morse A, et al. A Landsat-based energy balance and evapotran spiration model in Western US water rights regulation and planning [J]. Irrigation and Drainage Systems,2005,19(3):251-268.
    [108]马耀明,戴有学.干早半干早区非均匀地表区域能量通量的卫星遥感参数化,高原气象,2004,23(2):139-146.
    [109]Anderson M C, Norman J M, Mechikalski J R, et al. A multiscale remote sensing model for disaggregating regional fluxes to micrometeorological scales [J]. Journal of hydronmeteorology,2004,5(2):343-363.
    [110]马耀明,马伟强.卫星遥感确定沙特阿拉伯吉达地区非均匀地表区域地表参数和能量通量[J].干早气象,2004,22(4):10-22.
    [111]马耀明,仲雷.青藏高原非均匀地表区域能量通量的研究[J].遥感学报,2006,10(4):542-547.
    [112]詹志明,冯兆东,秦其明.陇西黄土高原陆面蒸散的遥感研究[J].地理与地理信息科学,2004,20(1):16-19.
    [113]Gomez M, Olioso A. Sobrino J A, et al. Retrieval of Evapotranspiration over the Alpilles/ReSeDA Experimental Site Using Airborne POLDER Sensor and a Thermal Camera[J]. Remote Sensing of Environment,2005,96(3/4):399-408.
    [114]甘甫平,陈伟涛,张绪教.热红外遥感反演陆地表面温度研究进展[J].资源遥 感,2006,1(67):6-11.
    [115]孙睿,刘昌明.地表水热通a研究进展[J].应用生态学报,2003(14):434-438.
    [116]孙菽芬.陆面过程的物理、生化机理和参数化模型[M].北京:气象出版社,2005.
    [117]覃志豪,Zhang Minghua, Karrieli A.用NOAA-AVHRR热通道数据算法地表温度的辟窗算法[J].国十资源遥感,2001,(2):33-42.
    [118]蔺文静,董华,陈立,等.基于SEBAL模甩的区域蒸发蒸腾遥感估算[J].遥感信息,2008,16(5):112-114.
    [119]张仁华.定量热红外遥感模项及地面实验基础[M].北京:科学出版社,2009.
    [120]周为峰.土壤侵蚀调查中的遥感应用综述[J].遥感技术与应用,2005(06):35-40.
    [121]张喜旺,周月敏,李晓松.土壤侵蚀评价遥感研究进展[J].土壤通报,2010(04):31-36.
    [122]左洪超,吕世华,胡隐樵.中国近50年气温及降水量的变化趋势分析[J].高原气象,2004,23(2):238-244.
    [123]丁一汇,任国玉等.中国气候变化的检测及预估[J].沙漠与绿洲气象,2007,1(1):1-10.
    [124]古丽给娜·塔依尔江,多源遥感数据在干旱区土壤风蚀信息提取中的应用[J].新疆大学,2010.
    [125]Ma M, Veroustraete F. Re constructing Pathfinder AVHRR land NDVI time-series data for the Northwest of China[J]. Advances in space research,2006,37(4):835-840.
    [126]Lal R.soil carbon sequestration impacts on global climate change and food security[J].Seienee,2004,304(5677):1623-1627.
    [127]Le Bissonnais Y, Montier C, Jamagne M.Mapping erosion risk for cultivated soil in France[J].CATENA,2000,46(2):207-220.
    [128]戴声佩,张勃,王海军.中国西北地区植被NDVI的时空变化及其影响因子分析[J].地球信息科学,2010,12:(155-162).
    [129]许小华.三峡库区土壤侵蚀的遥感监测及其环境分析[D].南昌大学,2009.
    [130]周从斌.李子溪流域土壤侵蚀遥感监测[D].西南交通大学,2005.
    [131]刘光.土壤侵蚀模型研究进展[J].水土保持研究,2003(04):29-35.
    [132]Gitelson A A, Kaufman Y J, Stark R, et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sense Environment,2002,80: 76-87.
    [133]唐世浩.一种简单的估算植被覆盖度和恢复北京信息的方法[J].中国图像图形学报.2003,8(11)1304-1309.
    [134]李苗苗.密云水库上游植被覆盖度的遥感估算[J].资源科学,2004,26(4):0157-0164.
    [135]Beek P S A, AtZberger C, Hogda K A, et al. Improved Monitoring of vegetation dynamics at very high latitudes:a new method using MODIS NDVI[J]. Remote Sensing of Environment,2006,100:321-334.
    [136]Foster G R, Lombardi F.E valuation of rain fall-run off erosivity factors for individual storms[J]. Transactions of the ASAE,1982,25:124.
    [137]张蓓.利用MODIS数据进行植被水监测的应用研究[J].测绘科学,2004(1):45-49.
    [138]曾建航,魏萌,王靳辉,等.基于知识的遥感影像模糊分类方法[J].测绘科学技术学报,2008,25(3):172-175.
    [139]Fu B J, zhao W W, Chen L D, et al. Assessment of soil erosion at large watershed scale using RUSLE and GIS:A case study in the Loess plateau of China[J]. Land Degradation & Development,2005,16(1):73-85.
    [140]曹亚乔,曾志远,曹建洲.常用卫星图像数据光谱变换新方法[J].环境保护与循环经济,2009(10):17-19.
    [141]顾娟,李新,黄春林.NDVI时间序列数据集重建方法述评[J].遥感技术与应用,2006,21(4):391-398.
    [142]蒙吉军,王钧.20世纪80年代以来西南喀斯特地区植被变化对气候变化的响应[J].地理研究,2007,26(5):857-565.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700