用户名: 密码: 验证码:
具有力感知功能的六足机器人及其崎岖地形步行控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类探索自然界步伐的不断加速,各应用领域对具有复杂环境自主移动能力机器人的需求日趋广泛而深入。足式机器人具有比轮式机器人更加卓越的应对复杂地形的能力,因而被给予了巨大的关注。作为典型的多足步行机器人,六足机器人具有丰富的运动形式、冗余的肢体结构,具备良好的灵活度和稳定性,能够广泛的适应崎岖地形步行,特别适用于对自主性和可靠性要求比较高的任务。因此,对六足机器人相关技术的研究具有重要的理论价值和现实意义。目前,虽然已经存在众多不同用途的六足机器人,相关理论研究也取得较多成果,但由于其控制的复杂性、以及作业环境对其运动性能和智能性的高要求,相关研究还有待进一步深入。本文以实现六足机器人自主、稳定的崎岖地形步行为目标,研制了小型六足机器人,并且对全方位运动规划、腿部力控制、位姿控制进行了深入探讨,最后,通过实验对机器人HITCR的步行能力进行分析和评价。
     为了能够步行于复杂地形,六足机器人的设计以仿生学的观点获取原型,并且通过结构参数的优化,获得了能够满足高稳定性和灵活性运动要求的结构。小型机器人具有体积小、重量轻的特点,以便其它大型移动设备携带、以及能够穿越更狭小环境,为了实现机器人的小型化,设计了高集成化的躯干系统、均一化的腿部系统以及模块化的关节系统。通过传感器系统的设计使机器人具备环境和自身状态的感知功能。作为典型的MIMO系统,六足机器人在控制方面具有天然的复杂性,为了提高系统的运行效率,设计了四级分布式的控制体系结构,同时为了使系统运行稳定、便于维护,设计了具有合理的参数及布局的供电系统和通信系统。
     全方位运动规划是实现崎岖地形稳定步行的基础,其以运动学分析为手段、通过腿间协调规则的建立以及足端轨迹的规划,实现六足机器人直行和任意方向的转弯运动。首先,建立六足机器人的运动学模型,并分别对串联和并联结构进行正、逆运动学解算;其次,为了适应变化的地形,提出了足端轨迹自适应策略,采用对足端轨迹分层标识的方法,基于足端触碰及位置信息调用不同策略对预期轨迹进行修正,并且采用高次多项式描述轨迹模型,使足端轨迹满足腿部运动需要且具有良好的动态特性;再次,采用基于腿间局部规则的方法协调腿间的运动,从而生成根据地形自适应调整的自由步态。
     六足机器人腿部力控制为腿部系统的独立行为,但对机器人整体的运动性能至关重要,它关乎腿部运动状态转换过程中步行的稳定性。首先,为了满足复杂环境足端力的测量需要,设计了基于应变感知原理的足端三维力传感器,该传感器具有能够集成于小型足式机器人胫节、维间非耦合、意外过载保护和一体化设计等特点。其次,通过对足端力传感器测量空间的变换,满足机器人任意姿态下不同工作空间的足端力测量需求。再次,为了提高腿部运动状态转换过程中步行的稳定性,提出了基于事件的腿部状态控制器。采用基于阻抗模型的足端柔顺力控制策略,来减小腿部状态过渡过程的碰撞冲击、以及提高足端力跟踪性能,并且采用自适应方法实现对地形刚度的估计,以及非线性增益补偿策略实现目标阻尼的自适应调节。
     六足机器人为浮动基机构(FBM,Floating-based Mechanism),其位姿不仅由多条支撑腿的构型共同决定,也受到地形因素的影响。因此,位姿控制的目的是使机器人在复杂的崎岖地形步行过程中保持良好的稳定性和灵活性,并且能够适应更广泛的地形。首先,对六足机器人的初始位姿进行规划,规范了常规步行的基准位姿。其次,通过设计足端层位置辨识(LIT)方法,使机器人能够自主的区分轻度和重度崎岖地形。再次,为了实现轻度崎岖地形的位姿保持策略以及重度崎岖地形的位姿调整策略,从而提高机器人崎岖地形步行的适应性,设计基于VSDM模型的双环积分滑膜控制器来执行对位姿的控制,并且通过设计基于足力分配的重心位置调整方法来提高步行的稳定性。
     通过四组典型实验,对本文方法和理论的有效性及机器人HITCR的功能性进行综合分析和验证。首先,通过不同步态和运动模式的比较,对基本运动的稳定性进行验证,并且对行程误差进行评价;其次,通过爬坡实验来验证机器人斜坡地形的步行能力,以及基于足端力的重心位置调整策略的有效性;再次,通过楼梯攀爬实验来验证机器人离散渐变地形的步行能力,以及重度崎岖地形位姿调整策略的有效性;最后,设计了复杂地形全方位运动实验,既对机器人的全方位运动能力进行验证,又分析了基于事件的腿部状态变换过程稳定控制策对运动平稳性的影响。
Mobile manipulator has both mobile and operational capacity, and has larger operating space and better operational flexibility. It is a research focus in the robot with the increasingly rapid step of human exploration of nature, the demand for robots with autonomous mobility under complex environment has been getting broader and deeper in more and more application areas. Legged robot offers more superior performance of dealing with complicated terrain conditions than that provided by wheeled robot and therefore has been given great concern. The hexapod robot which is typically multi-legged is characterized by its climbing capability and fault-tolerance for walking on unstructured terrain. It is particularly suitable for tasks in complex environment where high reliability is essential. Thus the development of a hexapod robot capable of walking on unstructured terrain is of practical importance. In this paper, a novel hexapod robot HITCR suitable for walking on unstructured terrain is proposed, and also some advanced control strategy will be integrated to improve the ability of the robot.
     To improve the adaptation ability of hexapod robot, a thorough investigation of configuration design was made in terms of bionics. And structure parameters are optimized for improving dexterity of the robot; to equip the robot with perception of external environment and its internal states, the robot was characterized by high-integration and control with multi-sensors. As a typical MIMO system, a four-layer distributed hardware control system is developed. Also, the electrical system and the communication system were designed.
     Omni-directional motion planning is the foundation of implement unstructured terrain stable walking. It achieved the Omni-directional walk through establishing coordinationrules between legs and planning foot-end trajectories of the robot. Firstly, the forward and inverse kinematic model of hexapod biomimetic robot was established on the basis of theories of serial and parallel mechanics. Secondly, the adaptive foot-end trajectories generating strategy is presented using high order polynomial, which is of importance to the needs of leg movement and good movement characteristics of the robot. Finally, the coordinationrules between legs are integrated to produce the free gaits.
     Six-legged robot leg force control is an independent behavior, but the movement of the whole robot performance is critical, it is about leg movement in the process of state transition and foot end slip, accident cases on foot with the ground stability. Firstly, in order to meet the requirements of complex environment foot end force measurement, the three-dimensional force sensor is designed based on the principle of strain sensing, which has lots of advantages. Secondly, the foot end force measurement under different robot posture workspace is achieved through the space transformation of the foot end force sensor. Finally, the leg state controller based on events is developed, to improve the leg movement stability in the process of state transition of walking. The impact of in the of process leg state transition is effectively reduced, through integrating the foot end compliant force control strategy that bases on impedance model. Additionally, the adaptive adjustment of target damping is achieved through integrating independent adjustment of topography and stiffness and nonlinear gain compensation strategy.
     The hexapod robot is floating-base mechanism, whose posture is dependent on the supporting legs as well as the terrain shapes. The posture adjustment is to improve the stability of hexapod walking on unstructured terrain. Firstly, the original position of six-legged robot was planning; the walking benchmark is normalized, based on the kinematics and dynamics. Secondly, the LIT strategy was developed, to enable the robot distinguishautonomouslybetween mild rugged terrain and severe rugged terrains. Finally, the VSDM model is established to implement the posture control based on double loop integral sliding mode controller.Posture keeping strategy is used in the mild rugged terrain, while posture adjustment strategy is used in thesevere rugged terrains. The adjustment method for the center of gravity position is developed to improve the stability of the robot while walking.
     To test and verify the performance of the hexapod robot HITCR and the proposed control methods, four groups of experiments were carried out. Firstly, the stability of basic movement is tested through the comparison of different gait and movement patterns. Secondly, the walking ability on slope topographyand foot end force based center of gravity adjustment strategyare verified by the climbing experiment. In addition, the posture adjustment strategy under severe rugged terrains is also tested through stair climbing experiment.Finally,the omnidirectional motion experiment in complex terrain is designed to test the comprehensive motion ability of the robot and eventsbasedleg state controller. The adaptive stable locomotion ability of the robot under complex terrain conditions is exemplified by the comprehensive motionexperiment.
引文
[1] Bares J, Hebert M, Kanade T, et al. Ambler: An autonomous rover for planetaryexploration[J]. Computer,1989,22(6):18-26.
    [2] Kemurdjian A L, Potiemkin E K, Mishkiniuk V K. Planet rovers today[J].ICAR’95,1995:20-22.
    [3] Oblak J, Cikajlo I, Matjaci Z, Universal Haptic Drive: A Robot for Arm andWrist Rehabilitation[C], Neural Systems and Rehabilitation Engineering,2010,18(3):293-302.
    [4] Akizono J, Iwasaki M, Nemoto T, Asakura O. Development on walking robot forunderwater inspection[C]. Proceedings of the International Conference onAdvanced Robotics, Springer-Verlag,1989:652-663.
    [5] Ayears J A. Reactive Ambulatory Robot Architecture for Operation in Currentand Surge[C]. Proc. Of the Autonomous Vehicles in Mine CountermeasuresSymposium,1995:15-31.
    [6] Dupuis R, Tremblay D. Search, Identify, and Destroy: A Robotic Solution toUrban Warfare[D]. Kingston: Land Forces Technical Staff Programme V RoyalMilitary College,2000.
    [7] Flannigan W C, Nelson G M, Quinn R D. Locomotion controller for a crab-likerobot[C]//Robotics and Automation,1998. Proceedings.1998IEEE InternationalConference on. IEEE,1998,1:152-156.
    [8] Bares J E, Wettergreen D S. Dante II: Technical description,results and lessonlearned [J]. The International Journal of Robotics Research,1999,18(7):621-649.
    [9] Nonami K, Huang Q J, Komizo D, et al. Humanitarian mine detection six-leggedwalking robot[C]. Proceedings of the third international conference on climbingand walking robots.2000:861-868
    [10] Roberts J M, Corke P I, Winstanley G J. Development of a3500-tonne fieldrobot[J]. The International Journal of Robotics Research,1999,18(7):739-752
    [11] Huang Q J, Nonami K. Humanitarian mine detecting six-legged walking robotand hybrid neuro walking control with position/force control[J]. Mechatronics,2003,13:773-790.
    [12] Gonzalez P, Garcia E, Estremera J, et al. SIL06: Design and Configuration of aLegged Robot for Humanitarian Demining[C]. Int. Advanced Robotics Program,Int. Workshop on Robots for Humanitarian Demining. Vienna, Austria;2002.
    [13]干东英,甘建国.步行机器人评述[J].机械工程.1990(4):1-4.
    [14]陈学东,孙诩,贾文川.多足步行机器人运动规划与控制.武汉:华中科技大学出版社,2006.
    [15]孟庆春,齐勇,张淑军等.智能机器人机器发展.中国海洋大学学报,2004,34(5):831-838.
    [16] D. Wooden, M. Malchano, K. Blankespoor, et al. Autonomous navigation forBigDog[C]. The IEEE International Conference on Robotics and Automation(ICRA), Anchorage, USA,2010:4736-4741
    [17] M. Raibert, K. Blankespoor, G. Nelson, et al. Bigdog, the rough-terrain quadrupedrobot[C]. The International Federation of Automatic Control. Seoul, Korea,2008:10823-10825
    [18] A. Shkolnik, M. Levashov, I. R. Manchester, et al. Bounding on rough terrainwith the LittleDog robot[J]. The International Journal of Robotics Research,2011,30(2):192-215
    [19] M. P. Murphy, A. Saunders, C. Moreira, et al. The littledog robot[J]. TheInternational Journal of Robotics Research,2011,30(2):145-149.
    [20] J. Z. Kolter, A. Y. Ng. The Stanford LittleDog: A learning and rapid replanningapproach to quadruped locomotion[J]. The International Journal of RoboticsResearch,2011,30(2):150-174
    [21] B. Klaassen, R. Linnemann, D. Spenneberg, et al. Biomimetic walking robotSCORPION: Control and modeling[J]. Robotics and autonomous systems,2002,41(2):69-76
    [22]王立权,孙磊,陈东良,等.仿生机器蟹样机研究[J].哈尔滨工程大学学报.2005,26(5):591-595
    [23] R. A. Brooks. A Robot that Walks: Emergent Behaviors from a Carefully EvolvedNetwork. Neural Computation.1989,1:253-262
    [24] M. Frik, M. Guddat, D. C. Losch. Terrain Adaptive Control of the WalkingMachine TARRY II. The European Mechanics Colloquium, Euromech, Munich,1998:108-115
    [25] A. Buschmann. Home of Tarry I&II: Design of the Walking Machine Tarry II.World Wide Web, http://www.tarry.de, March2000
    [26] K. S. Espenschied, R. D. Quinn, H. J. Chiel. Biologically-based DistributedControl and Local Reflexes Improve Rough Terrain Locomotion in a HexapodRobot. Robotics and Autonomous Systems.1996,18:59-64
    [27] M. R. Fielding, R. Dunlop, C. J. Damaren. Hamlet: Force/position ControlledHexapod Walker-Design and Systems. The IEEE Conference on ControlApplications, Mexico City, Mexico,2001:984-989
    [28] H. J. Weidemann, F. Pfeiffer, J. Eltze. The six-legged TUM walking robot. TheIEEE Conference on Intelligent Robots and Systems'94.' Advanced RoboticSystems and the Real World', IROS'94, Munich, Germany.1994,2:1026-1033
    [29] F. Pfeiffer, J. Eltze, H. J. Weidemann. Six-legged technical walking consideringbiological principles[J]. Robotics and Autonomous Systems,1995,14(2):223-232
    [30] Kenji Inoue, Taisuke Tsurutani, Tomohito Takubo, Tatsuo Arai. Omni-directionalGait of Limb Mechanism Robot Hanging from Grid-like Structure. The IEEEInternational Conference on Intelligent Robots and Systems, Beijing, China,2006:1732-1737
    [31] Chayooth Theeravithayangkura, Tomohito Takubo, Yasushi Mae, Tatsuo Arai.Stair Recognition with Laser Range Scanning by Limb Mechanism Robot“ASTERISK”. The IEEE International Conference on Robotics and Biomimetics,Bangkok, Thailand,2009:915-920
    [32] Shota Fujii, Kenji Inoue, Tomohito Takubo, Yasushi Mae, Tatsuo Arai. LadderClimbing Control for Limb Mechanism Robot “ASTERISK”. The IEEEInternational Conference on Robotics and Automation, Pasadena, CA, USA,2008:3052-3057
    [33] A. Roennau, T. Kerscher, R. Dillmann. Design and kinematics of abiologically-inspired leg for a six-legged walking machine. The IEEEInternational Conference on20103rd IEEE RAS and EMBS, Tokyo, Japan,2010:626-631
    [34] B. Gassmann, K.U. Scholl, and K. Berns. Locomotion of LAURON III in RoughTerrain. International Conference on Advanced Intelligent Mechatronics, Como,Italy,2001,2:959-964
    [35] J. Albiez1, K. Berns. Biological Inspired Walking—How Much Nature do WeNeed. The International Conference on Climbing and Walking Robots, Madrid,Spain,2004:357-364
    [36] P. G. De Santos, E. Garcia, J. A. Cobano, et al. SIL06: A six-legged robot forhumanitarian de-mining tasks. The International Conference on Word AutomationCongress, Seville, Spain,2004:523-528
    [37] P. G. De Santos, J. A. Galvez, J. Estremera, et al. SIL04: a true walking robot forthe comparative study of walking machine techniques. Robotics&AutomationMagazine[J],2003,10(4):23-32
    [38] D. Belter, P. Skrzypczynski. Integrated motion planning for a hexapod robotwalking on rough terrain. The International Conference on18th IFAC, Milano,Italy,2011:6918-6923
    [39] D. Belter, P. Skrzypczynski. Rough terrain mapping and classification forfoothold selection in a walking robot[J]. Journal of Field Robotics,2011,28(4):497-528
    [40] K. Walas, D. Belter. Messor–Verstatile walking robot for search and rescuemissions[J]. Journal of Automation Mobile Robotics and Intelligent Systems,2011,5(2):28-34
    [41] P. Skrzypczynski. Laser scan matching for self-localization of a walking robot inman-made environments[J]. Industrial Robot: An International Journal,2012,39(3):242-250
    [42] M. G rner, T. Wimb ck, G. Hirzinger. The DLR Crawler: evaluation of gaits andcontrol of an actively compliant six-legged walking robot[J]. Industrial Robot: AnInternational Journal,2009,36(4):344-351
    [43] M. G rner, T. Wimb ck, A. Baumann, et al. The DLR-Crawler: a testbed foractively compliant hexapod walking based on the fingers of DLR-Hand II[C]. TheIEEE/RSJ International Conferenceon on Intelligent Robots and Systems, Nice,France,2008:1525-1531
    [44] C. Annett, H. Heiko. Stereo Camera Based Navigation of Mobile Robots onRough Terrain[C]. The IEEE/RSJ International Conferenceon Intelligent Robotsand Systems, San Francisco, America,2009:4571-4576
    [45] C. Annett, H. Heiko, G. Martin, et al. Multisensor Data Fusion for Robust PoseEstimation of a Six-Legged Walking Robot[C]. The IEEE/RSJ InternationalConferenceon Intelligent Robots and Systems, Nashville, America,2011:2497-2504
    [46] B. H. Wilcox, T. Litwin, J. Biesiadecki, et al. ATHLETE: A cargo handling andmanipulation robot for the moon[J]. Journal of Field Robotics,2007,24(5):421-434
    [47] B. H. Wilcox. Athlete: An option for mobile lunar landers[C]. The IEEEInternational Conference on Aerospace, Tokyo, Japan,2008:1-8
    [48] K. Hauser, T. Bretl, J. C. Latombe, et al. Motion Planning for Legged Robots onVaried Terrain[J]. The International Journal of Robotics Research.2008,27(l1):1325-1349
    [49] Walking Machine Catalogue, http://www.walking-machines.org/,2008.
    [50] M. PAAKKUNAINEN. Method for Adjusting Supply Pressure. US6,305,163B1[P].2001-10-23
    [51] M. PAAKKUNAINEN. Leg Mechanism. US6,109,378[P].2000-8-29
    [52]钱涛,张融甫.可用作步行机腿的机构研究.机器人,1989(3):47-51
    [53]汪劲松,荣松年,张伯鹏.综合双三足步行机器人(Ⅰ)—步行原理、机构及控制系统[J].清华大学学报(自然科学版),1994,34(2):102-107
    [54]汪劲松,张伯鹏.综合双三足步行机器人(Ⅲ)[J].清华大学学报(自然科学版),1994,34(5):62-71
    [55]马建旭,马培荪,杨保忠.四足步行机器人中一种新型腿结构缓冲特性.上海交通大学学报.33(7):847-850
    [56]马培荪,郑伟红.四足步行机器人模糊神经网络控制.机器人.1997,19(1):56-60
    [57]蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制研究的若干问题[J].控制与决策.2002,4P:385-390.
    [58] J. Bo, C. Cheng, L. Wei, et al. Design and configuration of a hexapod walkingrobot[C]. The IEEE International Conference on Measuring Technology andMechatronics Automation (ICMTMA), Shanghai, P.R.China,2011,1:863-866
    [59] J. Bo, C. Cheng, L. Wei, et al. Design of the control system for a hexapod walkingrobot[C]. The IEEE International Conference on Digital Manufacturing andAutomation (ICDMA), Zhangjiajie, P.R.China,2011:401-404
    [60]罗庆生,韩宝玲,赵小川,等.现代仿生机器人设计.电子工业出版社.2008
    [61]王新杰.多足步行机器人运动及力规划研究[D].华中科技大学博士学位论文.2005
    [62]陈学东,孙翊,贾文川.多足步行机器人运动规划与控制.华中科技大学出版社.2006
    [63] X Chen, B Han, X Luo. Study on multi-legged walking robot in HuazhongUniversity of Science&Technology[C]. The IEEE International Conference onCybernetics and Intelligent Systems (CIS), Qingdao, China,2011:294-299
    [64] F Chen, X. Z Zang, J. H. YAN, et al. Development of navigable hexapodbiomimetic robot Spider [J]. Journal of Jilin University (Engineering andTechnology Edition),2011,3:030
    [65]蒋宗礼.人工神经网络导论.高等教育出版社[M],2001:1-14
    [66] D. Wettergreen, C. Thorpe. Developing Planning and Reactive Control for aHexapod Robot. The IEEE International Conference on Robotics and Automation,Minneapolis, MN, USA,1996:2718-2723
    [67] E. Krotkov, R. Simmons. Perception, Planning, and Control for AutonomousWalking with the Ambler Planetary Rover. Journal of Robotics Research.1996,15(2):155-180
    [68] B. Goodwine, J. W. Burdick. Motion Planning for Kinematic Stratified Systemswith Application to Quasi-static Legged Locomotion and Finger Gaiting. IEEETransactions on Robotics and Automation.2002,18(2):209-222
    [69] F. Delcomyn. Neural Basis of Rhythmic Behavior in Animals. Science.1980,210:492-498
    [70] J. Dean, G. Wendler. Stick Insect Locomotion on a Walking Wheel: Inter-legCoordination of Leg Position. Journal of Experimental Biology.1983,103:75-94
    [71] K. G. Pearson, R. Franklin. Characteristics of Leg Movements and Patterns ofCoordination in Locusts Walking on Rough Terrain. Journal of RoboticsResearch.1984,3(2):101-112
    [72] Bettina Blasing. Crossing Large Gaps: A Simulation Study of Stick InsectBehavior. Adaptive Behavior.2006,14(3):265-285
    [73] H. Cruse. The Control of the Anterior Extreme Position of the Hind leg of aWalking Stick Insect, Carausius Morosus. Physiological Entomology.1979,4:121-124
    [74] H. Cruse. What Mechanisms Coordinate Leg Movement in Walking Arthropods.Trends in Neuroscience.1990,13:15-20
    [75] W. A. Lewinger, M. S. Branicky, R. D. Quinn. Insect-inspired, ActivelyCompliant Hexapod Capable of Object Manipulation. The InternationalConference on Climbing and Walking Robots, London, UK,2005:65-72
    [76] M. R. Fielding, G. R. Dunlop. Omnidirectional Hexapod Walking and EfficientGaits Using Restrictedness. The International Journal of Robotics Research.2004,23(10-11):1105-1110
    [77] P. S. G. Stein. Motor Systems with Specific Reference to the Control ofLocomotion. Annual Review of Neuroscience.1978,1:61-81
    [78] J. Y. Gao, C. Wang, X. G. Duan, et al. The CPG Gait Generate Method of theQuadruped Robot Based on Iterative Learning Control Algorithm[J]. AdvancedMaterials Research,2013,677:296-303
    [79] L. Maes, A. Abourachid. Gait transitions and modular organization of mammallocomotion[J]. The Journal of experimental biology,2013,216(12):2257-2265
    [80] Y. J. Lee, J. Lee, K. Kim. Low Power CMOS Adaptive Electronic Central PatternGenerator Design for a Biomimetic Robot. Neurocomputing.2007,71(1-3):284-296
    [81] D. Spenneberg, K. McCullough, F. Kirchner. Stability of Walking in aMulti-legged Robot Suffering Leg Loss. The IEEE International Conference onRobotics and Automation, New Orleans, USA,2004:2159-2164
    [82] B. L. Han, L. Huang, Q. S. Luo. The Biomimetic Research on New-style HexapodRobot's Locomotion Planning. The World Congress on Intelligent Control andAutomation, Chongqing, China,2008:3264-3268
    [83] Y. Jin, W. H. Chen, J. B. Zhang. New Free Gait Generation for a CockroachRobot. The IEEE Conference on Industrial Electronics and Applications, Harbin,China,2007:1214-1219
    [84] L. M. Capisani, A. Ferrara. Trajectory planning and second-order sliding modemotion/interaction control for robot manipulators in unknown environments[J].Industrial Electronics, IEEE Transactions on,2012,59(8):3189-3198
    [85] C. T. Chen, H. V. Pham. Trajectory planning in parallel kinematic manipulatorsusing a constrained multi-objective evolutionary algorithm[J]. NonlinearDynamics,2012,67(2):1669-1681
    [86] C. S. Lin, P. R. Chang, J. Y. Luh. Formulation and Optimization of CubicPolynomial Joint Trajectories of Industrial Robots. IEEE Transaction AutomaticControl.1983, AC-8(12):1066-1074
    [87] B. Tondu, H. E. Zorkany. Identification of a Trajectory Generation Model for thePUMA560Robot. Journal of Robotic Systems.1994,11(2):77-90
    [88] S. A. Bazaz, B. Tondu. Optimization of a Robotic Manipulator Joint TrajectoryTravel Time with Velocity and Acceleration Constraints. The IEEE InternationalSymposium on Assembly and Task planning,1997: l-6
    [89] S. A. Bazaz, B. Tondu. Minimum Time Online Joint Trajectory Generator Basedon Low Order Spline Method of Industrial Manipulators. Robotics andAutonomous Systems.1999,29(4):257-268
    [90] S. Dubowsky, Z. Shiller. Optimal Dynamic Trajectories of Robotic Manipulators.Theory and Practice of Robotic and manipulators. Cambridge: MIT Press.1985:133-143
    [91] Z. Shiller, S. Dubowsky. On the Optimal Control of Robotic Manipulators withActuator and End-effetor Constraints. The IEEE International Conference onRobotics and Automation,1985:614-620
    [92] H. P. Geering, L. Guzzella, A. R. Hepner. Time-optimal Motions of Robots inAssembly Tasks. IEEE Transactions on Automatic Conrorl.1986, AC-31(6):512-518
    [93] G. Sahar, J. M. Hollerbach. Planning of Minimum-time Trajectory for RobotArms. The International Journal of Robotics Research.1986,5(3):90-100
    [94] K. G. Shin, N. D. MeKay. Minimum-time Contorl of Robotic Manipulators withGeometric Path Constraints. IEEE Transactions on Automatic Contorl.1985,AC-30(6):531-541
    [95] B. K. Kim, K. G. Shin. Minimum-time Path Planning for Robot Arms and TheirDynmaics. IEEE Transaction on Systems, Man, and Cybernetics.1985, SC-152:213-223
    [96]王建滨,马培荪,徐军等.基于超冗余度机械臂动力学的时间最优轨迹规划.上海交通大学学报.2002,36(9):1360-1364
    [97]杨国军,崔平远.机械手时间最优轨迹规划方法研究.中国机械工程,2002,13(20):1715-1717
    [98] W. Feng, G. Linyi, Z. Bo. Trajectory Generation for the Leg of the Six-leggedUnderwater Robot over Obstacle in the Structured Terrain. The ASMEInternational Mechanical Engineering Congress and Exposition, Seattle, USA,2007:1295-1306
    [99] Q. J. Huang, X. D. Chen, K. Oka. Phased Compliance Control with Virtual Forcefor Six-Legged Walking Robot. International Journal of Innovative Computing,Information and Control.2008,4(12):3359-3373
    [100] P. F. Doubliez, O. Bruneau, F. B. Ouezdou. Force control of the redundant leg ofa biped robot to produce large inertial effects for crossing obstacles[J].International Journal of Humanoid Robotics,2012,9(01)
    [101] R. Müller, S. Grimmer, R. Blickhan. Running on uneven ground: leg adjustmentsby muscle pre-activation control[J]. Human movement science,2010,29(2):299-310
    [102] S. K. Banala, S. K. Agrawal, S. H. Kim, et al. Novel gait adaptation andneuromotor training results using an active leg exoskeleton[J]. EEE/ASMETransactions on Mechatronics,,2010,15(2):216-225
    [103] C. P. McGowan, R. R. Neptune, D. J. Clark, et al. Modular control of humanwalking: adaptations to altered mechanical demands[J]. Journal of biomechanics,2010,43(3):412-419
    [104] J. T. Yen, Y. H. Chang. Rate-dependent control strategies stabilize limb forcesduring human locomotion[J]. Journal of the Royal Society Interface,2010,7(46):801-810
    [105] T. Yoshikawa, T. Sugie, M. Tanaka. Dynamic Hybrid Position/Force Control ofRobot Manipulator Constrained A Stiff Environment[J]. IEEE Robotic andAutomation,1988,4(6):321-333
    [106] M. T. Mason. Compliance and Force Control for Computer Manipulator[J].IEEETrans. Systems Man cybernetics,1981,11(6):418-432
    [107] M. H. Raibert, J. J. Craig. Hybrid Position/Force Control of Manipulators[J].Dynamic Systems Measurement Control,1981,102:126-133
    [108] A. Kadiallah, G. Liaw, M. Kawato, et al. Impedance control is selectively tuned tomultiple directions of movement[J]. Journal of neurophysiology,2011,106(5):2737-2748
    [109] D. Mitrovic, S. Klanke, R. Osu, et al. A computational model of limb impedancecontrol based on principles of internal model uncertainty[J]. PloS one,2010,5(10):e13601
    [110] Y. Kobayashi, T. Watanabe, M. Seki, et al. Soft Interaction Between BodyWeight Support System and Human Using Impedance Control Based onFractional Calculus[J]. Advanced Robotics,2012,26(11-12):1253-1269
    [111] R. V. Patel, H. A. Talebi, Jayender J, et al. A robust position and force controlstrategy for7-DOF redundant manipulators[J]. Mechatronics, IEEE/ASMETransactions on,2009,14(5):575-589
    [112] G. Priyandoko, M. Mailah, H. Jamaluddin. Vehicle active suspension systemusing skyhook adaptive neuro active force control[J]. Mechanical Systems andSignal Processing,2009,23(3):855-868
    [113] N. Nakata. Effective force testing using a robust loop shaping controller[J].Earthquake Engineering&Structural Dynamics,2013,42(2):261-275
    [114] M. M. Fateh. Robust impedance control of a hydraulic suspension system[J].International Journal of Robust and Nonlinear Control,2010,20(8):858-872
    [115] R. Carelli, R. Kelly, R. Ortega. Adaptive force control of robot manipulators[J].Int. J. of Control,1990,52(1):37-54
    [116] S. K. Singh, D. O. Popa. An analysis of some fundamental problems in adaptivecontrol force control of force and impedance behaviour: theory andexperiments[J]. IEEE Trans. on Robotics and Automat,1995,11(6):912-921
    [117] R. Colbaugh, H. Seraji, K. Glass. Direct adaptive impedance control of robotmanipulators[J]. J. of Robotics Sys,1994,10(2):217-248
    [118] G. M. Nicoletti. On the stability of adaptive controllers for roboticmanipulators[C]. Proceedings of the34th Midwest Symposium on Circuits andSystems. NewYork, NY, USA,1992:950-953
    [119] Seul Jung, T. C. Hsia, R. G. Bonitz. Force Tracking Impedance Control for RobotManipulators with an Unknown Environment: Theory, Simulation, andExperiment. International Journal of Robotic Research.20(9),2001:76-774
    [120] Seul Jung. Robust Neural Force Control Scheme Under Uncertainties in RobotDynamics and Unknown Environment. IEEE Transactions on IndustrialElectronics,2000,47(4):403-412
    [121] Seul Jung. Robot Neural Force Control with Robot Dynamics under TotallyUnknown Environment. IEEE International Conference on Intelligent Robots andsystems,1996,2(11):4-8
    [122] W. J. Dong. On trajectory and force traeking control of constrained mobilemanipulators with parameter uncertainty[J]. Automatica,2002,38(9):1475-1484
    [123] L. Villani, C. Natale, B. Sieiliano, et al. An experimental study of adaptiveforce/Position control algorithms for an industrial robot. IEEE TransaetionsonControl Systems Technology,2000,8(5):777-756
    [124] B. Ervin, O. Peter. Autonomous Hexapod Walker Robot “Szabad(ka)”. ActaPolytechnica Hungarica,2011,5(l):69-85
    [125] R. Zubavi ius, N. Paulauskas, M. apurov. Control of the Hexapod WalkingRobot[J]. Science–Future of Lithuania/Mokslas–Lietuvos Ateitis,2013,5(2):96-100
    [126] S. Inagaki, T. Niwa, T. Suzuki. Decentralized Control of Centipede-likeMulti-legged Robots with Passive Intersegment Joints Based onFollow-the-Contact-Point Gait Control[J]. Transactions of the Society ofInstrument and Control Engineers,2011,47:282-290
    [127] K. Kamikawa, T. Takubo, Y. Mae, et al. Omni-Directional Gait of Multi-LeggedRobot on Rough Terrain by Following the Virtual Plane[J]. Journal of Roboticsand Mechatronics,2012,24(1):71
    [128] S. Nishikori, S. Hokamoto, T. Kubota. Kinematic Discussion and Development ofa Multi-Legged Planetary Exploration Rover with an Isotropic LegArrangement[J]. Advanced Robotics,2011,25(6-7):789-804
    [129] C. A. Kein, R. L. Briggs. Use of Active Compliance in the Control of LeggedVehicles.IEEE Trans. Syst. Man, Cybern.1980,10(7):393-400
    [130] D. M. Gorinevsky, A. Y. Shneider. Force Control in Locomotion of LeggedVehicles over Rigid and Soft Surfaces. Int. J. Robotics Research.1990,9(2):4-23
    [131] A. Schneider, H. Cruse, B. Fischer, et al. A self-adjusting negative feedback jointcontroller for legs standing on moving substrates of unknown compliance[C].Proceedings of the Bioengineered and Bioinspired Systems. Gran Canaria, Spain,2007:65920M-65920M-11
    [132] M. Kalakrishnan, J. Buchli, P. Pastor, et al. Fast, robust quadruped locomotionover challenging terrain[C]. IEEE International Conference on Robotics andAutomation (ICRA). Anchorage, USA,2010:2665-2670
    [133] M. Rakotondrabe, I. A. Ivan. Development and force/position control of a newhybrid thermo-piezoelectric microgripper dedicated to micromanipulation tasks[J].Automation Science and Engineering, IEEE Transactions on,2011,8(4):824-834
    [134] N. Kumar, V. Panwar, Sukavanam N, et al. Neural network based hybridforce/position control for robot manipulators[J]. International Journal of PrecisionEngineering and Manufacturing,2011,12(3):419-426
    [135] C. Maufroy, H. Kimura, K. Takase. Integration of posture and rhythmic motioncontrols in quadrupedal dynamic walking using phase modulations based on legloading/unloading[J]. Autonomous Robots,2010,28(3):331-353
    [136] C. Theeravithayangkura, T. Takubo, Ohara K, et al. Adaptive Gait for DynamicRotational Walking Motion on Unknown Non-Planar Terrain by LimbMechanism Robot ASTERISK[J]. Journal ref: Journal of Robotics andMechatronics,2013,25(1):172-182
    [137] E. Celaya, J. M. Porta. A Control Structure for the Locomotion of a Legged Roboton Difficult Terrain[C]. IEEE Robotics&Automation.1998:43-51.
    [138] Z. Wang, X. Ding, A Rovetta. Mobility analysis of the typical gait of a radialsymmetrical six-legged robot[J]. Mechatronics,2011:1133-1146.
    [139] X. Wu, Y. Li. Posture Synthesis and Control of a Symmetric Hexapod Robot onCorrugated Surfaces for Underwater Observation[C]. ASME InternationalMechanical Engineering Congress and Exposition.2007:
    [140] Shin-Min Song, Keneth J.Waldron, Machines that walk:the adaptive suspensionvehicle[M],The MIT Press Cambridge,Massachusetts London,England,1989:101-116.
    [141] Kan Yoneda, Hiroyuki Iiyama, Shigeo Hirose. Sky-Hook Suspension Control of aQuadruped Walking Vehicle [J]. The Journal of Robotics Society of Japan,1994,12(7):1066-1071.
    [142] S. G. Khan, G. Herrmann, Pipe T, et al. Safe adaptive compliance control of ahumanoid robotic arm with anti-windup compensation and posture control[J].International Journal of Social Robotics,2010,2(3):305-319
    [143] Q. J. Huang, Kenzo Nonami. Humanitarian mine detecting six-legged walkingrobot and hybrid neuro walking control with position/force control [J].Mechatronics,2003,13:773–790
    [144] Q. J. Huang, Kenzo Nonami. Neuro-Based Position and Force Hybrid Control ofSix-Legged Walking Robot [J], Journal of Robotics and Mechatronics,2002,14(4),pp:534-543
    [145] Q. J. Huang, Yasuyuki Fukuhara. Posture and Vibration Control Based on VirtualSuspension Model Using Sliding Mode Control for Six-Legged Walking Robot
    [C]. Proceedings of the IEEE/RSJ.2006:5232-5237
    [146] P. Lin, H. Komsuoglu, D. E. Koditschek. A Leg Configuration MeasurementSystem for Full-Body Pose Estimates in a Hexapod Robot. IEEE Transactions onrobotics,2005,21,411-1422
    [147] G. M. Nelson, R. D. Quinn. Posture Control of a Cockroach-like Robot. ControlSystems,1999,19,9-14
    [148] D. E. Orin and S. Y. Oh, Control of Force Distribution in Robotic MechanismContaining Closed Kinematic Chains, Trans. of the ASME, J. of DynamicSystems, Measurement, and Control,1981,102, pp.134-141
    [149] C. A. Klein and S. Kittivatcharapong, Optimal Force Distribution for the Legs ofa Walking Machine with Friction Cone Constraints, IEEE Trans. On Robotics andAutomation,1990,6(1), pp.73-85
    [150] M. A. Nahon and J. Angeles, Optimization of Dynamic Forces in MechanicalHands, Trans. of the ASME, J. of Mechanical Design,1991,113, pp.167-173.
    [151] S. S. Kumar and A. Guez, ART Based Adaptive Pole Placement forNeurocontrollers, Neural Networks,1991,4, pp.319-335
    [152] X. Chen, K. Watanabe. Optimal force distribution for legs of quadruped robot [J].Machine Intelligence and Robotic Control.1999,1(2):87-94
    [153] K. Waldron. Force and motion management in legged locomotion[J]. IEEEJournal of Robotics and Automation,1986,2(4):214-220
    [154] J. A. Galvez, J. Estremera, P. S. Gonzalez. A new legged-robot configuration forresearch in force distribution[J]. Mechatronics,2003,13(8):907-932
    [155] R. Vidoni, A. Gasparetto. Efficient force distribution and leg posture for abio-inspired spider robot[J]. Robotics and Autonomous Systems,2011,59(2):142-150
    [156]罗庆生,韩宝玲,赵小川等.现代仿生机器人设计[M].北京,电子工业出版社,2008
    [157] Z. Y. Wang, X. L. Ding, A. Rovetta. Analysis of typical locomotion of asymmetric hexapod robot[J]. Robotica,2010,28(06):893-903
    [158] A. Gasparetto, V. Zanotto. Optimal trajectory planning for industrial robots[J].Advances in Engineering Software,2010,41(4):548-556
    [159] J. Gamez Garcia, A. Robertsson, J. Gomez Ortega, et al. Self-calibrated roboticmanipulator force observer[J]. Robotics and Computer-Integrated Manufacturing,2009,25(2):366-378
    [160] M. G. Kim, D. H. Lee, N. G. Cho. A force sensor with five degrees of freedomusing optical intensity modulation for usage in a magnetic resonance field[J].Measurement Science and Technology,2013,24(4):045101
    [161] B. S. Dhillon, A. R. M. Fashandi, K. L. Liu. Robot systems reliability and safety:a review[J]. Journal of quality in maintenance engineering,2002,8(3):170-212
    [162] M. G. Kim, D. H. Lee, N. G. Cho. A force sensor with five degrees of freedomusing optical intensity modulation for usage in a magnetic resonance field[J].Measurement Science and Technology,2013,24(4):045101
    [163] D. S. Woolston. An Investigation of Effects of Certain Types of StructuralNonHnearities on Wing and Control Surface Flutter[J]. Journal of theAeronautical Sciences (Institute of the Aeronautical Sciences),2012,24(1)
    [164] S. C. Stanton, C. C. McGehee, B. P. Mann. Nonlinear dynamics for broadbandenergy harvesting: Investigation of a bistable piezoelectric inertial generator[J].Physica D: Nonlinear Phenomena,2010,239(10):640-653
    [165] M. Heertjes, A. Van Engelen. Minimizing cross-talk in high-precision motionsystems using data-based dynamic decoupling[J]. Control Engineering Practice,2011,19(12):1423-1432
    [166] J. Fang, S. Zheng, B. Han. Attitude Sensing and Dynamic Decoupling Based onActive Magnetic Bearing of MSDGCMG[J]. Instrumentation and Measurement,IEEE Transactions on,2012,61(2):338-348
    [167] B. S. Dhillon, A. R. M. Fashandi, K. L. Liu. Robot systems reliability and safety:a review[J]. Journal of quality in maintenance engineering,2002,8(3):170-212

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700