用户名: 密码: 验证码:
饱和非线性系统控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工程实践当中,执行器由于无法传输无限大控制信号经常发生饱和现象。执行器饱和使得闭环系统性能显著下降,对于开环不稳定系统甚至可能导致闭环系统不稳定。多起由执行器饱和引发的灾难事故促使人们渐渐的重视并研究饱和现象。在过去的几十年中,随着人们对饱和非线性研究的不断深入,饱和系统控制问题,包括镇定及抗饱和补偿器设计,获得了巨大的发展。到目前为止,针对饱和系统镇定及抗饱和控制问题已经提出了许多不同的控制策略和有效的优化算法。然而,已有的控制策略及设计方法主要针对的是饱和线性系统。对于饱和非线性系统控制的研究成果相对较少且主要针对的是带有某种“可线性化”特征的饱和非线性系统,适用范围较窄。为此,本文首先对现有研究成果存在的不足进行改进,提出新的抗饱和控制策略,并在此基础上研究更一般饱和非线性系统镇定及抗饱和控制问题。
     本文研究的主要内容和创新点包括以下几个方面:
     1.介绍了有关饱和线性和非线性系统状态反馈及抗饱和控制的研究现状,并重点对不同饱和函数处理方法以及抗饱和控制框架的研究与发展进行了阐述与分析。
     2.现有的基于DAR技术的有理系统抗饱和控制策略在获得用于设计静态抗饱和补偿器的LMI条件过程中对椭球域E(P)人为添加了额外约束,因而在估计闭环系统吸引域时显得略微保守。为了减小吸引域估计的保守性,本文提出了基于LFR技术的动(静)态抗饱和补偿器设计方法。由于无需添加额外约束即可获得用于估计闭环系统吸引域的LMI条件,因而本文所提出的方法将在稳定性分析上取得一定优势。当预先设计的控制器为线性的时候,提出了增广型动(静)态抗饱和补偿控制理念,即将可测量的非线性信号用于对传统线性抗饱和控制器的补偿,从达到扩大优化自由度、进一步降低保守性的目的。通过数值仿真指出了增广型抗饱和控制器设计原则,即对非线性项描述越是保守,越需要对其进行测量并用于增广型抗饱和控制器设计。
     3.通过LFR技术将饱和有理系统控制的研究对象扩展至更一般的饱和非线性系统。在此基础上,首先研究了饱和非线性系统的镇定问题,即设计非线性状态反馈控制律使得的闭环系统渐进稳定。与传统的线性状态反馈相比,本文所提出的非线性状态反馈能够进一步扩大闭环系统稳定区域。
     4.研究了两种更一般的饱和非线性系统的静态抗饱和补偿器设计问题,获得了基于LMI条件的静态抗饱和补偿器设计方法。同时还将增广型静态抗饱和补偿控制理念进行了拓展,使其适用于所研究的更一般的饱和非线性系统。通过数值仿真证明了增广型静态抗饱和控制策略不但能进一步扩大闭环系统吸引域的估计、减小保守性,还能极大地提高闭环系统L2性能。对于没有预先设计好的控制器的情况,在受控系统输入矩阵为常矩阵的假设下,提出了基于LMI条件的非线性控制器及静态抗饱和补偿器同时设计的方法,并通过数值仿真证明了该方法的有效性及优越性。本文最后,在总结全文的基础上,提出了有待进一步研究和探索的一些问题。
In engineering practice, saturation phenomenon are often encountered since actua-tors cannot deliver unlimited signals. The performance of the closed-loop systems maydeteriorate,and for open-loop unstable systems even instability may be induced dueto actuator saturation. Several disasters caused by actuator saturation have promptedresearchers attaching great importance to saturation phenomenon. In the past severaldecades, researches on control problems for saturated systems including stabilization andanti-windup compensator design have advanced signifcantly along with the deepgoingof studies on saturation nonlinearity. Until now, many diferent control strategies andoptimization algorithms have been proposed for solving the stabilization and anti-windupproblems. However, the majority of existing techniques regards linear systems and onlyfew works are committed to nonlinear systems with some”linearizable” features. Hence,the existing techniques cannot be applied to general nonlinear systems. For this reason,the dissertation frstly propose new control strategies to overcome the defciencies of theexisting techniques and then extends the techniques to general nonlinear systems.
     The main research content and primary innovation of the dissertation can be sum-marized as follows:
     1. Research status of stabilization and anti-windup synthesis is introduced for sat-urated linear and nonlinear systems. More attention has been paid to the discussionand analysis of diferent methods tackling saturation nonlinearity and the evolution ofanti-windup frameworks.
     2. The existing static anti-windup strategies for rational systems are based on DARtechnique. In order to obtain LMI-based synthesis conditions an additional constrainton the ellipsoid E(P) has been introduced which may cause a slightly large conservatismwhen estimating the region of attraction. In order to reduce the conservatism, the dis-sertation proposes the dynamic (and static) anti-windup synthesis methods based on theLFR technique by which an additional constraint can be avoided. Hence, it is expect-ed that the proposed methods would be less conservative for the purpose of stabilityanalysis. When the pre-designed controller is linear a modifed anti-windup strategy inwhich the measurable nonlinearity is introduced into the traditional anti-windup con-troller is proposed to increase the optimization degree of freedom and to further reducethe conservatism.
     3. By LFR technique, the research object can be extended to a class of more generalnonlinear systems. On this basis, the stabilization problem, i.e. designing a nonlinear state feedback controller such that the closed-loop system is asymptotically stable, forthe general nonlinear systems is frstly investigated. Compared with the traditional linearfeedback control law,the nonlinear version can further enlarge the stability region of theclosed-loop system.
     4. Static anti-windup synthesis for two classes of more general nonlinear systemsis investigated and LMI-based synthesis conditions are proposed. The modifed anti-windup strategy are extended so that it is applicable to the class of saturated nonlinearsystems. Numerical examples have shown the modifed anti-windup controller can furtherenlarge the region of attraction and also improve the L2performances tremendously.When a pre-designed controller is unavailable, LMI-based conditions for the synthesis ofa simultaneous nonlinear and anti-windup controller are proposed under the assumptionof constant input matrices of the controlled nonlinear systems. Numerical examples haveshown the efectiveness and superiority of the proposed synthesis method.
     Finally, the main results of the dissertation are concluded and some issues for furtherresearch and exploration are proposed.
引文
[1]周丽明.饱和控制系统理论及应用研究[D].哈尔滨:哈尔滨工程大学,2009
    [2]吴风,王景成,方晓生,等.抗饱和控制的一些新进展[J].化工自动化及仪表,2007,34(2):1-6
    [3] Doyle J. C., Smith R. S., Enns D. F.. Control of plants with input saturation nonlin-earities[A]. Proceedings of the1987Amerrican Control Conference[C]. Minneapolis:American Automatic Control Council,1987:1034-1039
    [4]吕亮.具有执行器饱和的控制系统分析与设计[D].上海:上海交通大学,2010
    [5] Stein G.. Respect the unstable[J]. IEEE Control Systems Magazine,2003,23(1):12-25
    [6] Bernstein D. S., Michel A. N.. A chronological bibliography on saturating acutors[J].Internal Journal of Robust and Nonlinear Control,1995,5(5):375-380
    [7] Gutman P., Hagander P.. A new desgin of constrained controllers for linear system-s[J]. IEEE Transactions on Automatic Control,1985,30(1):22-33
    [8] Chen B. M., Lee T. H., Pen K. M., et al. Composite Nonlinear Feedback Control forLinear Systems with Input Saturation: Theory and Application[J]. IEEE Transac-tions on Automatic Control,2003,48(3):427-439
    [9] Lin Z., Mantri R., Saberi A.. Semi-global output regulation for linear systems subjectto input saturation—a low and high gain design[J]. Control Theory and AdvancedTechnology,1995,10(4):2209-2231
    [10] Lin Z. and Saberi A.. A semi-global low-and-high gain design technique for linear sys-tems with input saturation—stabilization and disturbance rejection[J]. InternationalJournal of Robust and Nonlinear Control,1995,5(5):381-398
    [11] Tyan F., Bernstein D. S.. Linear systems with bounded inputs: global stabilizationwith eigenvalue placement[J]. International Journal of Robust and Nonlinear Control,1997,7(9):835-845
    [12] Pittet C., Tarbouriech S.. Stability region for linear systems with saturating controlsvia circle and Popov criteria[A]. Proceedings of the36th Conference on Decision andControl[C]. San Diego: IEEE Computer Society,1997:4518-4523
    [13] Hindi H., Boyd S.. Analysis of linear systems with saturation using convex optimiza-tion[A]. Proceedings of the37th Conference on Decision and Control[C]. Tampa:IEEE Control Systems Society,1997:903-908
    [14] Turner M. C., Herrmann G., Postlethwaite I.. Incorporating robustness requirementsinto anti-windup design[J]. IEEE Transactions on Automatic Control,2007,52(10):1842-1855
    [15] Grimm G., Hatfeld J., Postlethwaite I., et al. Anti-windup for stable systems withinput saturation: an LMI-based synthesis[J]. IEEE Transactions on Automatic Con-trol,2003,48(9):1509-1525
    [16] Wu F., Lu B.. Anti-windup control design for exponentially unstable LTI systemswith actuator saturation[J]. Systems and Control Letters,2004,52(3-4):305-322
    [17] Wu F., Soto M.. Extended anti-windup constrol schemes for LTI and LFT systemswith actuator saturations[J]. International Journal of Robust and Nonlinear Control,2004,14(15):1255-1281
    [18] Sofrony J., Turner M. C., Postlethwaite I. Anti-windup synthesis for systems withrate-limits using Riccati equations[J]. International Journal of Control,2010,83(2):233-245
    [19] Gomes da Silva Jr. J. M., Tarbouriech S.. Anti-windup design with guaranteed re-gions of stability: an LMI-based approach[J]. IEEE Transactions on Automatic Con-trol,2005,50(1):106-111
    [20] Castelan E. B., Tarbouriech S., Queinnec I.. Stability and stabilization of a class ofnonlinear systems with saturating actuators[A]. Proceedings of the16th IFAC WorldCongress[C]. Prague: IFAC Secretariat,2005:776-776
    [21] Wang N., Pei H., Wang J., et al. Static anti-windup synthesis for linear systemssubject to actuator amplitude and rate saturation using an LMI approach[A]. Pro-ceedings of the32nd Chinese Control Conference[C]. Xi’an: IEEE Computer Society,2013:402-406
    [22] Hu T., Lin Z.. Control systems with acutator saturation: analysis and design[M].Boston: Birkh¨auser,2001:160-162
    [23] Hu T., Lin Z., Chen B. M.. An analysis and design method for linear systems subjectto actuator saturation and disturbance[J]. Automatica,2002,38(2):351-359
    [24] Hu T., Lin Z., Chen B. M.. Analysis and design for discrete-time linear systemssubject to actuator saturation[J]. Systems and Control Letters,2002,45(2):97-112
    [25] Cao Y. Y., Lin Z., Ward D. G.. An anti-windup approach to enlarging domain ofattraction for linear systems subject to actutor saturation[J]. IEEE Transactions onAutomatic Control,2002,47(1):140-145
    [26] Hu T., Teel A. R., Zaccarian L.. Stability and performance for saturated systems viaquadratic and nonquadratic lyapunov functions[J]. IEEE Transactions on AutomaticControl,2006,51(11):1770-1786
    [27] Henrion D., Tarbouriech S.. LMI relaxations for robust stability of linear systemswith saturating controls[J]. Automatica,1999,35(9):1599-1604
    [28] Gomes da Silva Jr. J. M., Tarbouriech S., Garcia G.. Local stabilization of linearsystems under amplitude and rate saturating actuators[J]. IEEE Transactions onAutomatic Control,2003,48(5):842-847
    [29] Cai X., Huang J., Liu L.. Stability analysis of linear time-delay diferential inclusionsystems subject to input saturation[J]. IET Control Theory and Applications,2010,4(11):2592-2602
    [30] Zhou B., Zheng W., Duan G.. An improved treatment of saturation nonlinearity withits application to control of systems subject to nested saturation[J]. Automatica,2011,47(2):306-315
    [31] Yang S. K.. Observer-based anti-windup compensator design for saturated controlsystems using an LMI approach[J]. Computer and Mathematics with Application-s,2012,64(5):747-758
    [32] Forni F., Galeani S., Zaccarian L.. Model recovery anti-windup for continuous-timerate and magnitude saturated linear plants[J]. Automatica,2012,48(8):1502-1513
    [33] Galeani S., Onori S., Teel A. R., et al. A magnitude and rate saturation model and itsuse in the solution of a static anti-windup problem[J]. Systems and Control Letters,2008,57(1):1-9
    [34] Turner M. C., Herrmann G.. A non-square sector condition and its application indeferred-action anti-windup compensator design[J]. Automatica,2014,50(1):268-276
    [35] Fuller A. T.. In-the-large stability of relay and saturating control systems with linearcontrollers[J]. International Journal of Control,1969,10(4):457-480
    [36] Sontag E. D., Sussmann H. J.. Nonlinear output feedback design for linear systemswith saturating controls[A]. Proceedings of the29th IEEE Conference on Decisionand Control[C]. Honolulu: IEEE Control Systems Society,1990:3414-3416
    [37] Sussmann H. J., Yang Y.. On the stabilizability of multiple integrators by means ofbounded feedback controls[A]. Proceedings of the30th Conference on Decision andControl[C]. Brighton: IEEE Control Systems Society,1991:70-72
    [38] Sussmann H. J., Sontag E. D., Yang Y.. A general result on the stabilization of linearsystems using buounded controls[J]. IEEE Transactions on Automatic Control,1994,39(12):2411-2425
    [39] Teel A. R.. Global stabilization and restricted tracking for multiple integrators withbounded controls[J]. Systems and Control Letters,1992,18(3):165-171
    [40] Suarez R., Rammirez J. A., Solis-Daun J.. Linear systems with bounded input:Global stabilization with eigenvalue placement[J]. International Journal of Robustand Nonlinear Control,1997,7(9):835-845
    [41] Teel A. R.. Semi-global stabilization of linear null controllable systems with inputnonlinearities[J]. IEEE Transactions on Automatic Control,1995,40(1):96-100
    [42] Saberi A., Lin Z., Teel A. R.. Control of linear systems with saturating actua-tors[J].IEEE Transactions on Automatic Control,1996,41(3):285-289
    [43] Hu T., Lin Z., Shamash Y.. Semi-global stabilization with guaranteed regional perfor-mance of linear systems subject to actuator saturation[A]. Proceedings of the2000American Control Conference[C]. Chicago: Institute of Electrical and ElectronicsEngineers Inc.,2001,43(2):4388-4392
    [44] Lin Z., Saberi A.. Semi-global exponential stabilization of linear systems subject to“input saturation”via linear feedbacks[J]. Systems and Control Letters,1993,21(3):225-239
    [45] Hu T., Lin Z.. On semi-global stabilization of antistable systems by saturated linearfeedback[J]. IEEE Transactions on Automatic Control,2002,47(7):1193-1198
    [46] Hu T., Lin Z., Shamash Y. Semi-global stabilization with guaranteed regional per-formance of linear systems subject to actuator saturation[J]. Systems and ControlLetters,2001,43(3):203-210
    [47] Khalil H. K.. Nonlinear systems[M].3rd. Beijing: Publishing House of ElectronicsIndustry,2007:227-244
    [48] Hassibi A., How J., Boyd S.. A path-following method for solving BMI problemin control[A]. Proceedings of the37th IEEE American Control Conference[C]. SanDiego: IEEE Computer Society,1999:1385-1389
    [49] Cao Y. Y., Sun Y., Mao W.. Static output feedback stabilization: an LMI ap-proach[J]. Automatica,1998,34(12):1641-1645
    [50] Peaucelle D., Arzelier D.. An efcient numerical solution for H2static output feed-back synthesis[A]. Proceedings of the European Control Conference[C]. Porto: Eu-ropean Union Control Association,2001:3800-3805
    [51] Cao Y. Y., Lin Z., Hu T.. Stability analysis of linear time-delay systems subjectto input saturation[J]. IEEE Transactions on Circuits and Systems-I:FoundamentalTheory and Applications,2002,49(2):233-240
    [52] Cao Y. Y., Lin Z., Ward D. G.. An anti-windup approach to enlarging domain ofattraction for linear systems subject to actuator saturation[J]. IEEE Transactionson Automatic Control,2002,47(1):140-145
    [53] Hu T., Lin Z.. Composite quadratic Lyapunov functions for constrained controlsystems[J]. IEEE Transactions on Automatic Control,2003,48(3):440-450
    [54] Hu T., Lin Z.. Absolute stability analysis of discrete-time systems with compositequadratic Lyapunov functions[J]. IEEE Transactions on Automatic Control.2005,50(6):781-797
    [55] Li Y., Lin Z.. Improvements to the linear diferential inclusion approach to stabilityanalysis of linear sysetms with saturated linear feedback[J]. Automatica,2013,49(3):821-828
    [56] Castelan E. B., Tarbouriech S., Queinnec I.. Control design for a class of nonlinearcontinuous-time systems[J]. Automatica,2008,44(8):2034-2039
    [57] Valmorbida G., Tarbouriech S., Garcia G. State feedback design for input-saturatingquadratic systems[J]. Automatica,2010,46(7):1196-1202
    [58] Coutinho D. F., Gomes da Silva Jr. J. M.. Computing estimates of the region ofattraction for rational control systems with saturating actuators[J]. IET ControlTheory and Applications,2010,4(3):315-325
    [59] Ichihara H.. State feedback synthesis for polynomial systems with input saturationusing convex optimization[A]. Proceedings of the2007American Control Confer-ence[C]. New York: Institute of Electrical and Electronics Engineers Inc.,2007:11-13
    [60] GuBner T., Jost M., Adamy J.. Controller design for a class of nonlinear systemswith input saturation using convex optimization[J]. Systems and Control Letters,2012,61(1):258-265
    [61] Tyan F., Bernstein D. S.. Anti-windup compensator synthesis for sytems with sat-urating actuators[J]. International Journal of Robust and Nonlinear Control,1995,5(5):521-537
    [62] Chen H., Guo K.. Constrained Hinf control of active suspensions: an LMI ap-proach[J]. IEEE Transactions on Control Systems Technology,2005,13(3):412-421
    [63] Ma M., Chen H.. Constrained H2control of active suspensions using LMI optimiza-tion[A]. Proceedings of the25th Chinese Control Conference[C]. Changchun: IEEE,2006:702-707
    [64] Tarbouriech S., Turner M. C. Anti-windup design: an overview of some recent ad-vances and open problems[J]. IET Control Theory and Applications,2009,3(1):1-19
    [65]A stro¨m K. J., Ha¨gglund T.. Automatic tuning of PID Controllers[M]. Research Tri-angle Park: Instrument Society of America,1988
    [66] Hanus R., Kinnaert M.. Control of constrined multivariable systems using the con-ditioning technique[A]. Proceedings of the1985American Control Conference[C].Pittsburgh: IEEE,1989:1711-1718
    [67] Hanus R., Kinnaert M., Henrotte J. L.. Conditioning technique, a general anti-windup and bumpless transfer method[J]. Automatica,1987,23(6):729-739
    [68]A stro¨m K. J., Rundqwist L.. Integrator windup and how to avoid it[A]. Proceedingsof the1989American Control Conference[C], Pittsburgh: IEEE,1989:1693-1698
    [69] Zheng A., Kothear M. V., Morari M.. Anti-windup design for internal model con-trol[J]. Internal Journal of Control,1994,60(5):1015-1024
    [70] Kothare M. V., Campo P. J., Morari M.. A unifed frame work for the study ofanti-windup designs[J]. Automatica,1994,30(12):1869-1883
    [71] Teel R. A., Kapoor N.. The L2Anti-windup problem: its defnition and solution[A].Proceedings of the4th European Control Conference[C]. Brussels: European UnionControl Association,1997
    [72] Weston P. F., Postlethwaite I. Linear conditioning for systems containing saturatingactuators[J]. Automatica,2000,36(9):1347-1354
    [73] Sajjadi-Kia S., Jabbari F.. Modifed anti-windup compensators for stable linear sys-tems[A]. Proceedings of2008American Control Conference[C]. Seattle: Institute ofElectrical and Electronics Engineers Inc.,2008:407-412
    [74] Sajjadi-Kia S., Jabbari F.. Modifed anti-windup compensators for stable plants[J].IEEE Transactions on Automatic Control,2009,54(8):1934-1939
    [75] Sajjadi-Kia S., Jabbari F.. Modifed anti-windup compensators for stable plants:dynamic anti-windup case[A]. Proceedings of Joint48th IEEE Conference on Deci-sion and Control and28th Chinese Control Conference[C]. Shanghai: Institute ofElectrical and Electronics Engineers Inc.,2009:2795-2800
    [76] Sajjadi-Kia S., Jabbari F.. Modifed dynamic anti-windup through deferral of acti-vation[J]. International Journal of Robust and Nonlinear Control,2011,22(5):1661-1673
    [77] Sajjadi-Kia S., Jabbari F.. Multi-stage anti-windup compensation for open-loop sta-ble plants[J]. IEEE Transactions on Automatic Control,2011,56(9):2166-2172
    [78] Wu X., Lin Z.. Dynamic anti-windup design in anticipation of actuator saturation[A].Proceedings of the2011American Control Conference[C]. San Francisco: Instituteof Electrical and Electronics Engineers Inc.,2011:4446-4451
    [79] Wu X., Lin Z.. Dynamic anti-windup design in anticipation of actuator saturation[J].International Journal of Robust and Nonlinear Control,2012,24(2):295-312
    [80] Wu X., Lin Z.. On immediate, delayed and anticipatory activation of anti-windupmechanism: static anti-windup case[J]. IEEE Transactions on Automatic Control,2012,57(3):771-777
    [81] Hu T., Teel A. R., Zaccarian L.. Regional anti-windup compensation for linear sys-tems with intput saturation[A]. Proceedings of the2005American Control Con-ference[C]. Portland: Institute of Electrical and Electronics Engineers Inc.,2005:3397-3402
    [82] Hu T., Teel A. R., Zaccarian L.. Nonlinear L2gain and regional analysis for linearsystems with anti-windup compensation[A]. Proceedings of the2005American Con-trol Conference[C]. Portland: Institute of Electrical and Electronics Engineers Inc.,2005:3391-3396
    [83] Gomes da Silva Jr. J. M., Limon D., Alamo T.. Dynamic output feedback for discrete-time systems under amplitude and rate actuator constraints[A]. Proceedings of44thIEEE Conference on Decision and Control, and the European Control Conference[C],Seville: IEEE Computer Society,2005:5588-5593
    [84] Liu S., Zhou L.. Static anti-windup synthesis for a class of linear systems subjectto actuator amplitude and rate saturation[J]. Acta Automatica Sinica,2009,35(7):1003-1006
    [85] Postlethwaite I., Gatley S. L., Turner M. C.,et al. A comparison of rate-limit com-pensation schemes for pilot-induced-oscillation avoidance[J]. Aerospace Science andTechnology,2006,10(1):37-47
    [86] Brieger O., Kerr M., Leissling D., et al. Anti-windup compensation of rate saturationin an experimental aircraft[A]. Proceedings of the2007American Control Confer-ence[C]. New York: Institute of Electrical and Electronics Engineers Inc.,2007:924-929
    [87] Galeani S., Onori S., Teel A. R., et al. Further results on static anti-windup designfor control systems subject to magnitude and rate saturation[A]. Proceedings of the45th IEEE Conference on Decision and Control[C]. San Diego: Institute of Electricaland Electronics Engineers Inc.,2006:6373-6378
    [88] Saberi A., Stoorvogel A.. Output regulation of linear plants with actuators subjectto amplitude and rate constraints[J]. International Journal of Robust and NonlinearControl,1999,9(10):631-657
    [89] Sofrony J., Turner M. C.. Coprime factor anti-windup for systems with sensor satu-ration[A]. Proceedings of the2011American Control Conference[C]. San Francisco:Institute of Electrical and Electronics Engineers Inc.,2011:3813-3818
    [90] Turner M. C., Tarbouriech S.. Anti-windup compensation for systems with sensorsaturation: a study of architecture and structure[J]. International Journal of Control,2009,82(7):1253-1266
    [91] Tarbouriech S., Garcia G.. Preliminary results about anti-windup strategy for sys-tems subject to actuator and sensor saturations[A]. Proceedings of the16th IFACWorld Congress[C]. Prague: IFAC Secretariat,2005:689-689
    [92] Turner M. C., Tarbouriech S.. Anti-windup for linear systems with sensor saturation:sufcient conditions for global stability and L2gain[A]. Proceedings of the45th IEEEConference on Decision and Control[C]. San Diego: IEEE Control Systems Society,2006:5418-5423
    [93] Tarbouriech S., Gomes da Silva Jr. J. M., Garcia G.. Delay-dependent anti-windupstrategy for linear systems with saturating inputs and delayed outputs[J]. Interna-tional Journal of Robust and Nonlinear Control,2004,14(7):665-682
    [94] Gomes da Silva Jr. J. M., Tarbouriech S., Garcia G.. Using anti-windup loops forenlarging the stability region of time-delay systems subject to input saturation[A].Proceedings of the2004American Control Conference[C]. Boston: Institute of Elec-trical and Electronics Engineers Inc.,2004:4819-4824
    [95] Cao Y. Y., Wang Z., Tang J.. Analysis and anti-windup design for time-delay systemssubject to input saturation[A]. Proceedings of the2007IEEE International Confer-ence on Mechatronics and Automation[C]. Harbin: IEEE Robotics and AutomationSociety,2007:1968-1973
    [96] Wang Y., Cao Y. Y., Sun Y.. Anti-windup compensator gain design for time-delaysystems with constraints[J]. Acta Automatica Sinica,2006,32(1):1-8
    [97] Ahmed A., Rehan M., Iqbal N.. Delay-dependent anti-windup synthesis for stabilityof constrained state delay systems using pole-constraints[J]. ISA Transactions,2011,50(2):249-255
    [98] Gomes da Silva Jr. J. M., Bender F. A., Tarbouriech S., et al. Dynamic anti-windupsynthesis for state delayed systems: an LMI approach[A]. Proceedings of Joint48thIEEE Conference and Decision and Control and28th Chinese Control Conference[C].Shanghai: Institute of Electrical and Electronics Engineers Inc.,2009:6904-6909
    [99] Ghiggi I., Bender A., Gomes da Silva Jr. J. M.. Dynaimc non-rational anti-windupfor time-delay systems with saturating inputs[A]. Proceedings of the17th WorldCongress the International Federation of Automatic Control[C]. South Korea: IFACSecretariat,2008:277-282
    [100] Bender F. A., Gomes da Silva Jr. J. M., Tarbouriech S.. Convex framework for thedesign of dynamic anti-windup for state-delayed systems[J]. IET Control Theory andApplications,2011,5(12):1388-1396
    [101] Zhao J., Wang J., Shen H.. Dynamic anti-windup control design for Markovian jumpdelayed systems with input saturation[J]. Circuits, systems and Signal Process,2013,32(5):2213-2229
    [102] Morabito F., Teel A. R., Zaccarian L.. Nonlinear anti-windup applied to Euler-Lagrange systems[J]. IEEE Transaction on Robotics and Automation,2204,20(3):526-537
    [103] Gomes da Silva Jr. J. M., Turner M. C.. Static ani-windup for systems with sector-bounded nonlinearities[A]. Proceedings of the2012American Control Conference[C].Montreal: Institute of Electrical and Electronics Engineers Inc.,2012:27-29
    [104] Gomes da Silva Jr. J. M., Castelan E. B., Corso J., et al. Dyanmic output feedbackstabilization for systems with sector-bounded nonlinearities and saturating actua-tors[J]. Journal of The Franklin Institute,2013,350(3):464-484
    [105] Valmorbida G., Tarbouriech S., Turner M. C., et al. Anti-windup design for satu-rating quadratic systems[J]. Systems and Control Letters,2013,62(5):367-376
    [106] Gomes da Silva Jr. J. M., Tarbouriech S.. Anti-windup design for a class of multi-variable nonlinear control systems: an LMI-based approach[A]. Proceedings of201150th IEEE Conference on Decision and Control and European Control Conference[C].Orlando: Institute of Electrical and Electronics Engineers Inc.,2011:4797-4802
    [107] Gomes da Silva Jr. J. M., Oliveira M. Z., Coutinho D., et al. Static anti-windupdesign for a class of nonlinear systems[J]. International Journal of Robust and Non-linear Control,2014,24(5):793-810
    [108] Oliveira M. Z., Gomes da Silva Jr. J. M., Coutinho D. F., et al. Anti-windupdesign for a class of nonlinear control systems[A]. Proceedings of the18th WorldCongress of the International Federation of Automatic Control, Milano[C]. Milano:IFAC Secretariat,2011:13432-13437
    [109] Oliveira M. Z., Gomes da Silva Jr. J. M., Coutinho D., et al. Design of anti-windupcompensators for a class of nonlinear control systems with actuator saturation[J].Journal of Control, Automation and Electrical Systems,2013,24(3):212-222
    [110] Prempain E., Turner M. C., Postlethwaite I.. Comprime factor based anti-windupsynthesis for parameter-dependent system[J]. Systems and Control Letters,2009,58(12):810-817
    [111] Rehan M., Khan A. Q., Abid M., et al. Anti-windup-based dynamic controllersynthesis for nonlinear systems under input saturation[J]. Applied Mathematics andComputation,2013,220(1):382-393
    [112] Rehan M., Hong K. S.. Decoupled-architecture-based nonlinear anti-windup designfor a class of nonlinear systems[J]. Nonlinear Dynamics,2013,73(3):1955-1967
    [113] Yoon S. S., Park J. K., Yoon T. W.. Dyanmic anti-windup scheme for feedbacklinearizable nonlinear control systems with saturating inputs[J]. Automatica,2008,44(12):3176-3180
    [114] Menon P. P., Hermann G., Turner M. C., et al. General anti-windup synthesis forinput constrained nonlinear systems controlled using nonlinear dynamic inversion[A].Proceedings of the45th IEEE Conference on Decision and Control[C]. San Diego:Institute of Electrical and Electronics Engineers Inc.,2006:5435-5440
    [115] Hermann. G., Menon P. P., Turner M. C., et al. Anti-windup synthesis for nonlineardynamic inversion control schemes[J]. International Journal of Robust and NonlinearControl,2010,20(13):1465-1482
    [116] Memon A. Y., Khalil H. K.. Output regulationof linear systems subject to input con-straints[A]. Proceedings of the47th Conference on Decision and Control[C].CanCun:IEEE Control Systems Society,2008:3504-3509
    [117] Wu F., Grigoriadis K. M., Packard A.. Anti-windup controller design using lin-ear parameter-varying control methods[J], International Journal of Control,2000,73(12):1104-1114
    [118] Amato F., Cosentino C., Merola A.. On the region of attraction of nonlinearquadratic systems[J]. Automatica,2007,43(13):2119-2123
    [119] Chesi G.. Computing output feedback controllers to enlarge the domain of at-traction in polynomial systems[J]. IEEE Transaction on Automatic Control,2004,49(10):1846-1850
    [120] Herrmann G., Menon P. P., Turner M. C., et al. Anti-windup synthesis for nonlineardynamic inversion control schemes[J]. International Journal of Robust and NonlinearControl,2010,20(13):1465-1482
    [121] Zemouche A., Boutayeb M.. On LMI conditions to design observers for Lipschitznonlinear systems[J]. Automatica,2013,49(3):585-591
    [122] Ghaoui L. E., Scorletti G.. Control of rational systems using linear-fractional rep-resentations and linear matrix inequalities[J]. Automatica,1996,32(9):1273-1284
    [123] Coutinho D. F., Fu M., Trofno A., et al. L-Gain analysis and control of uncer-tain nonlinear systems with bounded disturbance inputs[J]. International Journal ofRobust and Nonlinear Control,2008,18(1):88-110
    [124] Jabbari F.. Output feedback controllers for systems with structured uncertainty[J].IEEE Transaction on Automatic Control,1997,42(5):715-719
    [125] Dai D., Hu T., Teel A. R., et al. Output feedback design for saturated linear plantsusing deadzone loops[J]. Amtomatica,2009,45(12):2917-2924
    [126] Garcia G., Daafouz J., Bernussou J.. Output feedback disk pole assignment forsystems with positive real uncertainty[J]. Automatica,1996,41(9):1385-1391
    [127] Scherer G., Gahinet P., Chilali M.. Multiobjective output-feedback control via LMIoptimization[J]. IEEE Transaction on Automatic Control,1997,42(7):896-911
    [128] Boyd S., Ghaoui L. E., Feron E., et al. Linear matrix inequalities in system andcontrol theory[M]. Philadelphia: SIAM,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700