用户名: 密码: 验证码:
多聚焦图像像素级融合算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多聚焦图像融合是多源图像融合领域的一个重要分支,主要用于同一光学传感器在相同成像条件下获取的聚焦目标不同的多幅图像的融合处理。由于聚焦范围有限,光学成像系统不能将焦点内外的所有目标同时清晰成像,导致图像分析时需要耗费大量时间和精力。多聚焦图像融合是一种解决光学成像系统聚焦范围局限性问题的有效方法,可以有效提高图像信息的利用率,扩大系统工作范围,增强系统可靠性,更加准确的描述场景中的目标信息。目前,该技术广泛应用于交通、医疗、物流、军事等领域。
     多聚焦图像像素级融合是多聚焦图像融合的基础,它获得的原始信息最多,能够提供更多的细节信息。如何准确定位并有效提取源图像中的聚焦区域是多聚焦图像像素级融合的关键。由于受图像内容复杂性影响,传统的多聚焦图像像素级融合方法很难对源图像中聚焦区域准确定位,且融合图像质量并不理想。本论文针对现有多聚焦图像像素级融合方法存在的不足,在空间域内对多聚焦图像像素级融合算法进行了深入研究。论文主要研究内容如下:
     1、提出了基于鲁棒主成分分析(Robust Principal Component Analysis, RPCA)与脉冲耦合神经网络(Pulse Coupled Neural Network, PCNN)的多聚焦图像融合算法。根据RPCA构建的低维线性子空间可表示高维图像数据,增强目标特征信息,对噪声具有鲁棒性的特点,将源图像在RPCA分解域的稀疏特征作为PCNN神经元的外部输入,并根据PCNN神经元的点火频率来定位源图像中的聚焦区域,增强了融合算法对噪声的鲁棒性,提高了融合图像质量。
     2、提出了基于RPCA与四叉树分解相结合的多聚焦图像融合算法。利用源图像稀疏矩阵的区域一致性进行块划分,有利于提高聚焦区域信息提取的完整性和准确性。此外,四叉树分解用树结构存储图像块划分结果,有利于提高源图像递归剖分的效率。该算法在自适应确定最优分块大小的基础上,利用稀疏矩阵各稀疏矩阵子块的局部特征检测源图像的聚焦区域,抑制了“块效应”对融合图像质量的影响,取得了良好的融合效果。
     3、提出了基于图像分解的多成分图像融合算法。利用基于(Rudin-Osher-Fatemi, ROF)模型的Split Bregman算法将源图像分解为卡通和纹理部分,用卡通成分和纹理成分中像素邻域窗口的梯度能量(Energy of image Gradient, EOG)检测聚焦区域像素,并根据融合规则对这些像素进行融合,将融合后的卡通和纹理部分合并实现图像融合。该算法提高了融合算法对源图像几何特征描述的完整性,提升了融合算法性能,改善了融合图像的视觉效果。
     4、提出了基于非负矩阵分解(Negative Matrix Factorization, NMF)和聚焦区域检测的多聚焦图像融合算法。利用NMF的纯加性和稀疏性,对多聚焦图像进行初始融合,利用初始融合图像与源图像间的差异图像的局部梯度特征检测聚焦区域,根据融合规则将检测到的聚焦区域进行合并得到最后的融合图像。该算法提高了聚焦区域检测准确性,改善了传统NMF融合算法所得融合图像对比度,提高了融合图像质量。
     最后,对本文的主要研究工作和创新点进行总结,并对未来研究方向进行了展望。
Multi-focus image fusion is an important branch of multi-sensor image fusion. It is mainly employed in the fusion of different target-specific focusing on the integration of multiple images. These images are attained by the same optical sensor at the same imaging condition. Since the limited depth-of-focus of optical lenses, it is difficult to get an image that contains all the relevant targets in focus. Moreover, it is time/space and energy consuming to analysis large number of similar images. Multi-focus image fusion can solve this problem efficiently. This technology can improve the utilization of image information, extend the work's scope of system and strengthen the reliability of system, and more precise and reliable representation of the scene can be attained. Currently, this technology is widely employed in verticals such as medical care, transportation, logistics and military.
     Pixel level fusion for multi-focus image is the base of image fusion, which can get more original information and provide more detail information. How to locate the focused region is the key to multi-focus image fusion and one of the difficulties. For the affection of image content, it is difficult to accurately locate and extract the focused regions in source images, which may compromise the quality of fused image. For the shortage of the existing methods, this paper studied the multi-focus image fusion methods in the spatial domain, respectively.
     A multi-focus image fusion method based on (robust principal component analysis) RPCA and Pulse Coupled Neural Network (PCNN) in RPCA decomposition domain is proposed. Since RPCA can represent the high dimension in a lower dimensional linear space and strengthen the target information, which is robust to noise. Thus, the sparse feature of the source images in RPCA decomposition domain is used as the external input of PCNN neuron and the sharp region are selected by the fire times of PCNN neuron, which suppresses the noise and improves the fused quality.
     A multi-focus image fusion algorithm based on RPCA with Quad tree (QT) decomposition is proposed. QT decomposition partitions the image based on the regional homogeneity of sparse matrix, which is useful to safeguard the integrity of regional information. QT decomposition saves the partition results with tree structure, which improves the efficiency of block division. Thus, this paper performs the QT decomposition on sparse matrix of source images in RPCA decomposition domain and determines the optimal block size based on the regional homogeneity of sparse matrix, and then, sharp regions of source images are selected based on the local feature of each sparse matrix block. Thus, the affection of blocking artifacts is suppressed and better fusion results are attained.
     A multi-components multi-focus image fusion algorithm based on image decomposition is proposed. Since multicomponent of image can provide more complete representation for an image, this algorithm decomposes the source images into cartoon and texture components by using Split Bregman algorithm of Rudin-Osher-Fatemi (ROF). The focused pixels are detected by the energy of image gradient (EOG) of the neighborhood of each pixel of the cartoon and texture components. The focused pixels are fused in different fusion rule, respectively. The final fused image can be attained by merging the cartoon and texture components. This algorithm makes up for the shortage of traditional fusion method and improves the performance of fusion method in representation integrity of image detail information.
     A multi-focus image fusion scheme based on NMF and fused regions detection is proposed. The scheme fuses the source images to construct initial fused image by using the pure additive and sparsity of the NMF. The local features of the difference between initial fused image and source images are used to detect the fused regions of source images. The focused regions are merged to construct the final fused image based on fusion rules. The scheme can efficiently improve the fusion quality and the visual effects.
     Finally, a summary of the research work and the contribution is presented. In addition, the future work and the target are pointed out.
引文
[1]Mitchell H.B.. Data fusion:concepts and ideas [M]. Springer Berlin Heidelberg,2012.
    [2]Cui, Minshan. Genetic Algorithms Based Feature Selection and Decision Fusion for Robust Remote Sensing Image Analysis [M]. Proquest, UMI Dissertation Publishing, BiblioBazaar,2012.
    [3]Ahmed Abdelgawad, Magdy Bayoumi. Resource-aware data fusion algorithms for wireless sensor networks [M]. Springer US,2012.
    [4]Erkanli, Sertan. Fusion of visual and thermal images using genetic algorithms [D]. PhD Thesis, Old Dominion University,2011.
    [5]Xu M. Image registration and image fusion:Algorithms and performance bounds [D].PhD Thesis, Syracuse University,2011.
    [6]Wan T., Zhu C., Qin Z.. Multifocus Image Fusion Based on Robust Principal Component Analysis [J]. Pattern Recognition Letters,2013,34 (9):1001-1008.
    [7]Isha Mehra, Naveen K.. Nishchal.Image fusion using wavelet transform and its application to asymmetric cryptosystem and hiding [J]. Optics Express,2014,22(5): 5474.5482.
    [8]Hong R., Wang C., Ge Y., et al. Salience preserving multi-focus image fusion [C]. Multimedia and Expo,2007 IEEE International Conference on. IEEE,2007: 1663-1666.
    [9]Smith M.I., Heather J.P.. A review of image fusion technology in 2005 [C]. Defense and Security. International Society for Optics and Photonics,2005:29-45.
    [10]Ardeshir Goshtasby A., Nikolov S.. Image fusion:advances in the state of the art [J]. Information Fusion,2007,8(2):114-118.
    [11]Anjali Malviya, S. G. Bhirud.. Image Fusion of Digital Images [J].International Journal of Recent Trends in Engineering,2009,2(3):146-148.
    [12]Bai X., Zhou F., Xue B.. Edge preserved image fusion based on multiscale toggle contrast operator [J]. Image and Vision Computing,2011,29(12):829-839.
    [13]Ketan Kotwal, Subhasis Chaudhuri. A novel approach to quantitative evaluation of hyperspectral image fusion techniques [J]. Information Fusion,2013, 14(1):5-18.
    [14]Bhatnagar G., Jonathan Wu Q. M., Liu Z.. Human visual system inspired multi-modal medical image fusion framework [J]. Expert Systems with Applications,2013,40(5): 1708-1720.
    [15]Xu Z.. Medical image fusion using multi-level local extrema [J]. Information Fusion,2014,19:38-48.
    [16]Zhao Y., Zhao Q., Hao A.. Multimodal medical image fusion using improved multi-channel PCNN [J]. Bio-medical materials and engineering,2014,24(1):221-228.
    [17]Stathaki T.. Image Fusion:Algorithms and Applications [M]. Academic Press,2008.
    [18]Bai X., Zhou F., Xue B.. Fusion of infrared and visual images through region extraction by using multi scale center-surround top-hat transform [J]. Optics Express,2011,19(9): 8444-8457.
    [19]Alex Pappachen James, Belur V. Dasarath. Medical image fusion:A survey of the state of the art [J].Information Fusion,2014,19:4-19.
    [20]Zhang Q., Ma Z., Wang L.. Multimodality image fusion by using both phase and magnitude information [J]. Pattern Recognition Letters.2013,34(2): 185-193.
    [21]Li H., Tang G.F., Wu F.X., et al. Pixel-level Image Fusion Based on Programmable GPU [J]. Applied Mechanics and Materials,2013,347:3872-3876.
    [22]Li M.J., Dong Y.B., Wang X.L.. Research and Development of Non Multi-Scale to Pixel-Level Image Fusion [J]. Applied Mechanics and Materials,2013,448-453: 3621-3624.
    [23]Marcello J., Medina A., Eugenio F.. Evaluation of Spatial and Spectral Effectiveness of Pixel-Level Fusion Techniques [J]. Geoscience and Remote Sensing Letters, IEEE 2013, 2013,10(3):432-436.
    [24]Pong K.H., Lam K.M.. Multi-resolution feature fusion for face recognition [J]. Pattern Recognition,2014,47(2):556-567.
    [25]Zhou Y., Zhou S.T., Zhong Z.Y., et al. A de-illumination scheme for face recognition based on fast decomposition and detail feature fusion [J]. Optics express,2013,21 (9): 11294-11308.
    [26]Kalyankar N.V., Al-Zuky A.. Feature-Level Based Image Fusion of Multisensory Images [J]. International Journal of Software Engineering Research and Practices,2012, 1 (4):9-16.
    [27]Ye Z., He M., Prasad S., et al. A multiclassifier and decision fusion system for hyperspectral image classification [C]. Industrial Electronics and Applications (ICIEA), 2013,8th IEEE Conference on. IEEE,2013:501-505.
    [28]Ridout M.. An Improved Threshold Approximation for Local Vote Decision Fusion [J]. Signal Processing, IEEE Transactions on,2013,61(5):1104-1106.
    [29]Nanyam Y, Choudhary R., Gupta L., et al. A decision-fusion strategy for fruit quality inspection using hyperspectral imaging [J]. Biosystems Engineering,2012,111(1): 118-125.
    [30]黄伟.像素级图像融合研究[D].上海:上海交通大学博士学位论文,2008.
    [31]孙巍.像素级多聚焦图像融合算法研究[D].长春:吉林大学博士学位论文,2008.
    [32]Multi-focus Image Sets:http://www.ece.lehigh.edu/spcrl.
    [33]Image Sets:http://www.imgfsr.com/sitebuilder/images.
    [34]徐彤阳.基于抗混叠Contourlet变换的遥感图像融合研究[D].上海:上海大学博士学位论文,2011.
    [35]Piella G. A general framework for multiresolution image fusion:from pixels to regions [J]. Information fusion,2003,4(4):259-280.
    [36]潘瑜,郑钰辉,孙权森,等.基于PCA和总变差模型的图像融合框架[J].计算机辅助设计与图形学学报,2011,23(7):1200-1210.
    [37]Li S., Kwok J.T., Wang Y.. Fusing images with multiple focuses using support vector machines [M].Artificial Neural Networks-ICANN 2002. Springer Berlin Heidelberg, 2002:1287-1292.
    [38]Jiang Z., Han D., Chen J., et al. A wavelet based algorithm for multi-focus micro-image fusion [C]. Image and Graphics,2004. Proceedings. Third International Conference on. IEEE,2004:176-179.
    [39]Pajares G, Manuel de la Cruz J.. A wavelet-based image fusion tutorial [J]. Pattern recognition,2004,37(9):1855-1872.
    [40]Li Z.H., Jing Z.L., Liu G, et al. Pixel visibility based multifocus image fusion [C]. IEEE International Conference on Neural Networks and Signal Processing,2003,2: 1050-1053.
    [41]Hariharan H.. Extending Depth of Field via Multifocus Fusion [D]. PhD Thesis. The University of Tennessee, Knoxville,2011.
    [42]张勇,陈大建.区域图像融合算法在红外图像分析中的应用[J].光电技术应用,2011,26(3):17-20.
    [43]Srinivasa Rao Dammavalam, Seetha Maddala, Krishna Prasad MHM. Quality Assessment of Pixel-Level Image Fusion Using Fuzzy Logic [J]. International Journal on Soft Computing,2012,3(1):11-23.
    [44]Li S., Yang B.. Multifocus image fusion using region segmentation and spatial frequency [J]. Image and Vision Computing,2008,26(7):971-979.
    [45]Garg S., Ushah Kiran K., Mohan R., et al. Multilevel medical image fusion using segmented image by level set evolution with region competition [C]. Engineering in Medicine and Biology Society,2005. IEEE-EMBS 2005.27th Annual International Conference of the. IEEE,2006:7680-7683.
    [46]Lee D. H., Lee K.M, Lee S.U.. Fusion of lidar and imagery for reliable building extraction [J]. Photogrammetric Engineering and Remote Sensing,2008,74(2):215.
    [47]Nishioka T., Shiga T., Shirato H., et al. Image fusion between FDG-PET and MRI/CT for radiotherapy planning of oropharyngeal and nasopharyngeal carcinomas [J]. International Journal of Radiation Oncology Biology Physics,2002,53(4):1051-1057.
    [48]Runkler T.A., Sturm M., Hellendoorn H.. Model based sensor fusion with fuzzy clustering [C]. Fuzzy Systems Proceedings,1998. IEEE World Congress on Computational Intelligence. The 1998 IEEE International Conference on. IEEE,1998,2: 1377-1382.
    [49]屈小波,闫敬文,杨贵德.改进拉普拉斯能量和的尖锐频率局部化Contourlet域多聚焦图像融合方法[J].光学精密工程,2009,17(5):1203-1212.
    [50]Li, S., Kwok, J.T., Wang, Y.. Combination of images with diverse focuses using the spatial frequency [J]. Information Fusion,2001,2(3):169-176.
    [51]Fedorov D., Sumengen B., Manjunath B.S.. Multi-focus imaging using local focus estimation and mosaicking [C]. Proceedings of IEEE International Conference on Image Processing, Atlanta, G A USA, Oct.,2006:2093-2096.
    [52]Kong J., Zheng K., Zhang J., et al. Multi-focus image fusion using spatial frequency and genetic algorithm [J]. International Journal of Computer Science and Network Security 2008,8(2):220-224.
    [53]Aslantas V., Kurban R.. Fusion of multi-focus images using differential evolution algorithm [J]. Expert Systems with Applications.2010,37(12):8861-8870.
    [54]Ishita De, Bhabatosh Chanda. Multi-focus image fusion using a morphology-based focus measure in a quad-tree structure [J]. Information Fusion,2013,14(2):136-146.
    [55]Li S., Kwok J.T., Wang, Y.. Multifocus Image Fusion Using Artificial Neural Networks [J]. Pattern Recognit. Letter,2002,23(8):985-997.
    [56]Li S., Kwok J., Tsang I., et al. Fusing images with different focuses using support vector machines [J]. IEEE Transactions on Neural Networks,2004,15 (6):1555-1561.
    [57]Li M., Cai W., Tan Z.. A region-based multi-sensor image fusion scheme using pulse-coupled neural network [J]. Pattern Recognition Letters,2006,27(16): 1948-1956.
    [58]李树涛,王耀南,张昌凡.基于视觉特性的多聚焦图像融合[J].电子学报,2001,29(12):1699-1701.
    [59]Canny J.. A computational approach to edge detection [J]. IEEE Transactions on Pattern Recognition and Machine Analysis,1986,8(6):679-698.
    [60]Wong A., Bishop W.. Efficient least squares fusion of MRI and CT images using a phase congruency model [J]. Pattern Recognition Letters,2008,29(3):173-180.
    [61]Hassen R., Wang Z., Salama M.. Multifocus image fusion using local phase coherence measurement [C]. Proc. Int. Conf. on Image Analysis and Recognition, July.2009, pp. 54.
    [62]Helmli F.S., Scherer S.. Adaptive shape from focus with an error estimation in light microscopy [C]. Second International Symposium on Image and Signal Processing and Analysis,2001
    [63]Nayar S.K, Nakagawa Y. Shape from focus [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16 (8):824-831.
    [64]Huang W., Jing Z.. Evaluation of focus measures in multi-focus image fusion [J].Pattern Recognition Letters,2007,28(4):493-500.
    [65]Hariharan H., Koschan A., Abidi M.A.. Multi-focus image fusion by establishing focal connectivity [C]. Proceedings of IEEE International Conference on Image Processing, San Antonio TX,2007(3):321-324.
    [66]Zhang Y, Ge L.. Efficient fusion scheme for multi-focus images by using blurring measure [J]. Digital Sig.Process.,2009,19(2):186-193.
    [67]Tian J., Chen L., Ma L., et al. Multi-focus image fusion using a bilateral gradient-based sharpness criterion [J] Optics Communications,2011,284(1):80-87.
    [68]Zhao H., Shang Z., Tang Y., et al. Multi-focus image fusion based on the neighbor distance [J]. Pattern Recognition,2013,46(3):1002-1011.
    [69]Goshtasby A.. Fusion of multifocus images to maximize image information [C]. Defense and Security Symposium,2006,17-21.
    [70]Wu W., Yang X., Pang Y., et al. A multifocus image fusion method by using hidden Markov model [J]. Optics Communications,2013,287:63-72.
    [71]Burt P.J., Adelson E.H.. Merging images through pattern decomposition [C]. Proceedings of SPIE on Application of Digital Image Processing Ⅷ,1985,575(3): 173-181.
    [72]Toet A.. Image fusion by a ratio of low-pass pyramid [J]. Patten Recognition Letters, 1989,9(4):245-253.
    [73]Toet A., Ruyven V., Valeton J.M.. Merging thermal and visual images by a contrast pyramid [J]. Optical Engineering,1989,28(7):789-792.
    [74]Toet A.. Multiscale contrast enhancement with application to image fusion [J]. Optical Engineering,1992,31(5):1026-1031.
    [75]Toet A.. A morphological pyramidal image decomposition [J]. Pattern Recognition Letters,1989,9(4):255-261.
    [76]Burt P.J.. A gradient pyramid basis for pattern selective image fusion [C]. Proceedings of the Society for Information Display Conference, San Jose:SID Press,1992:467-470.
    [77]Liu Z., Tsukada K., Hanasaki K., et al. Image fusion by using steerable pyramid [J]. Pattern Recognition Letters,2001,22 (9):929-939.
    [78]Barron D.R., Thomas O.D.J.. Image fusion though consideration of texture components [J]. IEEE Transactions on Electronics Letters,2001,37(12):746-748.
    [79]Li H., Manjunath B.S., Mitra S.K.. Multisensor image fusion using the wavelet transform [J]. Graphical Models and Image Processing,1995,57(3):235-245.
    [80]Chipman L.J., Orr T.M.. Wavelets and images fusion [J]. Proceedings of IEEE International Conference on Image Processing, Washington D. C.,1995:248-251.
    [81]Yang B., Jing Z.. Image fusion using a low-redundancy and nearly shift-invariant discrete wavelet frame [J]. Optics Engineering,2007,46 (10):107002.
    [82]Wan T., Canagarajah N., Achim A.. Segmentation-driven image fusion based on alpha-stable modeling of wavelet coefficients [J]. IEEE Transactions on Multimedia, 2009,11 (4):624-633.
    [83]Bhatnagar G., Raman B.. A new image fusion technique based on directive contrast [J]. Electron. Lett. Comput. Vis. Image Anal.,2009,8 (2):18-38.
    [84]Yang Y. A novel DWT based multi-focus image fusion method [J]. Procedia Engineering,2011,24:177-181.
    [85]Li H., Chai Y., Yin H., et al. Multifocus image fusion and denoising scheme based on homogeneity similarity [J]. Opt. Commun.,2012,285(2):91-100.
    [86]Chen T., Zhang J., Zhang Y. Remote sensing image fusion based on ridgelet transform [C]. Proceedings of International Conference on Geoscience and Remote Sensing Symposium,2005,1150-1153.
    [87]Qu X., Yan J., Xie G, et al. A novel image fusion algorithm based on bandelet transform [J].Chinese Optics Letters,2007,5(10):569-572.
    [88]Nencini F., Garzelli A., Baronti S., et al. Remote sensing image fusion using the curvelet transform [J]. Information Fusion,2007,8(2):143-156.
    [89]Tessens L., Ledda A., Pizurica A., et al. Extending the depth of field inmicroscopy through curvelet-based frequency-adaptive image fusion [C]. Proceedings of IEEE International Conference on Acoustics, Speech andSignal Processing, Honolulu, Hawaiian Islands,2007:1861-1864.
    [90]Miao Q., Wang B.. A novel image fusion method using contourlet transform [C]. Communications, Circuits and Systems Proceedings,2006 International Conference on. IEEE,2006,1:548-552.
    [91]Redondo R., Sroubek F., Fischer S., et al. Multifocus image fusion using the log-Gabor transform and a multisize windows technique [J]. Information Fusion,2009,10(2): 163-171.
    [92]Yang S., Wang M., Jiao L., et al. Image fusion based on a new contourlet packet [J]. Information Fusion,2010,11(2):78-84.
    [93]Ma Y, Zhai Y., Geng P., et al. A Novel Algorithm of Image Fusion Based on PCNN and Shearlet [J]. International Journal of Digital Content Technology & its Applications, 2011,5(12):347-354.
    [94]Bhatnagar G., Wu Q.M.J.. An image fusion framework based on human visual system in framelet domain [J]. Int. J. Wavelets Multiresolut. Inf. Process.,2012,10 (1):1150002.
    [95]Yang S., Wang M., Jiao L.. Fusion of multispectral and panchromatic images based on support value transform and adaptive principal component analysis [J]. Information Fusion,2012,13(3):177-184.
    [96]Zhang Q., Guo B.. Multifocus image fusion using the nonsubsampled contourlet transform [J]. Signal Processing,2009,89(7):1334-1346.
    [97]Li T., Wang Y. Biological image fusion using a NSCT based variable-weight method [J]. Information Fusion,2010,12 (2):85-92.
    [98]Yu S., Enen R., Dang J., et al. A Nonsubsampled Contourlet Transform Based Medical Image Fusion Method [J]. Information Technology Journal,2013,12(4):749-755.
    [99]Li S., Yang B., Hu J.. Performance comparison of different multi-resolution transforms for image fusion [J]. Information Fusion,2011,12(2):74-84.
    [100]Li S., Yang B.. Multifocus image fusion by combining curvelet and wavelet transform [J]. Pattern Recognition Letters,2008,29(9):1295-1301.
    101] Shah P., Merchant S.N., Desai U.B.. Fusion of surveillance images in infrared and visible band using curvelet, wavelet and wavelet packet transform [J]. Int. J.Wavelets Multiresolut. Inf. Process.,2010,8 (2):271-292.
    102] Liu F., Liu J., Gao Y.. Image fusion based on wedgelet and wavelet [C]. Intelligent Signal Processing and Communication Systems,2007. ISPACS 2007. International Symposium, Xiamen.2007:682-685.
    103]陈木生.基于Contourlet变换和模糊理论的图像融合算法[J].激光与红外,2012,42(6):695-698.
    104] Wang Z., Wang J., Zhao D., et al. Image fusion based on Shearlet and improved PCNN [J]. Laser & Infrared,2012,2:023.
    105] Mahyari A.G., Yazdi M.. A novel image fusion method using curvelet transform based on linear dependency test [C]. Digital Image Processing,2009 International Conference on. IEEE,2009:351-354.
    106] Liu Y, Jin J., Wang Q., et al. Region level based multi-focus image fusion using quaternion wavelet and normalized cut [J]. Signal Processing,2014,97:9-30.
    107] Daneshvar S., Ghassemian H.. MRI and PET image fusion by combining IHS and retina-inspired models [J]. Information Fusion,2010,11(2):114-123.
    108] Yang B., Li S.. Multi-focus image fusion and restoration with sparse representation [J]. IEEE Transactions on Instrumentation and Measurement,2010,59(4):884-892
    109] Chen L., Li J., Chen C.L.. Regional multifocus image fusion using sparse representation [J]. Optics Express,2013,21(4):5182-5197.
    110] Yin H., Li S., Fang L.. Simultaneous image fusion and super-resolution using sparse representation [J]. Information Fusion,2013,14 (3):229-240.
    111] Bai X., Zhou F., Xue B.. Image enhancement using multiscale image features extracted by top-hat transform [J]. Optics & Laser Technology,2012,44:328-336.
    112] Jiang Y, Wang M.. Image fusion with morphological component analysis [J]. Informat. Fusion,2014,18:107-118.
    113] Yin M., Liu W., Zhao X., et al. A novel image fusion algorithm based on nonsubsampled shearlet transform [J]. Optik-International Journal for Light and Electron Optics,2014.
    114]王保云.图像质量客观评价技术研究[D].合肥:中国科学技术大学博士论文,2010.
    115] Li S., Kang X., Hu J., et al. Image matting for fusion of multi-focus images in dynamic scenes [J]. Information Fusion,2013,14(2):147-162.
    116] Wang Z., Bovik A.C, Sheikh H.R, et al. Image quality assessment:from error visibility to structural similarity [J]. IEEE Transactions on Image Processing,2004,13:600-612.
    117] Wang Z., Bovik A.C..A universal image quality index [J]. IEEE Signal Processing Letters,2002,9:81-84.
    118] Piella G., Heijmans H.. A new quality metric for image fusion [C]. In Proceedings of International Conference on Image Processing, Barcelona, Catalonia, Spain,2003, pp. Ⅲ-173-Ⅲ-176.
    [119]Yang B., Li S.. Pixel-level image fusion with simultaneous orthogonal matching pursuit [J]. Information Fusion,2012,13:10-19.
    [120]彭义刚,索金莉,戴琼海,等.从压缩传感到低秩矩阵恢复:理论与应用[J].自动化学报,2013,38(12):1-14.
    [121]史加荣,郑秀云,魏宗田,等.低秩矩阵恢复算法综述[J].计算机应用研究,2013,30(6):1601-1605.
    [122]Donoho D.L.. Compressed sensing [J]. Information Theory, IEEE Transactions on, 2006,52(4):1289-1306.
    [123]Candes E.J., Wakin M.B.. An introduction to compressive sampling [J]. Signal Processing Magazine, IEEE,2008,25(2):21-30.
    [124]Wright J., Yang A.Y., Ganesh A, et al. Robust face recognition via sparse representation [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2009,31(2): 210-227.
    [125]Wright J., Ma Y, Mairal J., et al. Sparse representation for computer vision and pattern recognition [J]. Proceedings of the IEEE,2010,98(6):1031-1044.
    [126]Wright J., Ganesh A., Rao S., et al. Robust principal component analysis:Exact recovery of corrupted low-rank matrices via convex optimization [C]. Advances in neural information processing systems,2009:2080-2088.
    [127]Candes E. J., Li X., Ma Y, et al. Robust principal component analysis? [J]. Journal of the ACM(JACM),2011,58(3):11.
    [128]Xu H., Caramanis C., Sanghavi S.. Robust PCA via outlier pursuit [J]. Information Theory, IEEE Transactions on,2012,58(5):3047-3064.
    [129]Candes E. J., Recht B.. Exact matrix completion via convex optimization [J]. Foundations of Computational mathematics,2009,9(6):717-772.
    [130]CANDES E. J., TAO T.. The power of convex relaxation:Near-optimal matrix completion [J]. IEEE Transactions on Information Theory,2010,56(5):2053-2080.
    [131]Liu G, Lin Z., Yu Y. Robust subspace segmentation by low-rank representation [C]. Proceedings of the 27th International Conference on Machine Learning (ICML-10). 2010:663-670.
    [132]Liu G., Xu H., Yan S.. Exact subspace segmentation and outlier detection by low-rank representation [C]. Proceedings of International Conference on Artificial Intelligence and Statistics, La Palma, Canary Islands,2012:703-711.
    [133]Liu G, Lin Z., Yan S., et al. Robust recovery of subspace structures by low-rank representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(1):171-184.
    [134]De la Torre F., Black M.J.. Robust principal component analysis for computer vision [C]. Computer Vision,2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on. IEEE,2001,1:362-369.
    [135]Wan T., Liao R., Qin Z.. A robust feature selection approach using low rank matrices for breast tumors in ultrasounic images [C].2011, the Proc. of the IEEE Int. Conf. on Image Processing, pp.1645-1648.
    [136]Torre F.D., Blac M.J.. A framework for robust subspace learning [J]. International Journal of Computer Vision,2003,54(1-2):117-142.
    [137]李华锋.多聚焦图像像素级融合方法研究[D].重庆:重庆大学博士学位论文,2012.
    [138]Eckhorn R., Reitboeck H.J., et al. Feature linking via synchronization among distributed assemblies:Simulation of results from cat cortex [J]. Neural Computation, 1990,2:293-307.
    [139]Broussard R.P, Rogers S.K., et al. Physiologically motivated image fusion for object detection using a pulse coupled neural network [J]. IEEE Transaction Neural Networks, 1999,10:554-563.
    [140]Johnson J.L, Ranganath H.S, et al. Pulse coupled neuralnet works [J]. Neural Networks and Pattern Recognition,1998,1-56.
    [141]Miao Q., Wang B.. A novel adaptive multi-focus image fusion algorithm based on PCNN and sharpness [C]. Defense and Security. International Society for Optics and Photonics,2005:704-712.
    [142]Huang W., Jing Z.L.. Multi-focus image fusion using pulse coupledneural network [J]. Pattern Recognition Letters,2007,28 (9):1123-1132.
    [143]Qu X., Yan J., Xiao H., et al. Image Fusion Algorithm Based on Spatial Frequency-Motivated Pulse Coupled NeuralNetworks in Nonsubsampled Contourlet Transform Domain [J]. Acta Automatica Sinica,2008,34 (2):1508-1514.
    [144]Wang Z., Ma Y., Gu J.. Multi-focus image fusion using PCNN [J]. Pattern Recognition: The Journal of the Pattern Recognition Society,2010,43(6):2003-2016.
    [145]Geng P., Zheng X., Zhang Z., et al. Multifocus Image Fusion with PCNN in Shearlet Domain [J]. Research Journal of Applied Sciences, Engineering and Technology,2012, 4(15):2283-2290.
    [146]Aybat N.S., Goldfarb D., Ma S.. Efficient algorithms for robust and stable principal component pursuit problems [J]. Comput. Optim. Appl.,2014,58 (1):1-29.
    [147]Basri R., Jacobs D W.. Lambertian reflectance and linear subspaces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(2):218-233.
    [148]Natarajan B.K. Sparse approximate solutions to linear systems [J]. SIAM Journal of Computing,1995,24(2):227-234.
    [149]Recht B., Fazel M., Parrilo P. A.. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm mini-mization [J]. SIAM Review,2010,52(3):471-501.
    [150]Cai J.F., Candes E. J., Shen Z.W.. A singular value thresholding algorithm for matrix completion [J]. SIAM Journal on Optimization,2010,20(4):1956-1982.
    [151]Beck A., Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems [J]. SIAM Journal on Imaging Sciences,2009,2(1):183-202.
    [152]Lin Z.C., Ganesh A., Wright J., et al. Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix [R].Technical Report UILU-ENG-09-2214, UIUC,2009.
    [153]Lin Z., Chen M., Wu L., et al. The augmented Lagrange multi-plier method for exact recovery of corrupted low-rank matrices [R]. UIUC Technical Report UILU-ENG-09-2215,pp.1-20,2009.
    [154]Yuan X., Yang J.. Sparse and low-rank matrix decomposition via alternating direction methods [R]. Technical report, Dept. of Mathematics, Hong Kong Baptist University, 2009. http://www.optimization-online.org/DB_FILE/2009/11/2447.pdf.
    [155]Wan T., Zhub C.C, Qin Z.C.. Multifocus Image Fusion Based on Robust Principal Component Analysis [J]. Pattern Recognition Letters,2013,34 (9):1001-1008.
    [156]Ranganath H.S., Kuntimad G., Johnson J.L.. Pulse coupled neural networks for image processing [C]. Proc. of IEEE Southeast Raleigh, NC,1995:37-43.
    [157]Ranganath H.S, Kuntimad G. Iterative segmentation using pulse coupled neural networks [C]. Proc. of SPIE,1996,2760:543-554.
    [158]刘勃.基于脉冲耦合神经网络的图像处理若干问题研究[D].西安:西安电子科技大学博士学位论文,2011.
    [159]Kuntimad G., Ranganath H.S.. Perfect image segmentation using pulse coupled neural networks [J]. Neural Networks, IEEE Transactions on,1999,10(3):591-598.
    [160]Gu X., Yu D., Zhang L.. Image shadow removal using pulse coupled neural network [J]. IEEE Transactions on Neural Networks,2005,16(3):692-698.
    [161]Image fusion toolbox:http://www.imagefusion.org/.
    [162]RPCA toolbox:http://perception.csl.illinois.edu/matrix-rank/sample_code.html.
    [163]PCNN toolbox:http://quxiaobo.go.8866.org/project/PCNN/PCNN_toolbox.rar.
    [164]NSCT-SF-PCNN-ImageFusionhttp://quxiaobo.8866.org/project/NSCT_SF_PCNN/NSC T-SF-PCNN-ImageFusion-Toolbox.zip.
    [165]Buccafurri F., Furfaro F., Mazzeo G.M., et al. A quad-tree based multiresolution approach for two-dimensional summary data [J]. Information Systems,2011,36(7): 1082-1103.
    [166]Jagadeesh P., Nagabhushan P., Kumar R.P.. A Novel Image Scrambling Technique Based On Information Entropy And Quad Tree Decomposition [J]. International Journal of Computer Science Issues,2013,10(2):285-294.
    [167]Aouat S.. Shape Codification Indexing and Retrieval Using the Quad-Tree Structure [J]. International Journal of Computer Vision and Image Processing (IJCVIP),2013,3(1): 1-21.
    [168]Malleson, Charles, Collomosse, et al. Virtual Volumetric Graphics on Commodity Displays Using 3D Viewer Tracking [J]. International Journal of Computer Vision,2014, 101(3):519-532.
    [169]Fu G., Zhao H., Li C., et al. Segmentation for High-Resolution Optical Remote Sensing Imagery Using Improved Quadtree and Region Adjacency Graph Technique [J]. Remote Sensing,2013,5(7):3259-3279.
    [170]Cavalin P.R., Kapp M.N., Martins J., et al. A multiple feature vector framework for forest species recognition [C]. Proceedings of the 28th Annual ACM Symposium on Applied Computing. ACM,2013:16-20.
    [171]Chow B.S.. An Efficient Image Processing on Sensor Networks [C]. AICT 2013. The Ninth Advanced International Conference on Telecommunications,2013:94-99.
    [172]Kumar V.V.S.. Quadtree Coding Scheme for Image Compression Using Wavelet Transform [J]. Journal of Computer and Mathematical Sciences Vol,2013,4(1):1-79.
    [173]Zhang C., Zhang Y., Zhang W., et al. Inverted linear quadtree:Efficient top k spatial keyword search [C]. Data Engineering (ICDE),2013 IEEE 29th International Conference on. IEEE,2013:901-912.
    [174]Hou F., Huang C.H., Lu J.Y.. A Multi-dimensional Data Storage Using Quad-tree and Z-Ordering [J]. Applied Mechanics and Materials,2013,347:2436-2441.
    [175]Aouat S, Larabi S.. Object Retrieval Using the Quad-Tree Decomposition [J]. Journal of Intelligent Systems,2014,23(1):33-47.
    [176]Li M.X., Hou D.D., Xia X.H., et al. A Review:Color Image Segmentation Based on Color Space [J]. Applied Mechanics and Materials,2013,401:1310-1314.
    [177]Joshi S., Shire A.. A Review of Enhanced Algorithm for Color Image Segmentation [J]. Int. Journal of Advanced Research in Computer Science and Software Engineering, 2013,3.
    [178]Vala M.H.J, Baxi A.. A Review on Otsu Image Segmentation Algorithm [J]. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET),2013,2(2):387-389.
    [179]Chen P. C., Pavlidis T.. Image Segmentation as an Estimation Problem [J]. Computer Graphics and Image Processing,1980,12(2):153-172.
    [180]Spann M., Wilson R.. A quad-tree approach to image segmentation which combines statistical and spatial information [J]. Pattern Recognition,1985,18(3):257-269.
    [181]Burt P.J., Hong T.H., Rosenfeld A.. Segmentation and estimation of image region properties through cooperative hierarchical computation [J]. IEEE Trans. Syst. Man. Cybernet. SMC-II,1981:802-809.
    [182]梁德群.基于区域一致性测度的多尺度边缘检测方法[J].自动化学报,1999,25(6):757-762.
    [183]吴高洪,章毓晋,林行刚.利用小波变换和特征加权进行纹理分割[J].中国图象图形学报,2001,6(1).
    [184]朱建军.层次分析法的若干问题研究及应用[D].沈阳:东北大学博士学位论文,2005.
    185] Zhao H., Wang Q., Wu W., et al. An Improved Method Research of SAR Images Thresholding Segmentation [M]. Unifying Electrical Engineering and Electronics Engineering. Springer New York,2014:1151-1157.
    186]Muhsin Z.F., Rehman A., Altameem A., et al. Improved quadtree image segmentation approach to region information [J]. The Imaging Science Journal,2014,62(1):56-62.
    187] NSCT toolbox:http://www.ifp.illinois.edu/minhdo/software/.
    188] Mallat S.. A wavelet tour of signal processing:the sparse way [M]. Access Online via Elsevier,2008.
    189]叶传奇.基于多尺度分解的多传感器图像融合算法研究[D].西安:西安电子科技大学博士学位论文,2009.
    190] Do M.N., Vetterli M.. Contourlets:a new directional multiresolution image representation [C]. Signals, Systems and Computers,2002. Conference Record of the Thirty-Sixth Asilomar Conference on. IEEE,2002,1:497-501.
    191]Burt P.J., Adelson E.H.. The laplacian pyramid as a compact image code [J]. IEEE Transactions on Communications.1983,31(4):432-540.
    [92]Cunha A.L., Zhou J., Do M.N.. The nonsubsampled contourlet transform:Theory, design, and applications [J]. IEEE Trans. Image Proc.,2006,15(10):3089-3101.
    193] Li M., Dong Y., Li J.. Overview of Pixel Level Image Fusion Algorithm [J]. Applied Mechanics and Materials,2014,519-520:590-593.
    194]Vese L.A., Osher S.J.. Modeling textures with total variation minimization and oscillating patterns in image processing [J]. Journal of Scientific Computing,2003, 19(1-3):553-572.
    195]李峰,曾晓辉,陈盛霞,等.基于算子的图像分解[J].中国图象图形学报,2013,16(001):86-92.
    196]Vese L.A., Osher S.J.. Image Denoising and Decomposition with Total Variation Minimization and Oscillatory Functions:Special Issue on Mathematics and Image Analysis [J]. Journal of Mathematical Imaging and Vision,2004,20(1-2):7-18.
    197]Aujol J.F., Aubert G, Blanc-Feraud L., et al. Image decomposition into a bounded variation component and an oscillating component [J]. Journal of Mathematical Imaging and Vision,2005,22(1):71-88.
    198] Aujol J.F., Gilboa G., Chan T., et al. Structure-texture image decomposition modeling, algorithms, and parameter selection [J]. International Journal of Computer Vision,2006, 67(1):111-136.
    199]Buades A., Le T.M., Morel J.M., et al. Fast cartoon+texture image filters [J]. Image Processing, IEEE Transactions on,2010,19(8):1978-1986.
    200]Athavale P., Tadmor E.. Integro-Differential Equations Based on (BV, L^1) Image Decomposition [J]. SIAM Journal on Imaging Sciences,2011,4(1):300-312.
    201] Fadili M.J, Starck J.L., Bobin J., et al. Image decomposition and separation using sparse representations:an overview [J]. Proceedings of the IEEE,2010,98(6):983-994.
    [202]Mumford D., Shah J.. Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems [J]. Communications on Pure and Applied Mathematics,1989,42(5):577-685.
    [203]冯志林,尹建伟,陈刚.Mumford-Shah模型在图像分割中的研究[J].中国图象图形学报,2004,9(2):151-158.
    [204]Rudin L., Osher S., Fatemi E.. Nonlinear Total Variation based Noise Removal Algorithms [D]. Phys. D:Nonlinear Phenom.1992,60 (1-4):259-268.
    [205]Meyer Y.. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations [R]. University Lecture Series. AMS,22,2001.
    [206]Osher S., Sole A., VeseL.. Image Decomposition and Restoration Using Total Variation Minimization and the H-1 Norm [J]. J. Sci. Comput.,2003,1(3):349-370.
    [207]Aujol J.F., Chambolle A.. Dual Norms and Image Decomposition Models [J]. International Journal of Computer Vision 2005,63(1):85-104.
    [208]Chana T.F, Esedoglua S., Park F.E.. Image decomposition combining staircase reduction and texture extraction [J]. Journal of Visual Communication and Image Representation, 2007,18(6):464-486.
    [209]Goldstein T., Osher S.. The Split Bregman Method for L1-Regularized Problems [J]. SIAM Journal on Imaging Sciences,2009,2(2):323-343.
    [210]Wang Y.L., Yang J.F., Yin W.T., et al. A New Alternating Minimization Algorithm for Total Variation Image Reconstruction [J]. SIAM Journal on Imaging Sciences,2008, 1(3):248-272.
    [211]Osher S., Burger M., Goldfarb D., et al. An Iterative Regularization Method for Total Variation-Based Image Restoration [J]. Multiscale Modeling and Simulation,2005,4(2): 460-489.
    [212]Bae E., Yuan J., Tai X.C.. Simultaneous convex optimization of regions and region parameters in image segmentation models [M]. Innovations for Shape Analysis. Springer Berlin Heidelberg,2013:421-438.
    [213]Sathe C.P., Hingway S.P., Suresh S.S.. Image Restoration using Inpainting [J]. International Journal,2014,2(1):288-292.
    [214]Liu X., Huang L.. A new nonlocal total variation regularization algorithm for image denoising [J]. Mathematics and Computers in Simulation,2014,97:224-233.
    [215]Boyd S.P, Vandenberghe L.. Convex optimization [M]. Cambridge university press, 2004.
    [216]Zou J., Fu Y. Split Bregman algorithms for sparse group Lasso with application to MRI reconstruction [J]. Multidimensional Systems and Signal Processing,2014:1-16.
    [217]樊启斌,焦雨领.变分正则化图象复原模型与算法综述[J].数学进展,2012,41(5):531-546.
    [218]Split Bregman toolbox:http://tag7.web.rice.edu/Split_Bregman_files/.
    [219]Starck J.L, Murtagh F., Fadili J.M.. Sparse image and signal processing:wavelets, curvelets, morphological diversity [M]. Cambridge University Press,2010.
    [220]Lee D.D, Seung H.S.. Learning the parts of objects by non-negative matrix factorization [J]. Nature,1999,401(6755):788-791.
    [221]Lee D.D, Seung H.S.. Algorithm for non-negative matrix factorization [J]. Adv. Neural Inf. Process. Syst.,2001,13:556-562.
    [222]Zhang J.Y, Wei L., Miao Q.G., et al. Image fusion based on non-negative matrix factorization [C].2004 International Conference on Image Processing (ICIP 2004), vol.2, Singapore,2004.
    [223]Xu L., Dong J.Y, Cai C., et al. Multi-focus image fusing based on non-negative matrix factorization [C]. Mechatronics and Machine Vision in Practice, M2VIP 2007.14th, Xiamen,2007.
    [224]Zhang S.W, Chen J, Miao D.D.. An Image Fusion Method Based on WNMF and Region Segmentation [C]. Computational Intelligence and Industrial Application,2008. PACIIA'08. Pacific-Asia Workshop on Wuhan,2008.
    [225]Ye Y.S, Zhao B.J, Tang L.B.. SAR and visible image fusion based on local non-negative matrix factorization [J]. ICEMI, Beijing,2009.
    [226]Wang J., Lai S., Li M.. Improved Image Fusion Method Based on NSCT and Accelerated NMF [J]. Sensors (Basel),2012,12(5):5872-5887.
    [227]李乐,章毓晋.非负矩阵分解算法综述[J].电子学报,2008,36(4):737-743.
    [228]Luwinda F.A., Santika Di.D.. Rank Matrix Optimization on NMF, LNMF and nsNMF for Feature Extraction on Mammogram Classification [J]. Procedia Engineering,2012, 50:606-612.
    [229]Li S.Z., Hou X.W., Zhang H.J., et al. Learning spatially localized, parts-based representation [C]. Proc of Comp Vision and Pattern Recognition,2001,1.207-212.
    [230]Liu W., Zheng N., Lu X.. Non-negative matrix factorization for visual coding [C]. Proc of IEEE Int Conf on Acoustics, Speech and Signal Processing,2003, III:293-296.
    [231]Hoyer P.O.. Non-negative matrix factorization with sparseness constraints [J]. Journal of Machine Learning Re.,2004,5(9):1457-1469.
    [232]Zhan C., Li W., Ogunbona P.. Measuring the degree of face familiarity based on extended NMF [J]. ACM Transactions on Applied Perception,2013,10 (2).
    [233]Guillamet D., Vitria J.. Color histogram classification using NMF [EB/OL]. http://citeseer.nj.nec. com/546491.html,2001.
    [234]Eskicioglu, A.M., Fisher, P.S.. Image quality measures and their performance [J]. IEEE Trans. Commun.,1995.43(12):2959-2965.
    [235]Tenenbaum, J.M.. Accommodation in computer vision [M].1970, Stanford University.
    [236]Shirvaikar M.V.. An optimal measure for camera focus and exposure [C]. System Theory,2004. Proceedings of the Thirty-Sixth Southeastern Symposium on. IEEE,2004: 472-475.
    [237]NMF toolbox:http://www.cs.helsinki.fi/patrik.hoyer/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700