用户名: 密码: 验证码:
基于位置指纹的WLAN室内定位技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信和普适计算的发展,基于位置的服务变得多种多样,能够为目标定位、紧急救援、交通管理等提供精确的定位信息。但是由于信号衰减、复杂无线传播环境等因素的影响,室外定位方法在室内环境的应用受限,所以人们开发了多种室内定位系统。目前,由于无线局域网(Wireless Local Area Network, WLAN)的接收信号强度(Received Signal Strength, RSS)易于测量和其接入点布置广泛,基于位置指纹的WLAN室内定位技术已经成为普适计算中位置感知领域的研究热点。但由于在室内环境下存在多种因素影响定位精度并且WLAN位置指纹定位技术的一些关键环节还有待深入研究,所以为室内用户提供实时和精确的定位结果仍然面临一些挑战。
     通过对基于位置指纹的WLAN室内定位技术的深入研究和对该领域国内外研究和发展现状的分析,目前WLAN位置指纹定位技术主要存在以下几个方面的问题:首先,通常在一个位置可以采集多个RSS样本,但大多数位置指纹定位算法仅利用多个RSS样本的均值定位,对RSS样本的利用效率较低。其次,对于移动用户定位,滤波算法可以利用相邻定位结果之间的空间相近性等信息提高定位精度。但是,已有的线性滤波算法能力有限而非线性滤波算法通常计算复杂度较高。最后,建立位置指纹图的工作量通常较大,并且建立后需要根据室内无线传播环境变化而对其更新从而保证较高的定位精度。因此,针对上述WLAN位置指纹定位存在的问题,本文的主要工作和创新点如下:
     第一,介绍和比较已有室内定位系统的定位原理和特点,在分析各个室内定位系统的基础上,说明WLAN位置指纹定位技术的特点及其被广泛研究的原因。然后,总结WLAN位置指纹定位技术中的位置指纹定位算法、滤波算法和位置指纹图更新这些关键环节的国内外研究发展现状和目前存在的问题。最后,详细介绍和分析几种典型的位置指纹定位算法和滤波算法,为后续章节的研究奠定理论基础。
     第二,针对现有位置指纹定位算法利用RSS均值样本定位、RSS样本利用效率低的问题,提出基于RSS矩阵相关的位置指纹定位算法。该算法将在线采集的所有RSS样本排列成矩阵并将参考点的RSS变化程度作为权值计算在线RSS矩阵和参考点RSS矩阵之间的相关系数,根据相关系数选择近邻参考点计算定位结果,可达到比经典近邻选择算法更高的定位精度。在该算法的基础上,针对不同应用场景,提出基于离线和在线计算的两种快速RSS矩阵相关算法。提出的快速矩阵相关算法可有效降低RSS矩阵相关系数的计算复杂度,使该算法更适合实际应用。
     第三,当前用于处理位置指纹定位结果的Kalman滤波算法采用线性预测模型预测用户状态,这限制了Kalman滤波算法的性能。针对这个问题,提出基于地图匹配的Kalman滤波算法。首先,根据获得的室内地图信息提出室内地图匹配算法。该算法利用室内地图矩阵,实现对建筑结构、人们活动区域和活动路径的识别。根据建筑结构,将不合理的定位结果修正到代表人们活动路径的连接模型上,从而提高定位精度。并在此基础上,将地图匹配算法与Kalman滤波算法相结合,利用室内地图信息和相邻定位结果之间的空间相近性修正定位结果,可大幅度提高定位精度。
     第四,针对位置指纹图建立的工作量大并且需要根据室内无线传播环境变化而更新的问题,提出一种基于人工神经网络的定位误差修正算法降低静态位置指纹图的影响。该算法首先实时采集少量标记位置坐标的RSS样本并利用近邻选择位置指纹定位算法计算定位坐标和误差,然后利用人工神经网络融合RSS样本和定位坐标并将其作为人工神经网络的输入,建立输入与输出定位误差之间的非线性映射关系。同时利用遗传算法和反向传播算法优化该人工神经网络模型。在线定位时,利用已训练的人工神经网络模型估计定位误差,并根据定位误差修正定位坐标。该基于人工神经网络的定位误差修正算法可以有效降低静态位置指纹图和参考点分布对定位精度造成的影响,提高定位性能。另外,用于训练该定位误差估计模型的RSS样本数量远少于位置指纹图中RSS样本的数量,因此与更新位置指纹图中全部RSS样本相比,该算法可大幅度降低RSS样本采集的工作量。
With the development of wireless communications and pervasive computing, various location-based services have sprung up, which can offer accurate localization information for object localization, emergency rescue, traffic management etc. Outdoor localization systems are limited in indoor environments owing to signal attenuation and complex radio propagation, so numerous indoor localization systems have been developed. Currently, because received signal strength (RSS) samples are easily collected from pervasively deployed access points by commonly used wireless local area network (WLAN) mobile terminals without additional hardware being required, location fingerprint-based indoor localization using WLAN is specially preferred and extensively researched in location sensing of pervasive computing. However, localization errors are caused by various reasons in complex indoor radio propagation environments as well as some key techniques in location fingerprint-based WLAN localization also need further research, so offering accurate and real-time localization results for indoor users is still a challenging task.
     Based on the research on location fingerprint-based WLAN localization and analyses on its development in China and abroad given in this dissertation, the problems existed in location fingerprint-based WLAN localization are summarized as follows. First, usually multiple on-line RSS samples are collected at one location, but most of fingerprinting algorithms use RSS mean samples for localization, which fails to make full use of all the available on-line RSS samples. Additionally, regarding mobile user localization, through employing information like spatial proximities of consecutive localization results, filtering algorithms can process localization results of fingerprinting algorithms for accuracy improvement. But existing linear filtering algorithms have limited accuracy and nonlinear filtering algorithms are computationally expensive. Finally, the conventional establishment process of radio-map is burdensome and time-consuming and the established one also needs to be updated according to variations of indoor radio propagation. Thus, based on the problems mentioned above, the main work and creative points of this dissertation are listed as follows.
     First, based on the analyses and comparisons of existing indoor localization systems, the reasons why location fingerprint-based WLAN localization has been widely researched and its characteristics are illustrated. Then the development and drawbacks of several key components of location fingerprint-based WLAN localization are researched. Finally, classic fingerprinting algorithms and filtering algorithms that are used for indoor localization are introduced and analyzed.
     Second, in the view of the fact the most of fingerprinting algorithms compute localization results with RSS mean samples, which fails to make full use of all the available on-line RSS samples, an RSS matrix correlation fingerprinting algorithm is proposed to make use of all the on-line RSS samples and incorporate RSS variations of reference points as weights into correlation coefficient computations for accurate neighbor selection. So the proposed algorithm outperforms the classic neighbor selection algorithms. Moreover, two fast matrix correlation algorithms based on off-line and on-line computations are proposed to compute correlation coefficients for different application conditions. They are able to effectively reduce the computational complexity and therefore more suitable for practical applications.
     Third, the existing Kalman filtering that is computationally efficient predicts user state with a linear model, which limits its performance. Thus, a map matching-based Kalman filtering is proposed. Using indoor map information, a map matching algorithm is developed. The building structure, human activity area and a link model that represents human walkways are recognized with a created map image matrix and then unreasonable localization results are corrected to the link model. With the integration of the map matching algorithm into Kalman filtering, localization results are corrected using indoor map information and spatial proximities of consecutive localization results, so the localization performance is greatly increased.
     Last but not least, because radio-map establishment is a burdensome and time-consuming process needed for collecting off-line RSS data at reference points and the radio-map also needs to be updated according to variations of radio propagation, an artificial neural network-based error correction algorithm is proposed to solve this problem. Some newly collected RSS samples with location information are used to compute localization results and errors with neighbor selection-based fingerprinting algorithms for the artificial neural network training. Then the RSS samples and localization results are fused by the artificial neural network as its inputs and nonlinear relationship between the inputs and its outputs localization errors is modeled. The network is also optimized by genetic and backpropagation algorithms. In the on-line phase, localization errors estimated by the artificial neural network are used to correct localization results. Then negative influence of static radio-map and reference point distribution can be effectively reduced and therefore localization accuracy is increased. Meanwhile, the RSS data for training the artificial neural network is easily collected with reduced effort, which can avoid updating the whole radio-map.
引文
[1] Becker C, Dürr F. On Location Models for Ubiquitous Computing[J].Springer-Verlag London Ltd. Personal and Ubiquitous Computing.2005,9(1):20-31.
    [2] Hightower J, Borriello G. Location Systems for Ubiquitous Computing[J].IEEE Trans. Computer.2001,34(8):57-66.
    [3] Perusco L, Micheal K. Control, Trust, Privacy, and Security: EvaluatingLocation-based Services[J]. IEEE Trans. IEEE Technol Soc Mag.2007,26(1):4-16.
    [4] Bellavista P, Kupper A, Helal S. Location-Based Services: Back to theFuture[J]. IEEE Trans. IEEE Pervasive Computing.2008,7(2):85-89.
    [5] Hegarty C J and Chatre E. Evolution of the Global Navigation SatelliteSystem (GNSS)[J]. Proceedings of the IEEE.2008,96(12),1902-1917.
    [6]张光明. Compass纳入GNSS运行可行性探讨[J].全球定位系统.2009,2:20-23.
    [7] Leondes C T, Yonezawa K. Evaluation of Geometric Performance of GlobalPositioning System[J]. IEEE Trans. Aerosp Electron Syst.1978, AES-14(3):533-539.
    [8] Parkinson B W, Gilbert S W. NAVSTAR: Global Positioning System—TenYears Later[J]. IEEE Trans. Proceedings of the IEEE.1983,71(10):1177-1186.
    [9] Zagami J M, Parl S A, Bussgang J J, Melillo K D. Providing UniversalLocation Services Using a Wireless E911Location Network[J]. IEEE Trans.IEEE Communications Magazine.1998,36(4):66-71.
    [10] Borkowski J, Niemela J, Lempiinen J. Cellular Location TechniquesSupporting AGPS Positioning[C].2005IEEE Vehicular TechnologyConference, Dallas, USA: IEEE.2005:429-433.
    [11] Wigren T, Palenius T, Optimized Search Window Alignment for A-GPS[J],IEEE Trans. Veh. Technol.2009,58(8):4670-4675.
    [12]张杰,张伯虎,张恒军.基于gpsOne方案的Snap Track定位技术在反恐作战中的应用[J].山西电子技术,2007(2):67-68.
    [13] Gu Y, Lo A, Niemegeers I. A Survey of Indoor Positioning Systems forWireless Personal Networks[J]. IEEE Trans. IEEE CommunicationsSurveys and Tutorials.2009,11(1):13-32.
    [14] Shang J, Yu S S, Zhu L F. Location-Aware Systems for Short-rangeWireless Networks[C]. International Symposium on Computer Network andMultimedia Technology, Wuhan, China: IEEE.2009:1-5.
    [15] Wong C, Klukas R, Messier G. Using WLAN Infrastructure forAngle-of-Arrival Indoor User Location[C]. IEEE Vehicular TechnologyConference, Calgary, Canada: IEEE.2008:1-5.
    [16] Tai C S, Tan S Y, Seow C K. Robust Non-line-of-sight Localisation Systemin Indoor Environment[J]. Institution of Engineering and Technology.Electronics Letters.2010,46(8):593-595.
    [17] Kiasuka T, Nakanishi T, Fukuda A. Wireless LAN Based Indoor PositioningSystem WiPS and Its Simulation[C]. IEEE Pacific Rim Conference onCommunications Computers and Signal Processing, Victoria, Canada: IEEE.2003:272-275.
    [18] Kotanen A, Hannikainen M, Leppakoski H, Hamalainen T D. Positioningwith IEEE802.11b wireless LAN[C]. IEEE International Symposium onPersonal, Indoor and Mobile Radio Communications, Beijing, China: IEEE.2003:2218-2222.
    [19] P. Prasithsangaree, P. Krishnamurthy and P. K. chrysanthis. On IndoorPosition Location With Wireless Lans[C]. IEEE International Symposiumon Personal, Indoor and Mobile Radio Communications, Lisboa, Portugal:IEEE.2002:720-724.
    [20] Kaemarungsi K. Efficient Design of Indoor Positioning Systems Based onLocation Fingerprinting[C].2005International Conference on WirelessNetworks, Communications and Mobile Computing, Hawaii, USA: IEEE.2005:181-186.
    [21]刘乃安.无线局域网: WLAN原理技术与应用[M].陕西:西安电子科技大学出版社,2004:53-66.
    [22] Castro P, Chiu P, Kremenek T, Muntz R. A Probabilistic Room LocationService for Wireless Networked Environments[C]. Ubiquitous Computing,Seattle, USA: ACM.2003:18-34.
    [23] Kuo S P, Tseng Y C. A Scrambling Method for Fingerprint PositioningBased on Temporal Diversity and Spatial Dependency[J]. IEEE Trans.Knowledge and Data Engineering.2008,20(5):678-684.
    [24] Smailagic A, Kogan D. Location Sensing and Privacy in A Context-AwareComputing Environment[J]. IEEE Wireless Communications.2002,9(5):10-17.
    [25]杨恒,魏丫丫,李彬,郭丹等.定位技术[M].北京:电子工业出版社,2013:162-164.
    [26] Woodman, O J, Harle, R K. Concurrent Scheduling in the Active BatLocation System[C]. PERCOM, Mannheim, Germany:2008:431-437.
    [27] Priyantha N, Chakraborty A and Balakrishnan H. The CricketLocation-Support System[C]. ACM Conference on Mobile Computing andNetworking, Boston, USA: ACM.2000:32-43.
    [28] Want R, Hopper A, Falcao A, Gibbons J, Active Badge Location System[J].ACM Transactions on Information Systems.1992,10(1):91-102.
    [29] Harter A and Hopper A. A Distributed Location System for The ActiveOffice[J]. IEEE Network,8(1),1994:62-70.
    [30] Fernando X, Krishnan S, Sun H, Kazemi-Moud K, Adaptive Denoising atInfrared Wireless Receivers[C]. The International Society for OpticalEngineering, Orlando, USA: SPIE.2003:199-207.
    [31] Lee C, Chang Y, Park G, Ryu J, Jeong S, Park S. Indoor Positioning SystemBased on Incident Angles of Infrared Emitters[C]. IECON30th AnnualConference of IEEE Industrial Electronics Society, Republic of Korea:IEEE.2004:2218-2222.
    [32] Ni, L M, Liu, Y H, Lau, Y C, Patil, A P. LANDMARC: Indoor LocationSensing Using Active RFID[C]. PerCom2003, Fort Worth, USA: IEEE.2003:407-416.
    [33] Chon H D,Jun S, Jung H J, An S W. Using RFID for Accurate Positioning[J].Journal of Global Positioning Systems.2004,3(1-2):32-39.
    [34] Liu H, Darabi H, Banerjee P, Liu J. Survey of Wireless Indoor PositioningTechniques and Systems[J]. IEEE Trans. Systems, Man, and Cybernetics.2007,37(6):1067-1080.
    [35] Zhang Y, Liu W, Fang Y, Wu D. Secure Localization and Authentication inUltra-Wideband Sensor Networks[J]. IEEE Trans. Selected Areas inCommunications.2006,24(41):829-835.
    [36]付俊.一种精密实时无线定位系统—Ubisense7000定位系统[J].仪器仪表标准化与计量.2008,4:28-30.
    [37] Bahl P, Padmanabhan V N. RADAR: An In-Building RF-Based UserLocation and Tracking System[C].19th IEEE Computer andCommunications Societies Conference, Tel Aviv, Israel: IEEE.2000:775-784.
    [38] EKAHAU.[EB/OL](2013-08-30)[2013-09-10]. http://www.ekahau.com.
    [39] Kaemarungsi K, Krishnamurthy P. Properties of Indoor Received SignalStrength for WLAN Location Fingerprinting[C].1st Annual InternationalConference on Mobile and Ubiquitous Systems: Networking and Services,Boston, USA: IEEE.2004:14-23.
    [40] Kaemarungsi K, Krishnamurthy P. Modeling of Indoor Positioning SystemsBased on Location Fingerprinting[C]. Twenty-Third Annual JointConference of the IEEE Computer and Communications Societies,Hongkong, China: IEEE.2004:1012-1022.
    [41] Barry B, Brian M, John K, Amanda K, Steven S. EasyLiving: Technologiesfor Intelligent Environments[J] Lecture Notes in Computer Science.2000,1927:12-29.
    [42] MotionStar.[EB/OL](2013-04-12)[2013-09-10].http://www.ascension-tech.com
    [43] Castro P, Chiu P, Kremenek T, Muntz R. A Probabilistic Room LocationService for Wireless Networked Environments[C]. Ubiquitous Computing,Seattle, USA: ACM.2003:18-34.
    [44] Youssef M, Agrawala A K. The Horus WLAN Location DeterminationSystem[C]. Mobile Systems, Applications and Services, Seattle, USA:ACM.2005:205-218.
    [45] Pan J J, Pan S J, Yin J, Ni L M, Yang Q. Tracking Mobile Users in WirelessNetworks via Semi-Supervised Colocalization[J]. IEEE Trans. PatternAnalysis and Machine Intelligence.2012,34(3):587-600.
    [46] Pan J J, and Yang Q. Co-Localization from Labeled and Unlabeled DataUsing Graph Laplacian[C]. International Joint Conference on ArtificialIntelligence, India:2007:2166-2171.
    [47] Au A W S, Feng C, Valaee S, Reyes S, Sorour S, Markowitz S, Gold D,Gorden K, Eizeman M. Indoor Tracking and Navigation using ReceivedSignal Strength and Compressive Sensing on a Mobile Device[J]. IEEETrans. Mobile Computing.2013,12(10):2050-2062.
    [48] Wu C, Yang Z, Liu Y, Xi W. WILL: Wireless Indoor Localization withoutSite Survey[J]. IEEE Trans. Parallel and Distributed Systems.2013,24(4):839-848.
    [49]李群明,熊蓉,褚健.室内自主移动机器人定位方法研究综述[J].机器人,2003,23(6):1090-1094.
    [50]单杭冠,徐岚,王宗欣.基于恒模算法的室内多用户定位技术[J].复旦学报(自然科学版).2006,45(4):494-500.
    [51]张明华,张申生,曹健.无线局域网中基于信号强度的室内定位[J].计算机科学,2007,34(6):68-71.
    [52] Zhao Y X, Zhou H B, Li M F. A Novel Overlap Area Matching AlgorithmBased on Location Fingerprinting in Wireless Networks[C].5thInternational Conference on Wireless Communications, Networking andMobile Computing, Beijing, China: IEEE.2009:1-5.
    [53] Yang Z L, Sun Z, Jiang Li, Xie Y P, Kashida H. An Area Zoning BasedWLAN Location System[C]. IET International Communication Conferenceon Wireless Mobile&Computing, Shanghai, China: IET.2009:1-5.
    [54] Feng Chen, Au W A, Valaee S, Tan Z H. Received-signal-strength-basedIndoor Positioning Using Compressive Sensing[J]. IEEE Trans. Mob.Comput.2012,11(12):1983-1993.
    [55] Cui Q M, Deng J G, Zhang X F. Compressive Sensing Based WirelessLocalization in Indoor Scenarios[J]. China Communications.2012,9(4):1-12.
    [56] Zheng V W, Xiang E W, Yang Q, Shen D. Transferring Localization ModelsOver Time[C].23rd AAAI Conference on Artificial Intelligence and the20th Innovative Applications of Artificial Intelligence Conference, Chicago,USA: AAAI.2008:1421-1426.
    [57] Pan S J, Shen D, Yang Q, Kwok J T. Transferring Localization ModelsAcross Space[C].23rd AAAI Conference on Artificial Intelligence and the20th Innovative Applications of Artificial Intelligence Conference, Chicago,USA: AAAI.2008:1383-1388.
    [58]崔逊学,汪涛.地面无线定位技术[M].北京:电子工业出版社,2012:215-218.
    [59] Al-Jazzar S, Caffery J J, and You H R. A Scattering Model Based Approachto NLOS Mitigation in TOA Location Systems[C]. IEEE VehicularTechnology Conference, Birmingham, USA: IEEE.2002:861-865.
    [60] Yamasaki R, Ogino A, Tamaki T, and et al. TDOA Location System forIEEE802.11b WLAN[C]. IEEE Wireless Communications and NetworkingConference, New Orleans, USA: IEEE.2005,4:2338-2343.
    [61] Xie Y Q, Wang Y, Zhu C, and et al. Grid Search Based Hybrid TOA/AOALocation Techniques for NLOS Environments[J]. IEEE CommunicationsLetters.2009,13(4):254-256.
    [62] Xiao J, Wu K S, Yi Y W, Ni L M. FIFS: Fine-grained Indoor FingerprintingSystem[C]. International Conference on Computer Communications andNetworks, Munich, Germany:2012,1-7.
    [63]万群,郭贤生,陈章鑫等.室内定位理论、方法和应用[M].北京:电子工业出版社,2012:97-119.
    [64]赵军辉.移动定位与跟踪从传统型技术到协作型技术[M].北京:国防工业出版社,2013:111-121.
    [65]于秦,肖志辉姜微.基于WLAN和WSN的异构网络协同定位[J].电信科学,2013,7:83-88.
    [66] Khodayari S, Maleki M, Hamedi E. A RSS-based Fingerprinting Method forPositioning based on Historical Data[C].2010International Symposium onPerformance Evaluation of Computer and Telecommunication Systems,Ottawa, Canada: IEEE.2010:306-310.
    [67] Ma J, Li X, Tao X, Lu J. Cluster Filtered KNN: A WLAN-based IndoorPositioning Scheme[C].2008IEEE International Symposium on A World ofWireless, Mobile and Multimedia Networks, WoWMoM2008, NewportBeach, USA: IEEE.2008:1-8.
    [68] Battiti R, Nhat T L, and Villani A. Location-Aware Computing: A NeuralNetwork Model for Determining Location in Wireless LANs[R]. Technical.Report DIT-02-0083, University of Trento.2002.
    [69] Brunato M, Battiti R. Statistical Learning Theory for LocationFingerprinting in Wireless LANs[J]. Computer Networks.2005,47(6):825-845.
    [70] Teuber, A, Eissfeller B, Pany, T. A Two-stage Fuzzy Logic Approach forWireless LAN Indoor Positioning[C].2006IEEE/ION Position, Location,and Navigation Symposium, San Diego, CA, USA: IEEE.2006:730-738.
    [71] Fang S H, Lin T N. Indoor Location System Based onDiscriminant-adaptive Neural Network in IEEE802.11Environments[J].IEEE Trans. Neural Networks.2008,19(11):1973-1978.
    [72] Derr K, Manic M. Wireless Based Object Tracking Based on NeuralNetworks[C].3rd IEEE Conference on Industrial Electronics andApplications, Singapore: IEEE.2008:308-313.
    [73] Meng W X, Wang J W, Peng L, Xu Y B. ANFIS-based Wireless LAN IndoorPositioning algorithm[C].5th International Conference on WirelessCommunications, Networking and Mobile Computing, Beijing, China:IEEE.2009:1-4.
    [74] Kushki A, Plataniotis K, Venetsanopoulos A. Kernel-based Positioning inWireless Local Area Networks[J]. IEEE Transactions on Mobile Computing.2007,6(6):689-705.
    [75]李方,王铁成,佟为明.基于空间变异理论的电子地图构建方法[J].哈尔滨工程大学学报.2012,33(6):715-740.
    [76] Peng L, Han J Y, Meng Wei X, Liu J Y. Research on Radio-mapConstruction in Indoor WLAN Positioning System Source[C].1stInternational Conference on Pervasive Computing, Signal Processing andApplications, Harbin, China: IEEE.2010:1073-1077.
    [77] Lee M, Han D. Voronoi Tessellation Based Interpolation Method for Wi-FiRadio Map Construction[J]. IEEE Trans. Communications Letters.2012,16(3):404-407.
    [78] Ji Y M, Biaz S, Pandey S, Agrawal P. A Dynamic Indoor Signal MapConstruction and Localization System[C]. Fourth International Conferenceon Mobile Systems, Applications and Services, Uppsala, Sweden: ACM.2006:151-164.
    [79] Yin J, Yang Q, Ni L M. Learning Adaptive Temporal Radio Maps forSignal-strength-based Location Estimation[J]. IEEE Trans. MobileComputing.2008,7(7):869-883.
    [80] Yin J, Yang Q, Ni L M. Adaptive Temporal Radio Maps for Indoor LocationEstimation[C].3rd IEEE Int. Conf. on Pervasive Computing andCommunications, Kauai Island, HI, USA: IEEE.2005:85-94.
    [81] Wang H M, Ma L, Xu Y B, Deng Z A. Dynamic Radio Map Constructionfor WLAN Indoor Location[C].3rd Int. Conf. on IntelligentHuman-Machine Systems and Cybernetics, Huangzhou, China: IEEE.2011:26-27.
    [82] Shih C Y, Chen L H, Chen G H, Wu H K, Jin M H. Intelligent Radio MapManagement for Future WLAN Indoor Location Fingerprinting[C]. IEEEWireless Communications and Networking Conf., Paris, France: IEEE.2012:2769-2773.
    [83] Gallagher T, Li B, Dempster A G, Rizos C. Database Updating through UserFeedback in Fringerprint-based Wi-Fi Location Systems[C].2010UPINLBS, Kirkkonummi, Finland:2010:1-8.
    [84] Lim J S, Jang W H, Yoon G W, Han D S. Radio Map Update Automation forWiFi Positioning Systems[J]. IEEE Trans. Communications Letters.2013,17(4):693-696.
    [85] Kalman R E. A New Approach to Linear Filtering and PredictionProblems[J]. Transaction of the ASME-Journal of Basic Engineering.1960:35-45.
    [86] Gordon N J, Salmond D J and Smith A F M. Novel Approach toNonlinear/Non-Gasussian Bayesian State Estimation[J]. IEEPROCEEDINGS-F.1993,140:107-113.
    [87] Nerguizian C, Belkhous S, Azzouz A, Nerguizian V, Saad M. Mobile RobotGeolocation with Received Signal Strength (RSS) Fingerprinting Techniqueand Neural Networks[C].2004IEEE International Conference on IndustrialTechnology, Hammamet, Tunisia: IEEE.2004:1183-1185.
    [88] Chiou Y S, Wang C L, Yeh S C. An Adaptive Location Estimator Based onKalman Filtering for Dynamic Indoor Environments[C].2006VehicularTechnology Conference, Montreal, Canada: IEEE.2006:1-5.
    [89]赵永翔,周怀北,陈淼,温斌.卡尔曼滤波在室内定位系统实时跟踪中的应用[J].武汉大学学报(理学版).2011,55(6):696-700.
    [90] Outemzabet S, Nerguizian C. Accuracy Enhancement of an IndoorANN-based Fingerprinting Location System using Kalman Filtering[C].IEEE19th International Symposium on Personal, Indoor and Mobile RadioCommunications, Poznan, Poland: IEEE.2008:1-5.
    [91] Ali-loytty S, Perala T, Honkavirta V, Piche R. Fingerprint Kalman Filter inIndoor Positioning Applications[C].18th IEEE International Conference onControl Applications, Saint Petersburg, Russia: IEEE.2009:1678-1683.
    [92] Bucy R S, Renne K D. Digital Synthesis of Nonlinear Filter. Automatica[J].1971,7(3):287-289.
    [93] Chiou Y S, Wang C L, Yeh S C, Su M Y. Design of an Adaptive PositioningSystem Based on WiFi Radio Signals[J]. Elsevier. ComputerCommunications.2009,32(7-10):1245-1254.
    [94] Yim J, Jeong S, Gwon K, Joo J. Improvement of Kalman flters for WLANbased indoor tracking[J]. Elsevier Ltd. Expert Systems with Applications.2010,37(1):426-433.
    [95] Yim J, Park C, Joo J, Jeong S. Extended Kalman Filter for Wireless LANBased Indoor Positioning[J]. Elsevier. Decision Support Systems.2008,45(4):960-971.
    [96] Hwang R R, Huber M. A Particle Filter Approach for Multi-targetTracking[C].2007IEEE/RSJ International Conference on IntelligentRobots and Systems, San Diego, USA: IEEE.2007:2753-2760.
    [97] Arulampalam M S, Maskell S, Gordon N, Clapp T. A Tutorial on ParticleFilters for Online Nonlinear/Non-Gaussian Bayesian Tracking[J]. IEEETrans. Signal Processing.2002,50(2):174-188.
    [98] Outemzabet S, Nerguizian C. Accuracy Enhancement of an IndoorANN-based Fingerprinting Location System Using Particle Filtering and aLow-cost Sensor[C]. IEEE19th International Symposium on Personal,Indoor and Mobile Radio Communications, Marina Bay, Singapore: IEEE.2008:1-5.
    [99] Widyawan, Klepal M, Pesch D. Influence of Predicted and MeasuredFingerprint on the Accuracy of RSSI-based Indoor Location Systems[C].4th Workshop on Positioning, Navigation and Communication, Hannover,Germany: IEEE.2007:145-151.
    [100] Wang H, Lenz H, Szabo A, Bamberger J, Hanebeck U D. WLAN-BasedPedestrian Tracking Using Particle Filters and Low-Cost MEMS Sensors,4th Workshop on Positioning, Navigationn and Communication, Hannover,Germany: IEEE.2007:1-7.
    [101] Glanzer G, Bernoulli T, Wieflecker T, Walder U. Semi-autonomous IndoorPositioning Using MEMS-based Inertial Measurement Units and BuildingInformation[C].6th Workshop on Positioning, Navigation andCommunication, Hannover, Germany: IEEE.2009:135-139.
    [102] Evennou F, Marx F, Novakov E. Map-aided Indoor Mobile PositioningSystem using Particle Filter[C].2005IEEE Wireless Communications andNetworking Conference, New Orleans, USA: IEEE.2005:2490-2494.
    [103] Davidson P, Collin J, Takala J. Application of Particle Filters for IndoorPositioning Using Floor Plans [C].2010Ubiquitous Positioning IndoorNavigation and Location Based Service, Helsinki, Finland: IEEE.2010:1-4.
    [104] Xu Y B, Zhou M. Meng W X, and Ma L. Optimal KNN positioningalgorithm via theoretical accuracy criterion in WLAN indoorenvironment[C].2010IEEE Global Telecommunications Conf., Miami,USA: IEEE.2010:1-5.
    [105] Yooa Y C, Kim Y S. Alpha-beta-tracking Index Tracking filter[J]. SignalProeessing.2003,83(1):169-180.
    [106]李奇.一种基于RSSI相关系数的指纹定位技术方法[J].广东通信技术.2013,3:29-32.
    [107] Liu X C, Zhang S, Zhao Q Y, Lin X K. A Real-time Algorithm forFingerprint Localization Based on Clustering and Spatial Diversity[C].2010International Congress on Ultra Modern Telecommunications andControl Systems and Workshops, Moscow, Russia: IEEE.2010:74-81.
    [108] Lewis J P. Fast Template Matching [C]. Vision Interface. Quebec, Canada.1995:120-123.
    [109] Yoo J C, Han T H. Fast Normalized Cross-Correlation[J]. Circuits, Systems,and Signal Process.2009,28(6),819-843.
    [110] Wei S D, Lai S H. Fast Template Matching Based on Normalized CrossCorrelation With Adaptive Multilevel Winner Update[J]. IEEE Trans.Image Processing.2008,17(11):2227-2235.
    [111] Rodgers J L, and Nicewander W A. Thirteen Ways to Look at theCorrelation Coefficient[J]. The American Statistician.1988,42(1):59-66.
    [112] Zebker H A, and Chen K. Accurate Estimation of Correlation in InSARObservations[J]. IEEE Geoscience and Remote Sensing Letters.2005,2(2):124-127.
    [113] Zhao C J, Shi W K, Yong D. A New Hausdorff Distance for ImageMatching[J]. Pattern Recogn. Lett.2005,26(5):581-586.
    [114] Vivek E P, Sudha N. Robust Hausdorff Distance Measure for FaceRecognition[J]. Pattern Recogn.2007,40(2):431-442.
    [115] Huttenlocher D P, Klanderman G A, Rucklidge W J. Comparing ImagesUsing the Hausdorff Distance[J]. IEEE Transactions on Pattern Analysisand Machine Intelligence.1993,15(9):850-863.
    [116] Zhu S W, Wu J J, Xiong H, Xia G P. Scaling up Top-K Cosine SimilaritySearch[J]. Data and Knowledge Engineering.2011,70(1):60-83.
    [117] Leppakoski H, Collin J, Takala J. Pedestrian Navigation Based on InertialSensors, Indoor Map, and WLAN Signals[J]. Journal of Signal ProcessingSystems.2013,71(3):287-296.
    [118] Beauregard S, Widyawan W, Klepal M. Indoor PDR PerformanceEnhancement Using Minimal Map Information and Particle Filters[C].2008IEEE/ION Position, Location and Navigation Symposium. Monterey, USA:IEEE.2008:141-147.
    [119] Ascher C, Kessler C, Wankerl M, Trommer G F. Dual IMU IndoorNavigation with Particle Filter based Map-Matching on a Smartphone[C].2010International Conference on Indoor Positioning and Indoor Navigation.Zurich, Switzerland: IEEE.2010:1-5.
    [120] Mitilineos S A, Roumeliotis G K, Mougiakos K S, Capsalis C N, andThomopoulos S C A. Positioning Accuracy Enhancement UsingLocalization Error Modeling[J]. Progress in Electromagnetics Research.2010,102:49-64.
    [121] Zhou M, Xu Y B, Ma L, Tian S. On the Statistical Errors of RADARLocation Sensor Networks with Built-In Wi-Fi Gaussian LinearFingerprints[J] Sensors.2012,12:3605-3626.
    [122]杨建刚.人工神经网络实用教程[M].杭州:浙江大学出版社,2001:16-25.
    [123]周春光,梁艳春.计算智能:人工神经网络·模糊系统·进化计算[M].长春:吉林大学出版社,2005:5-6.
    [124] Kolmogorov A N. On the Representation of Continuous Functions of ManyVariables by Superposition of Continuous Functions of One Variable andCondition[J]. Dokl. Akad. Nauk.1957,114:953-956.
    [125] Rumelhart D E, Hinton G E, Williams R J. Learning Representations byBack-Propagating Errors[J]. Nature,1986,323:533-536.
    [126]罗发龙,李衍达.神经网络信号处理[M].北京:电子工业出版社,1993:7-8.
    [127] Holland J H. Adaptation in Natural and Artificial Systems[M]. MA: ABradford Book,1992:1-19.
    [128]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999:18-24.
    [129] Goldberg D. Genetic Algorithms in Search, Optimization and MachineLearning[M]. MA: Addison-Wesley,1989:28-56.
    [130] Deng Z A, Xu Y B, Ma L. Joint Access Point Selection and LocalDiscriminant Embedding for Energy Efficient and Accurate Wi-FiPositioning[J]. KSII Transactions on Internet and Information Systems.2012,6(3):791-814.
    [131] Fang S H, Lin T N. A Dynamic System Approach for Radio LocationFingerprinting in Wireless Local Area Networks[J]. IEEE Transactions onCommunications,2010,58(4):1020-1025.
    [132] Ding G M, Tan Z H, Zhang J B and Zhang L W. Fingerprinting LocalizationBased on Affinity Propagation Clustering and Artificial NeuralNetworks[C].2013IEEE Wireless Communications and NetworkingConference. Shanghai, China: IEEE.2013:2317-2322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700