用户名: 密码: 验证码:
模拟小波基构建及开关电流电路实现理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小波变换是继傅立叶变换之后在数学分析方法上的一项重大突破。因其在时域和频域同时具有优良的局部化特性而成为分析非平稳信号的理想工具。小波变换已广泛应用于信号处理领域。小波变换的实现以基于计算机软件的算法方式为主。为提高信号处理的实时性,近些年来人们开始致力于基于电路的小波变换方法研究,但主要是采用数字电路代替计算机实现小波算法。由于需要模数转换(A/D)电路,因而小波变换的数字电路实现有着体积大和功耗高的缺点,无法满足功耗要求严格的应用场合需求,不符合现代小波变换器件面向低电压、低功耗和微型化方向发展的趋势,阻碍了小波变换理论在特定场合的实用化进程。由于模拟电路较数字电路在低功耗设计方面具有绝对优势,基于模拟电路的小波变换实现方法成为近年来的研究热点。基于电流模式的开关电流电路是一种模拟取样数据处理系统,具有低电压、低功耗、宽频带和大动态范围的优点。且采用开关电流电路实现小波变换,可通过改变电路开关的工作频率来精确调谐小波尺度。此外,开关电流电路与标准数字CMOS工艺完全兼容,有利于超大规模集成以达到小波变换器件的微型化。
     开关电流小波变换电路设计的首要任务是模拟小波基的构建,即用模拟滤波器函数逼近难以用电路直接实现的小波函数;核心内容是基本小波滤波器的开关电流电路实现。虽然现有研究在上述两个方面取得了不少成果,但是仍存在一些问题,可概括为:(1)小波滤波器函数构建方法还不够丰富,且现有的时域构建模型还不够完善,频域构建方法存在缺陷且效果不佳。(2)现有方法都采用基本型开关电流电路模块实现小波变换,鲜有电路功耗和非理想因素影响的研究;现有方法多采用经典模拟滤波器结构实现小波变换,少有基于现代数字滤波器结构实现的研究。(3)现有研究多关注于实小波滤波器的构建和实现,少有开关电流复小波滤波器设计方面的研究。(4)目前方法主要关注于单个小波滤波器的实现,多个小波滤波器共享实现的研究几乎处于空白状态。
     在此背景下,本论文主要对基本模拟小波滤波器函数构建及开关电流电路实现的理论及方法进行了研究,对现有方法的不足提出了一些改进措施。全文的主要工作包括以下几个方面:
     1、对模拟小波变换的基本理论与方法进行了研究学习。首先,介绍了课题研究的背景与意义,研究现状和存在的问题。然后,阐明了小波变换的模拟滤波器实现原理,归纳了开关电流电路小波变换方法和步骤。最后,介绍了模拟小波基构建的关键问题和时域优化模型。
     2、对模拟小波基的时域构建方法进行了研究。首先,设计了具有初值约束的实小波基时域优化模型,提出了基于改进型混合粒子群算法的通用实小波基时域构建方法。进一步地,针对常见复小波具有高斯包络的特点,并利用正弦信号的周期性,提出一种可简化计算的共极点模拟复小波基时域构建方法。最后,基于常见小波基之间的微积分关系,提出了一种共极共零的多小波基时域构建方法。实验结果表明,所提出的小波基时域构建方法在逼近精度和系统稳定性方面都有良好的效果。
     3、对模拟小波基的频域构建方法进行了研究,将时域优化构建方法推广到频域。首先,设计了模拟小波基频域逼近优化模型,提出了基于该模型的通用实小波基频域优化构建方法。然后,对实小波基频域构建模型进行改进,提出了一种共极点复小波基的频域直接构建方法。进而针对常见复小波基具有高斯包络的特点,并基于正弦信号的周期性,提出一种共极点复小波基频域间接构建方法。对复小波基频域直接和间接构建方法进行了对比。最后,依据常见小波基之间具有微积分关系的特性,提出了一种共极共零的多小波基频域构建方法。仿真实验验证了方法的有效性。
     4、对小波滤波器的网络结构进行了研究。提出了基于IIR数字网络的开关电流模拟小波滤波器综合方法。首先,基于冲激响应不变法设计了开关电流小波滤波器网络。然后,为降低电路传输误差和功耗,采用共源共栅组态和甲乙类电路技术改进基本型开关电流采样保持单元,并设计了开关电流一阶节和二阶节电路模块。最后,分别以实小波滤波器和复小波滤波器为示例阐述了开关电流小波滤波器综合方法。电路仿真结果表明,基于IIR数字网络设计的开关小波滤波器具有电路传输误差小、非理性因素影响小、电路参数少且易于实现等优点。
     5、对多个基本小波滤波器的开关电流电路共享实现进行了研究。为拓展小波变换的适用范围,满足不同场合的应用需求,提出了一种共极共零的多小波滤波器开关电流电路实现方法。首先对共享结构进行了设计。然后提出了基于积分器和微分器的多小波滤波器共享实现方案。最后以高斯-Marr基本小波滤波器的共享实现为例,分别基于积分和微分方案进行了电路综合。通过电路仿真理论分析对两种方案进行了对比,得出了微分共享方案优于积分共享方案的结论。
Wavelet transform (WT) is a key breakthrough in the methods of mathematical analysis after the Fourier transform. The WT is an ideal tool to analyze non-stationary signal thanks to its excellent localization characteristics both in the time-domain and frequency-domain. The WT has been widely used in the field of signal processing. Usually, the WT is realized by algorithms based on computer software. In order to achieve real-time signal processing performance, people had began to study the methods of the WT based on circuits in the past few years, and mainly using the digital circuits to replace the computer to realize the WT algorithms. Associated with the requirement of analog to digital (A/D) converter, the realization of WT by digital circuits have been shortcomings in large circuit volumes and high power consumptions. So it is unable to meet the low power requirements of some special applications and incompatible with the trend of modern WT devices developing to low voltage, low power and miniaturization direction. And it hinders the application of the WT theory in specific occasions. As compared with digital circuits, analogue circuits have the characteristics of low power dissipation, and WT using it has been a hot research topic in recent years. Switched-current (SI) circuit is a kind of current mode analog sampled data processing system, which has the advantages of low voltage, low power consumption, wide frequency band and large dynamic range. When the WT is realized by SI current circuits, the wavelet scales can be precisely tuned by changing the working frequency of the switches. In addition, SI circuit is fully compatible with standard digital CMOS process, so the WT circuits can be ultra large scale integrated.
     The primary task of design WT filter by SI circuit is the construction of basic wavelet filter function, i.e. approximation of an analog filter function to a wavelet which can not realized by circuits. The key content is the realization of the basic wavelet filter using SI circuits. It has made many achievements in the above two aspects, however, there still exists some problems. It can be summarized as follows:(1) Firstly, the construction methods of basic wavelet filter function is not rich enough; secondly, the time-domain construction model is still not perfect; thirdly, the frequency-domain construction methods are not perfect and with poor effect.(2) In the process of present methods, the basic SI circuit modules are used to implement WT and the circuit power concumptions and influence of non-ideal factors are almost not considered. The traditional analog filter structures are used to realize WT but the modern digital filter structures are ignored.(3) The research of construction and implementation mainly focuses on the SI real wavelet filter but rarely on SI complex wavelet filter.(4) The single wavelet filters have been researched mainly, but the multiple wavelet filters'realization by sharing SI circuits is almost blank.
     Under this background, this dissertation has conducted the research about the theory and methods of SI wavelet filters. In response to the above problems, some improved methods have been proposed. The main content of this dissertation are listed as follows:
     1. The basic theory and methods of the WT by analogue filter circuits have been studied. Firstly, the background and significance of this research topic, the research status and problems were introduced. Then, the principle of the WT's implementation using analog filter circuits and the key steps of the WT's realization by SI circuits were introduced. Finally, the key issues and the time-domain optimization model about constructing a wavelet filter were introduced.
     2. The approximation theory and methods for basic wavelet filter construction in time-domain have been investigated. Firstly, the real wavelet bases approximation model in time-domain with initial constraint was designed. Based on it a general time-domain construction method for real-valued wavelet basic filter function was proposed by using an improved Hybrid Particle Swarm (PSO) algorithm. Further more, a novel construction method for poles-shared analog complex wavelet filter function was proposed, in which the calculation can be simplified by using the periodic feature of sinusoidal signals. Finally, considering the differential or integral relationship between some general wavelets, a time-domain construction method for poles-and zeros-shared multi-wavelet filter functions was put forward. The experimental results show that the proposed construction methods have good approximation accuracy and system stability.
     3. The approximation theory and methods for basic wavelet filter construction in frequency-domain have been studied. The time-domain construction and optimization methods were extended to frequency-domain. Firstly, the approximation and optimization model in frequency-domain for real wavelet bases was designed, based on which a general construction method for real-valued wavelet filter was proposed. Further more, by improving this model a novel direct construction method for poles-shared analog complex wavelet filter was put forward. What's more, an indirect construction method was proposed based on the characteristics of Gauss envelope for some complex wavelets and the sinusoidal signal's periodic feature. The proposed direct and indirect methods were compared. Finally, a frequency-domain construction method for poles-and zeros-shared multi-wavelet basic filters was put forward based on the differential or integral relationship between some general wavelets. Simulation results verified the effectiveness of the proposed construction methods.
     4. The wavelet filter circuit's network structure has been studied. A synthesis method of SI wavelet filter based on infinite-impulse-response (IIR) digital network was proposed. Firstly, the impulse invariant transformation was used to design SI wavelet filter network. Then, the cascode and class AB circuit technologies were occupied to improve the basic SI signal sample and hold unit. Based on the improved SI unit, the SI first-and second-order section modules were designed. Finally, the synthesis method was illustrated by designing a real wavelet filter and a complex wavelet filter. Simulation results show that the SI IIR wavelet filter circuit has merits of small transmission error, little influence of non-ideal factors, less circuit parameters and which can be realized easily.
     5. The realization of circuit-shared SI multi-wavelet filters was studied. To expand the applicability of the WT and satisfy the requirements of different occasions, a synthesis method for circuit-shared SI multi-wavelet filters was presented. Firstly, the circuit-shared structures were designed. Then, two realization schemes based on integrator and differentiator were put forward, respectively. Finally, the circuit-shared SI Gauss-Marr wavelet filters was toke as an example to illustrate the method. The circuit-shared schemes were compared by simulation and analysis. A conclusion was draw that the differential share scheme is better than the integral share scheme.
引文
[1]张贤达.现代信号处理.北京:清华大学出版社,2002
    [2]郑君里,应启珩,杨为理.信号与系统.北京:高等教育出版社,2000
    [3]陈后金,胡建,薛建.信号与系统.北京:清华大学出版社,北京交通大学出版社,2005
    [4]丁玉美,高西全.数字信号处理.西安:西安电子科技大学出版社,2001
    [5]刘益成,孙祥娥.数字信号处理.北京:电子工业出版社,2005
    [6]Oppenheim V A, Willsky S A, Nawab S H. signal and systems.北京:电子工业出版社,2009
    [7]Ingrid D著,李建平,杨万年译.小波十讲.北京:国防工业出版社,2003
    [8]徐长发,李国宽.实用小波方法.武汉:华中科技大学出版社,2004
    [9]任震,黄雯莹,黄群古,何建军,杨桦.小波分析及其在电力系统中的应用.北京:中国电力出版社,2003
    [10]Mallat S. A wavelet tour of signal processing. New York:Academic Press,1999
    [11]Chui C K. An introduction to wavelets. New York:Academic Press,1992
    [12]Motlet J, Arensz G, Fourgeau E,Giard D. Wave propagation and sampling theory-Part II:Sampling theory and complex waves. Geophysics,1982,47(2): 801-813
    [13]Grossman A, Morlet J. Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape. SIMA J. Math. Anal,1984,15(4):723-736
    [14]宰文姣,汪华章.基于双树复小波的图像边缘检测.计算机应用,2008,28(6):202-206
    [15]Maglogiannis I, Doukas C, Kormentzas G, Pliakas T.Wavelet-Based Compression With ROI Coding Support for Mobile Access to DICOM Images Over Heterogeneous Radio Networks. IEEE Transactions on Information Technology in Biomedicine,2009,13(4):458-466
    [16]魏培,全子一,门爱东.一种有效的双树复小波-Wiener滤波去噪算法.电路与系统学报,2009,14(5):109-111
    [17]谢宏,谭阳红,何怡刚.基于遗传小波神经网络的非线性动态自治网络故障诊断仿真算法.湖南大学学报(自然科学版),2013,40(1):65-69
    [18]陶顺兴,周晓军,张志刚.基于复Morlet小波和系数相关的齿轮故障特征提取.机械科学与技术,2010,29(5):642-645
    [19]李涛,夏浪,张宇,何怡刚.基于提升复小波的暂态电能质量扰动的检测与定位.中国电机工程学报,2011,31(25):66-72
    [20]李宏民.模拟小波基的构造及其对数域电路实现与应用研究.长沙:湖南大学,2008
    [21]苏鹏声,欢王.短窗Morlet复小波用于电力系统信号处理的探讨.电力系统自动化,2004,28(9):36-42
    [22]盛艳燕,胡志忠.基于小波和马氏距离的电力电子电路故障诊断.电子测量技术,2013,36(2):108-112
    [23]鲁波涌,黄文清.结合小波变换和能量算子的电压暂降检测方法.电工技术学报,2011,26(5):171-177
    [24]滕召胜,罗志坤,孙传奇,高云鹏,唐求.基于小波包分解与重构算法的谐波电能计量.电工技术学报,2010,25(8):200-206
    [25]唐炬,谢颜斌,周倩,张晓星.基于最优小波包变换与核主分量分析的局部放电信号特征提取.电工技术学报,2010,25(9):35-40
    [26]Zhengyou H, Ling F, Sheng L, Zhiqian B. Fault Detection and Classification in EHV Transmission Line Based on Wavelet Singular Entropy. Power Delivery, IEEE Transactions on,2010,25(4):2156-2163
    [27]Borghetti A, Bosetti M, Nucci C A, Paolone M, Abur A. Integrated Use of Time-Frequency Wavelet Decompositions for Fault Location in Distribution Networks:Theory and Experimental Validation. Power Delivery, IEEE Transactions on,2010,25(4):3139-3146
    [28]Borghetti A, Bosetti M, Silvestro M D, Nucci C A, Paolone M Continuous-Wavelet Transform for Fault Location in Distribution Power Networks:Definition of Mother Wavelets Inferred From Fault Originated Transients. IEEE Transactions on Power Systems,2008,23(2):380-387
    [29]Chaari O, Meunier M,Brouaye F. Wavelets:a new tool for the resonant grounded power distribution systems relaying. Power Delivery, IEEE Transactions on, 1996,11(3):1301-1308
    [30]Rioul O, Vetterli M. Wavelets and signal processing. IEEE Signal Processing Magazine,1991,8(4):14-38
    [31]Mallat S. G. A theory for multiresolution signal decomposition:the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11(7):674-693
    [32]Okonkwo U. A. K, Ngah R, Rahman T. A. Wavelet-domain channel characterization for mobile broadband communication systems. IEEE International RF and Microwave Conference,2008:283-288
    [33]Kim B. S, Yoo S. K,Lee M. H. Wavelet-based low-delay ECG compression algorithm for continuous ECG transmission. IEEE Transactions on Information Technology in Biomedicine,2009,10(1):77-83
    [34]Manikandan M S, Dandapat S. Wavelet-based ECG and PCG signals compression technique for mobile telemedicine. International Conference on Advanced Computing and Communications,2007:164-169
    [35]Haddad S A P, Serdijn W A. Wavelet transform with dynamic translinear circuits for cardiac signal characterization in pacemakers. ProRISC,2001:396-400
    [36]Istepanian R S H. Optimal zonal wavelet-based ECG data compression for a mobile telecardiology system. IEEE Transactions on Information Technology in Biomedicine,2000,4(3):200-211
    [37]Yao J, Zhang Y T. The application of bionic wavelet transform to speech signal processing in cochlear implants using neural network simulations. IEEE Transactions on Biomedical Engineering,2002,49(11):1299-1309
    [38]Derbel A, Ghorbel M, Samet M, Ben Hamida A. New algorithm of bionic wavelet transform to DSP-implementation for cochlear implant.16th IEEE Mediterranean Electrotechnical Conference,2012:1025-1029
    [39]Mehrzad M, Abolhassani M D, Jafari A H, Alirezaie J.,Sangargir M. Introduction of a Novel Mapping for Cochlear Implant Speech Processing. IEEE EMBS Conference on Biomedical Engineering and Sciences,2012330-334
    [40]Min Y J, Kim H K, Kang Y R, Kim G S, Park J, Kim S W. Design of Wavelet-Based ECG Detector for Implantable Cardiac Pacemakers. IEEE Transactions on Biomedical Circuits and Systems,2013,7(4):426-436
    [41]Astrom M, Olmos S, Sornmo L. Wavelet-based event detection in implantable cardiac rhythm management devices. IEEE Transactions on Biomedical Engineering,2006,53(3):478-484
    [42]Haddad S A P, Serdijn W. Ultra low-power biomedical signal processing:An analog wavelet filter approach for pacemakers. Berlin:Springer,2009
    [43]Casson A J, Rodriguez-Villegas E. A 60 pW gmC Continuous Wavelet Transform Circuit for Portable EEG Systems Solid-State Circuits, IEEE Journal of,2011, 46(6):1406-1415
    [44]Haddad S A P, Bagga S, Serdijn W A. Log-Domain Wavelet Bases. IEEE Transactions on Circuits and Systems-I:Regular Papers,2005,52(10):2023-2032
    [45]Haddad S A P, Houben R, Serdijn W A. Analog wavelet transform employing dynamic translinear circuits for cardiac signal characterization International Symposium on Circuits and Systems,2003,1:121-124
    [46]Haddad S A P, Karel J M H, Peeters R L M, Westra R L, Serdijn W A. Analog complex wavelet filters. IEEE International Symposium on Circuits and Systems, 2005,4:3287-3290
    [47]Haddad S A P, Verwaal N, Houben R, Serdijn W A. Optimized dynamic translinear implementation of the Gaussian wavelet transform. International Symposium on Circuits and Systems,2004,1:145-148
    [48]Karel J M H, Haddad S A P, Hiseni S, Westra R L, Serdijn W A, Peeters R L M. Implementing Wavelets in Continuous-Time Analog Circuits With Dynamic Range Optimization. IEEE Transactions on Circuits and Systems I:Regular Papers,2012,59(2):229-242
    [49]Karel J M H, Peeters R L M, Westra R L, Haddad S A P, Serdijn W A. Wavelet approximation for implementation in dynamic translinear circuits.16th IFAC World congress,2005,16:184-189
    [50]Singh A, Yazicioglu R F, Van Hoof C. Design of widely tunable Mexican hat wavelet filter for cardiac signal analysis Circuits and Systems (ISCAS),2011 IEEE International Symposium on,2011:1459-1462
    [51]Ensandoust F, Gosselin B, Sawan M. Low-power high-accuracy compact implementation of analog wavelet transforms, IEEE North-Easy:Workshop on Circuits and Systems,2007,25-28
    [52]Li H M, He Y G, Sun Y C. Detection of cardiac signal characteristic point using log-domain wavelet transform circuits. Circuits Systems and Signal Processing, 2008,27(5):683-698
    [53]Peterson R A, Sandro A P H, Jader A D L,Wouter A S. An ultra low power CMOS pA/V transconductor and its application to wavelet filters. Analog Integrated Circuits and Signal Processing,2008,57(19-27
    [54]Tuckwell M,Papavassiliou C. An Analog Gabor Transform Using Sub-Threshold 180-nm CMOS Devices. IEEE Transactions on Circuits and Systems I-Regular Papers,2009,56(12):2597-2608
    [55]Oweiss K G, Mason A, Suhail Y, Kamboh A M, Thomson K E. A Scalable Wavelet Transform VLSI Architecture for Real-Time Signal Processing in High-Density Intra-Cortical Implants. IEEE Transactions on Circuits and Systems I:Regular Papers,2007,54(6):1266-1278
    [56]Huang Q X, He Y G. A New VLSI Implementation of Continuous Wavelet Transform. The Eighth International Conference on Electronic Measurement and Instruments,2007:364-370
    [57]Li M, He Y G, Ou Y, Wang J. Design and implementation of Wavelet Transform using Adaptive Genetic Algorithms and Analog filters. International Conference on Advanced Computer Science and Electronics Information,2013:123-126
    [58]Li M, He Y G., Long Y. Analogue implementation of wavelet transform using discrete time switched-current filters. International Conference on Electric and Electronics,2011,98 LNEE:677-682
    [59]Li M, He Y G, Long Y. Analog VLSI implementation of wavelet transform using switched-current circuits. Analog Integrated Circuits and Signal Processing, 2012,71(2):283-291
    [60]Zhao W S, He Y G. Realization of wavelet transform using switched-current filters. Analog Integrated Circuits and Signal Processing,2012,71(3):571-581
    [61]Zhao W S, He Y G, Sun Y C. SFG Realization of Wavelet Filter Using Switched-Current Circuits. IEEE 8th International Conference on Asic,2009,1: 37-40
    [62]Zhao W S, Sun Y C, He Y G. Minimum component high frequency Gm-C wavelet filters based on Maclaurin series and multiple loop feedback. Electronics Letters, 2010,46(1):34-35
    [63]Zhao W S, Sun Y C, Zhu X, He Y. G.,Ieee. Design of High-Frequency Gm-C Wavelet Filters.2009
    [64]Zhao W-S, He Y G, Huang J Y, Qi S Z, Fang G F. A fully-programmable analog VLSI for Gaussian function generator using switched-current circuit. The 2007 International Conference on Wavelet Analysis and Pattern Recognition,2007:
    [65]胡沁春,何怡刚,郭迪新.基于开关电流的Morlet小波变换及重构的实现.电子测量与仪器学报,2006,20(2):5-9
    [66]胡沁春,何怡刚,郭迪新,李宏民.基于开关电流技术的小波变换的滤波器电路实现.物理学报,2006,55(2):641-647
    [67]胡沁春,何怡刚,郭迪新,李宏民.基于开关电流技术的时域连续小波变换实现.电子与信息学报,2007,29(1):227-231
    [68]胡沁春,何怡刚,郭迪新,李宏民,周炎涛.小波滤波器的开关电流电路设计与实现.仪器仪表学报,2006,27(9):1116-1119
    [69]胡沁春,何怡刚,李宏民,朱彦卿.基于开关电流的连续小波变换实现.湖南大学学报(自然科学版),2005,32(5):66-70
    [70]胡沁春,黄立宏,何怡刚,李宏民.Morlet小波变换的开关电流模拟实现.湖南大学学报(自然科学版),2009,36(2):58-61
    [71]李目,何怡刚.基于改进差分进化算法的连续小波变换电路.微电子学,2012,42(4):497-501
    [72]李目,何怡刚.基于开关电流双线性积分器的IFLF小波滤波器设计.电路与系统学报,2013,18(2):191-195
    [73]李目,何怡刚.基于开关电流双线性积分器的IFLF小波滤波器设计.电路与系统学报,2013,18(2):191-195
    [74]龙佳乐,何怡刚,张建民.用开关电流技术实现连续小波变换的改进方法.信息与控制,2007,36(4):441-443
    [75]赵文山,何怡刚.一种改进的开关电流滤波器实现小波变换的方法.物理学报,2009,58(2):843-851
    [76]张勇,王卫东.基于开关电流技术的小波变换的设计与实现.微电子学,2011,41(4):558-566
    [77]李宏民,何怡刚,胡沁春,张颖.基于对数域模拟CMOS连续小波变换电路的谐波检测方法.中国电机工程学报,2007,27(31):57-63
    [78]李宏民.基于对数域连续小波变换电路的心电图QRS波检测.中国生物医学工程学报,2008,27(1):8-12
    [79]Lin J, Ki W H, Edwards T, Shamma S.Analog VLSI Implementations of Auditory Wavelet Transforms Using Switched-Capacitor Circuits. IEEE Transactions on Circuits and Systems,1994,41(9):572-583
    [80]Hughes J B, Macbeth I C, Pattullo D M. Switched current filters. IEE Proceedings G Circuits, Devices and Systems,1990,137(2):156-162
    [81]Hughes J B, Macbeth I C, Pattullo D M. New switched-current integrator. Electronics Letters,1990,26(11):694-6
    [82]Hughes J B, Macbeth I C, Pattullo D M. Developments in switched-current filter design. IEE Colloquium on Digital and Analogue Filters and Filtering Systems, 25 May 1990,1990:11-1
    [83]Hughes J B, Macbeth I C, Pattullo D M. Second generation switched-current signal processing. IEEE International Symposium on Circuits and Systems,1990, 4:2805-2808
    [84]Hughes J B, Macbeth I C, Pattullo D M. Switched-current system cells. IEEE International Symposium on Circuits and Systems,1990,1:303-306
    [85]Toumazou C, Hughes J B, Pattullo D M. Regulated cascode switched-current memory cell. Electronics Letters,1990,26(5):303-305
    [86]Hughes J B, Bird N C, Macbeth I C. Switched-Current Architectures and Algorithms. IET 30-70(1993)
    [87]Eichenberger C, Guggenbuhl W. On charge injection in analog MOS switches and dummy switch compensation techniques. IEEE Transactions on Circuits and Systems,1990,37(2):256-264
    [88]Yang H C, Fiez T S, Allstot D J. Current-feedthrough effects and cancellation techniques in switched-current circuits. IEEE International Symposium on Circuits and Systems,1990:3186-3188
    [89]Battersby N C, Toumazou C. Class AB switched-current memory for analogue sampled-data systems. Electronics Letters,1991,27(10):873-875
    [90]Hughes J B, Moulding K W. S2I:a switched-current technique for high performance Electronics Letters,1993,29(16):1400-1401
    [91]Nairn D G. Zero-voltage switching in switched current circuits. IEEE International Symposium on Circuits and Systems,1994,5:289-292
    [92]Nairn D G. A high-linearity sampling technique for switched-current circuits IEEE Transactions on Circuits and Systems Ⅱ:Analog and Digital Signal Processing,1996,43(1):49-52
    [93]Shah P, Toumazou C. A new high speed low distortion switched-current cell. IEEE International Symposium on Circuits and Systems,1996,1:421-424
    [94]Koli K, Halonen K. A fully differential class-AB switched-current integrator for signal processing. IEEE Journal of Solid-State Circuits,1997,32(2):238-244
    [95]Ng A E J, Sewell J I. Ladder derived switched-current decimators and interpolators. IEEE Transactions on Circuits and Systems Ⅱ:Analog and Digital Signal Processing,1999,46(9):1161-1170
    [96]Dudek P, Hicks P J. A CMOS general-purpose sampled-data analog processing element. IEEE Transactions on Circuits and Systems Ⅱ:Analog and Digital Signal Processing,2000,47(5):467-473
    [97]Stefanelli B, O'Connor I, Quiquerez L, Kaiser A. An analog beam-forming circuit for ultrasound imaging using switchedcurrent delay lines. IEEE Journal of Solid-State Circuits,2000,35(2):
    [98]Sun Y, Wang Y S, Lai F C. Low Power High Speed Switched Current Comparator. 14th International Conference on Mixed Design of Integrated Circuits and Systems,2007:305-308
    [99]Sawigun C, Serdijn W A.0.75 V micro-power SI memory cell with feedthrough error reduction. Electronics Letters,2008,44(9):561-561
    [100]Wilson P R, Wilcock R, Al-Hashimi B M. Fully integrated 533 MHz programmable switched current PLL in 0.012 mm(2). Electronics Letters,2008, 44(22):1297-U16
    [101]孙泳,来逢昌.一种高电源效率开关电流比较器.固体电子学研究与进展,2009,29(4):579-583
    [102]Rudnicki R, Kropidlowski M, Handkiewicz A. Low power switched-current circuits with low sensitivity to the rise/fall time of the clock. International Journal of Circuit Theory and Applications,2010,38(5):471-486
    [103]Sawigun C, Serdijn W A. A 24nW,0.65-V,74-dB SNDR,83-dB DR, class-AB current-mode sample and hold circuit. Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on,2010:3132-3135
    [104]Cheng L, Yang N, Yan M, Zhou X. Two Switched-Current Memory Cells for High-Speed Digital Communication System. Advanced Electrical and Electronics Engineering Lecture Notes in Electrical Engineering,2011, 87(519-524
    [105]Hajiloo F. A New Structure for an Accurate Switched Current Integrator Australian Journal of Basic and Applied Sciences,2011,5(12):590-597
    [106]Sawigun C, Serdijn W A. Analysis and Design of a Low-Voltage, Low-Power, High-Precision, Class-AB Current-Mode Subthreshold CMOS Sample and Hold Circuit. Circuits and Systems I:Regular Papers, IEEE Transactions on,2011, 58(7):1615-1626
    [107]Zheng S, Li Z. A novel CMOS Charge Pump with high performance for phase-locked loops synthesizer. IEEE 13th International Conference on Communication Technology,2011:1062-1065
    [108]Zhiqun L, Shuangshuang Z, Ningbing H. Design of a high performance CMOS charge pump for phase-locked loop synthesizers. Journal of Semiconductors, 2011,32(7):075007-1-7
    [109]胡肖松,王卫东.一种多功能可调开关电流双二次滤波器的实现.电路与系统学报,2011,16(6):46-50
    [110]牛洪军,王卫东.高精度开关电流存储单元的设计.微电子学,2012,42(1):80-83
    [111]Gao C, Yao S, Gao J.20 MHz switched-current sample-and-hold circuit with low charge injection. Transactions of Tianjin University,2013,19(1):47-52
    [112]Hughes J B, Worapishet A, Toumazou C. Switched-capacitors versus switched-currents:a theoretical comparison. IEEE International Symposium on Circuits and Systems,2000,(2):409-412
    [113]Edwards R T, Godfrey M D. An analog wavelet tranfrom chip. IEEE International Conference on Neural Networks,1993:1247-1251
    [114]金吉成,田逢春.用开关电容滤波器构成的小波函数发生器.重庆大学学报(自然科学版),1998,21(1):39-42
    [115]Edwards R T, Cauwenberghs C. A VLSI implementation of the continuous wavelet transform. IEEE International Symposium on Circuits and Systems, 1996,4:368-371
    [116]田逢春,金吉成.用线性模拟滤波器实现连续小波变换.重庆大学学报(自然科学版),1998,21(5):35-40
    [117]Casson A J, Yates D C, Patel S, Rodriguez-Villegas E. An analogue bandpass filter realisation of the Continuous Wavelet Transform. Annual International Conference of the IEEE Engineering in Medicine and Biology Society,2007: 1850-1854
    [118]Baker G A, Graves-Morris P. Pade approximants. Cambridge:Cambridge University Press,1996
    [119]赵文山.基于开关电流技术的模拟小波变换实现理论与方法研究.长沙:湖南大学,2011
    [120]左园园.基于开关电流电路的小波变换实现.电路与系统学报,2011,16(4):35-39
    [121]Toumazou C, Hughes J B, Battersby N C. Switched Currents:An Analogue Technique for Digital Technology. Stevenage, UK:IET,1993
    [122]Sawigun C, Serdijn W A. A 24nW,0.65-V,74-dB SNDR,83-dB DR, class-AB current-mode sample and hold circuit. IEEE International Symposium on Circuits and Systems,2010:3132-3135
    [123]Bhawna Aggarwal, Gupta M. Low-voltage bulk-driven class AB four quadrant CMOS current multiplier. Analog Integrated Circuits and Signal Processing, 2010,65(1):163-169
    [124]Agostinho P R, Haddad S A P, De Lima J A, Serdijn W A. An ultra low power CMOS pA/V transconductor and its application to wavelet filters. Analog Integrated Circuits and Signal Processing,2008,57(1-2):19-27
    [125]Sedighi B, Bakhtiar M S. A 1.5V 60MS/s sampled-data filter in 0.18um CMOS. The 2005 European Conference on Circuit Theory and Design,2005
    [126]Carvajal R G, Ramirez-Angulo J, Lopez-Martin A J, Torralba A, Galan J A G, Carlosena A, Chavero F M. The flipped voltage follower:a useful cell for low-voltage low-power circuit design. IEEE Transactions on Circuits and Systems I:Regular Papers,2005,52(7):1276-1291
    [127]王友仁,祝鸣涛,任晋华,催江,林华.面向多功能模拟信号处理的开关电流型可重构模拟电路研究.电子学报,2011,39(5):1047-1052
    [128]Gabor D. Theory of communication. Journal of the Institution of Electrical Engineers,1946,93(26):429-441
    [129]Kennedy J, Eberhart R. Particle swarm optimization. IEEE International Conference on Neural Networks,1995,4:1942-1948
    [130]Shi Y, Eberhart R. A modified particle swarm optimizer. IEEE International Conference on Evolutionary Computation,1998:69-73
    [131]Victoirea T A A, Jeyakumarb A E. Hybrid PSO-SQP for economic dispatch with valve-point effect. Electric Power Systems Research,2004,71(1):51-59
    [132]Li S T, Tan M K, Tsang I W, Kwok J T Y. A Hybrid PSO-BFGS Strategy for Global Optimization of Multimodal Functions. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2011,41(4):1003-1014
    [133]曹永红,霍聪颖.基于开关电流技术的小波滤波器的实现.电子设计工程,2010,18(12):95-97
    [134]Levy E C. Complex-Curve Fitting. IRE Transactions on Automatic Control, 1959, AC-4(1):37-44
    [135]邱关源,罗先觉.电路.北京:高等教育出版社,2006
    [136]吴宁.电网络分析与综合.北京:科学出版社,2003
    [137]ArhturB W, Fred J T.电子滤波器设计.北京:科学出版社,2008
    [138]秦世才,高清运.现代模拟集成电子学.北京:科学出版社,2003
    [139]王卫东.现代模拟集成电路.北京:电子工业出版社,2008
    [140]Benhazd R.模拟CMOS集成电路设计.北京:清华大学出版社,2005
    [141]Jacob Baker R,刘艳艳,张为.CMOS电路设计布局与仿真.北京:人民邮电出版社,2008
    [142]Phillip E A, Douglas R H著,冯军,李智群译.CMOS模拟集成电路设计.北京:电子工业出版社,2005
    [143]Ahmad M O, Shenghong W. A design and implementation of fully programmable switched-current IIR filters. IEEE Journal of Solid-State Circuits,1999,34(4):549-553
    [144]Monteiro J B, Petraglia A, Leme C A. A digitally programmable IIR switched-capacitor filter for CMOS technology. Circuits and Systems,2001. ISCAS 2001. The 2001 IEEE International Symposium on,2001,1:69-72
    [145]Loeliger T, Guggenbuhl W. Cascode circuits for switched current copiers. The 40th Midwest Symposium on Circuits and Systems,1997,1:256-259
    [146]de Queiroz A C M, Pinheiro P M. Bilinear switched-current ladder filters using Euler integrators. IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing 1996,43(1):66-70
    [147]Worapishet A, Sitdhikorn R, Spencer A, Hughes J B. A multirate switched-current filter using Class-AB cascoded memory. IEEE Transactions on Circuits and Systems Ⅱ-Express Briefs,2006,53(11):1323-1327
    [148]Sackinger E, Guggenbuhl W. A high-swing, high-impedance MOS cascode circuit. IEEE Journal of Solid-State Circuits,1990,25(1):289-298
    [149]De Queiroz A C M, Pinheiro P R M, Caldba L P. Nodal Analysis of Switched-Current Filters. IEEE Transactions on Circuits and Systems,1993, 40(1):10-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700