用户名: 密码: 验证码:
芹菜素通过抑制Nrf2-ARE通路逆转肝癌耐药的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝细胞癌(hepatocellular carcinoma, HCC,简称肝癌)是常见恶性肿瘤之一。化疗是肝癌治疗的重要手段。然而,化疗耐药的存在,特别是多药耐药现象(multidrug resistance, MDR)是导致肝癌化疗失败的主要原因。
     核转录因子红细胞系相关因子-2(nuclear factor erythroid-2-related factor2,Nrf2)是细胞内重要的抗氧化应激调控因子,调控一系列细胞保护基因的表达。目前,Nrf2已成为逆转肿瘤耐药的重要靶点之一。因此,开发以Nrf2为靶点的小分子抑制剂与抗肿瘤药联用,增强肿瘤细胞对化疗药的敏感性,从而改善化疗药的治疗效果,为肿瘤协同治疗提供新途径。
     已发现一些黄酮类化合物是有效的Nrf2抑制剂,如表没食子儿茶素3-没食子酸酯(epigallocatechin3-gallate, EGCG)、鸦胆子苦醇和木犀草素等。那么,芹菜素(4',5,7-trihydroxyflavone, apigenin, APG)作为一种与EGCG、鸦胆子苦醇和木犀草素等Nrf2抑制剂结构类似且同样具有抗癌潜力的天然黄酮类物质,是否也能有效抑制Nrf2通路,进而增敏肿瘤细胞逆转耐药呢?目前尚未见相关报道。为此,本研究将研究APG对肝癌耐药细胞的逆转作用,并从Nrf2通路探讨其逆转耐药的作用机制。
     第一部分Nrf2与肝癌阿霉素耐药相关性的研究
     目的:探讨肝癌中Nrf2的表达与阿霉素(doxorubicin,ADM)化疗耐药的关系。
     方法:免疫组化法检测Nrf2、醛酮还原酶1B10(aldo-keto reductase1B10,AKR1B10)、多药耐药相关蛋白5(multidrug resistance-associated protein5, MRP5)在肝癌组织中的表达,分析Nrf2表达与AKR1B10、MRP5表达及与肝癌临床病理学特征之间的关系,免疫蛋白印迹法检测比较Nrf2在人肝癌亲本细胞株BEL-7402细胞和ADM选择性诱导的多药耐药细胞株BEL-7402/ADM细胞中的表达差异,通过siRNA干扰Nrf2表达后,MTT法检测细胞对ADM敏感性的变化。
     结果:Nrf2、AKR1B10和MRP5在肝癌组织中表达水平明显高于癌周正常组织(P<0.01;P<0.01;P<0.01),肝癌组织中AKR1B10和MRP5表达水平均与Nrf2表达水平呈显著正相关(P=0.009;P=0.016)。在肝癌中,Nrf2的表达与肿瘤分化程度(P=0.017)、TNM分期(P=0.028)、肝硬化病史(P=0.017),早期复发(P=0.016)密切相关。Nrf2在肝癌耐药细胞株BEL-7402/ADM较敏感细胞株BEL-7402中蛋白表达显著增加,且干扰Nrf2基因表达后,肝癌耐药细胞株BEL-7402/ADM对ADM的敏感性显著增强。
     结论:本研究表明肝癌中Nrf2的高表达可能与ADM耐药相关。
     第二部分芹菜素通过抑制PI3K/Akt/Nrf2通路逆转BEL-7402/ADM耐药
     目的:Nrf2是细胞内重要的抗氧化应激调控因子,调控一系列细胞保护基因的表达。目前,Nrf2已成为逆转肿瘤耐药的重要靶点之一。在本实验中,我们将研究APG是否可以通过抑制Nrf2通路进而逆转BEL-7402/ADM细胞耐药。
     方法:MTT实验检测APG对BEL-7402/ADM细胞耐药性的逆转情况。荧光显微镜和流式细胞仪检测APG对细胞内ADM浓度的影响。实时定量PCR和免疫蛋白印迹法分析APG对Nrf2通路的抑制作用。
     结果:在本研究中,我们发现无毒剂量的APG可明显增强BEL-7402/ADM对抗癌药的敏感性,增加细胞内ADM蓄积。机制上,APG通过抑制PI3K/Akt信号通路,进而下调Nrf2mRNA和蛋白水平,并导致Nrf2下游基因HO-1、AKR1B10和MRP5表达减少,最终逆转细胞耐药。
     结论:结果表明APG可通过下调PI3K/Akt/Nrf2信号通路,进而增强人肝癌耐药细胞BEL-7402/ADM对ADM的敏感性,逆转肿瘤耐药。
     第三部分芹菜素联合阿霉素对人肝癌裸鼠皮下移植瘤的抑制作用
     目的:探讨APG联合ADM对人肝癌裸鼠皮下移植瘤的抑制作用及其相关机制。
     方法:建立BEL-7402裸鼠皮下移植瘤动物模型,32只BEL-7402细胞株移植成功的裸鼠随机分为四组:对照组、APG组(50mg/kg)、ADM组(3mg/kg)和联合用药组(APG50mg/kg+ADM3mg/kg),每组8只。上述药物每3d腹腔注射l次,共7次,观察各组药物对肿瘤的抑制作用。给药结束后处死裸鼠,切取移植瘤组织。免疫组化法检测Ki-67蛋白表达评价肿瘤细胞增殖。TUNEL染色评价肿瘤细胞凋亡情况。免疫蛋白印迹法检测肿瘤组织Nrf2蛋白的表达。
     结果:与单药组相比,联合应用APG及ADM显著抑制肿瘤生长,诱导肿瘤细胞凋亡,抑制肿瘤细胞增殖。此外,联合用药还能下调肿瘤组织Nrf2蛋白的表达。
     结论:本研究表明与APG或ADM单药组相比,联合用药组能更有效地抑制肝癌移植瘤生长,其机制可能与抑制肿瘤增殖活性,诱导肿瘤细胞凋亡和下调Nrf2表达有关。
Hepatocellular carcinoma (HCC) is one of the most common malignant cancers.Chemotherapy is an important therapeutic strategy for HCC. Unfortunately, cancercells often develop chemoresistance, which presents a major obstacle contributing tothe failure of cancer therapy in HCC.
     Nuclear factor erythroid-2-related factor2(Nrf2) is a redox-sensitivetranscription factor regulating expression of a number of cytoprotective genes.Recently, Nrf2is now viewed as a pharmacological target to overcomechemoresistance. Therefore, identification of small molecules inhibitors that potentlyinhibit the Nrf2-dependent response is desirable, and such compounds may be used asan adjuvant sensitizer to combat chemoresistance.
     Several flavonoid compounds have been reported to be Nrf2inhibitor that canreverse drug resistance effectively, such as epigallocatechin3-gallate (EGCG),luteolin, brusatol. Similar to luteolin, brusatol, and EGCG, apigenin (APG) is anatural compound with anticancer potential. So APG structurally related to themwhether sensitizing cancer cells to anticancer drugs through antagonizing the Nrf2signaling pathway is not clear. We aim to study the effect of APG on reversing drugresistance in HCC cells, as well as to explore the molecular mechanism through theNrf2pathway.
     PartⅠ Study of the correlation between Nrf2anddoxorubicin–resistance in hepatocellar carcinoma cells
     Objects: To explore the correlation of doxorubicin-resistance with Nrf2expression inHCC.
     Methods: The expression of Nrf2, aldo-keto reductase1B10(AKR1B10), multidrugresistance-associated protein5(MRP5) protein in HCC were analyzed byimmunostaining. And the relationship of Nrf2expression in these tissues withclinicopathologic characteristics and correlation of AKR1B10, MRP5expression with Nrf2expression in HCC were analyzed. Using Western blot, expressions of Nrf2in BEL-7402 cells and doxorubicin resistant BEL-7402(BEL-7402/ADM) cells were compared. Inaddition, using Nrf2siRNA was created to inhibit Nrf2expression in BEL-7402/ADM cells,and cell viabilities in response to ADM treatment were measured by MTT analysis.
     Results: The expression of Nrf2, AKR1B10, and MRP5in HCC were higher than that inthe corresponding normal tissue (P<0.01; P<0.01; P<0.01). The Nrf2protein level waspositively correlated with AKR1B10/MRP5protein in the HCC tissues (P=0.009; P=0.016),as assessed by Spearman's rank correlation coefficient test. Additionally, there was asignificant correlations between Nrf2expression and tumor degree of differentiation(P=0.017), and TNM stage (P=0.028). Patients with liver cirrhosis and early recurrence hadhigher Nrf2expression (P=0.017; P=0.016). The Nrf2protein level in BEL-7402/ADMcells was higher than that in BEL-7402cells. And suppression of Nrf2expression sensitizedBEL-7402/ADM cells to ADM.
     Conlusion: These results suggest that the high expression level of Nrf2is probablycorrelated with doxorubicin-resistance in HCC.
     PartⅡ Reversal of apigenin on chemoresistance inBEL-7402/ADM cells via inhibiting PI3K/Akt/Nrf2pathway
     Objects: Nrf2is a redox-sensitive transcription factor regulating expression of anumber of cytoprotective genes. Recently, Nrf2has emerged as an importantcontributor to chemoresistance in cancer therapy. Here, we investigated whether APGcould reverse drug resistance in BEL-7402/ADM cells via inhibiting Nrf2pathway.
     Methods: Reverse of drug resistance was assayed by MTT analysis. IntracellularADM concentration was measured by Fluorometric and FCM analyses. Inhibition ofNrf2signaling pathway by APG was detected through real-time quantitative PCR andwestern blot analysis.
     Results: In the present study, we found that non-toxic dose of APG significantlysensitizes BEL-7402/ADM cells to anticancer drugs and increases intracellularconcentration of ADM. Mechanistically, APG dramatically reduced Nrf2expressionat both the mRNA and protein levels through down-regulation of PI3K/Akt pathway,leading to a reduction of Nrf2-downstream genes HO-1, AKR1B10, and MRP5.
     Conlusion: These results clearly demonstrate that APG can be used as an effectiveadjuvant sensitizer to prevent chemoresistance by down-regulating PI3K/Akt/Nrf2signaling pathway.
     PartⅢ Synergisyic inhibitory effects by the combination ofapigenin and doxorubicin on human hepatocellar carcinomaxenografts in nude mice
     Objects: In this study, we investigated the inhibitory effect of APG and ADM onhepatocellar carcinoma in vivo experiments using human hepatocellar carcinoma celllines, and we aimed to elucidate the possible molecular mechanism of their anticancereffect.
     Methods: The animal model of BEL-7402transplantation tumor in nude mice wasconstructed.32nude mice were randomly assigned into four groups and treated i.p.with vehicle, ADM (3mg/kg), APG (50mg/kg), or in combination every three daysfor a total of seven times. The inhibitory effects of the drugs in each group wereobserved. The mice were sacrificed and their tumors were excised for further analysis,Tumor cell proliferation was analyzed by Ki-67immunostaining. Apoptosis wasdetermined by TUNEL assay. Nrf2protein levels were measured by Western blot.
     Results: In vivo, combination treatment with APG and ADM resulted in enhancedtumor growth inhibition, apoptosis induction, inhibition of tumor cell proliferationand inhibition of Nrf2expression in tumor tissues.
     Conlusion: These results suggest that the combination of APG and ADM would bemore efficacious for the treatment of HCC than either treatment alone. And inhibitionof Ki-67expression, induction of tumor cell apoptosis and down-regulation of Nrf2expression might be one of its possible mechanisms.
引文
[1] Yang JD, Roberts LR. Hepatocellular carcinoma: a global view. Nat RevGastroenterol Hepatol.2010;7(8):448-58.
    [2] Gordon RR, Nelson PS. Cellular senescence and cancer chemotherapy resistance.Drug Resist Updat.2012;15(1-2):123-31.
    [3] Baguley BC. Multiple drug resistance mechanisms in cancer. Mol Biotechnol.2010;46(3):308-16.
    [4] Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M,Kroemer G. Molecular mechanisms of cisplatin resistance. Oncogene.2012;31(15):1869-83.
    [5] Pauwels EK, Erba P, Mariani G, Gomes CM. Multidrug resistance in cancer: itsmechanism and its modulation. Drug News Perspect.2007;20(6):371-7.
    [6] Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmentalstresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol.2007;47:89-116.
    [7] Shen K, Cui D, Sun L, Han M, Liu J. Inhibition of IGF-IR increaseschemosensitivity in human colorectal cancer cells through MRP-2promotersuppression. J Cell Biochem.2012;113(6):2086-97.
    [8] Mahaffey CM, Zhang H, Rinna A, Holland W, Mack PC, Forman HJ.Multidrug-resistant protein-3gene regulation by the transcription factor Nrf2inhuman bronchial epithelial and non-small-cell lung carcinoma. Free Radic BiolMed.2009;46(12):1650-7.
    [9] Singh A, Wu H, Zhang P, Happel C, Ma J, Biswal S. Expression of ABCG2(BCRP) is regulated by Nrf2in Cancer Cells that confers side population andchemoresistance phenotype. Mol Cancer Ther.2010;9(8):2365-76.
    [10]Itoh K, Mimura J, Yamamoto M. Discovery of the negative regulator of Nrf2,Keap1: a historical overview. Antioxid Redox Signal.2010;13(11):1665-78.
    [11]Al-Mulla F, Bitar MS, Feng J, Park S, Yeung KC. A new model for raf kinaseinhibitory protein induced chemotherapeutic resistance. Plos One.2012;7(1):e29532.
    [12]Hashimoto Y, Imanishi K, Tokui N, Okamoto T, Okamoto A, Hatakeyama S,Yoneyama T, Koie T, Kamimura N, Ohyama C. Carboplatin-gemcitabinecombination chemotherapy upregulates AKR1B10expression in bladder cancer.Int J Clin Oncol.2013;18(1):177-82.
    [13]Fukumoto S, Yamauchi N, Moriguchi H, Hippo Y, Watanabe A, Shibahara J,Taniguchi H, Ishikawa S, Ito H, Yamamoto S, Iwanari H, Hironaka M, IshikawaY, Niki T, Sohara Y, Kodama T, Nishimura M, Fukayama M, Dosaka-Akita H,Aburatani H. Overexpression of the aldo-keto reductase family proteinAKR1B10is highly correlated with smokers' non small cell lung carcinomas.Clin Cancer Res.2005;11(15):1776-85.
    [14]Yoshitake H, Takahashi M, Ishikawa H, Nojima M, Iwanari H, Watanabe A,Aburatani H, Yoshida K, Ishi K, Takamori K, Ogawa H, Hamakubo T,Kodama T, Araki Y. Aldo-keto reductase family1, member b10in uterinecarcinomas: a potential risk factor of recurrence after surgical therapy in cervicalcancer. Int J Gynecol Cancer.2007;17(6):1300-6.
    [15]Heringlake S, Hofdmann M, Fiebeler A, Manns MP, Schmiegel W, Tannapfel A.Identification and expression analysis of the aldo-ketoreductase1B10gene inprimary malignant liver tumours. J Hepatol.2010;52(2):220-7.
    [16]Liu Z, Yan R, Al-Salman A, Shen Y, Bu Y, Ma J, Luo DX, Huang C, Jiang Y,Wilber A, Mo YY, Huang MC, Zhao Y, Cao D. Epidermal growth factor inducestumour marker AKR1B10expression through activator protein-1signalling inhepatocellular carcinoma cells. Biochem J.2012;442(2):273-82.
    [17]Bacolod MD, Lin SM, Johnson SP, Bullock NS, Colvin M, Bigner DD, FriedmanHS. The gene expression profiles of medulloblastoma cell lines resistant topreactivated cyclophosphamide. Curr Cancer Drug Targets.2008;8(3):172-9.
    [18]Matsunaga T, Yamane Y, Iida K, Endo S, Banno Y, El-Kabbani O, Hara A.Involvement of the aldo-keto reductase, AKR1B10, in mitomycin-c resistancethrough reactive oxygen species-dependent mechanisms. Anticancer Drugs.2011;22(5):402-8.
    [19]Nishinaka T, Miura T, Okumura M, Nakao F, Nakamura H, Terada T. Regulationof aldo-keto reductase AKR1B10gene expression: involvement of transcriptionfactor Nrf2. Chem Biol Interact.2011;191(1-3):185-91.
    [20]K nig J, Hartel M, Nies AT, Martignoni ME, Guo J, Büchler MW, Friess H,Keppler D. Expression and localization of human multidrug resistance protein(ABCC) family members in pancreatic carcinoma. Int J Cancer.2005;115(3):359-67.
    [21]Andric SA, Kostic TS, Stojilkovic SS. Contribution of multidrug resistanceprotein MRP5in control of cyclic guanosine5'-monophosphate intracellularsignaling in anterior pituitary cells. Endocrinology.2006;147(7):3435-45.
    [22]Nambaru PK, Hübner T, K ck K, Mews S, Grube M, Payen L, Guitton J, SendlerM, Jedlitschky G, Rimmbach C, Rosskopf D, Kowalczyk DW, Kroemer HK,Weiss FU, Mayerle J, Lerch MM, Ritter CA. Drug efflux transporter multidrugresistance associated protein5affects sensitivity of pancreatic cancer cell lines tothe nucleoside anticancer drug5-fluorouracil. Drug Metab Dispos.2011;39(1):132-9.
    [23]Kweon MH, Adhami VM, Lee JS, Mukhtar H. Constitutive overexpression ofNrf2depen dent heme oxygenase-1in A549cells contributes to resistance toapoptosis induced by epigallocatechin3-gallate. J Biol Chem.2006;281(44):33761-72.
    [24]Tang X, Wang H, Fan L, Wu X, Xin A, Ren H, Wang XJ. Luteolin inhibits Nrf2leading to Negative regulation of the Nrf2/ARE pathway and sensitization ofhuman lung carcinoma A549cells to therapeutic drugs. Free Radic Biol Med.2011;50(11):1599-609.
    [25]Ren D, Villeneuve NF, Jiang T, Wu T, Lau A, Toppin HA, Zhang DD. Brusatolenhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defensemechanism. Proc Natl Acad Sci U S A.2011;108(4):1433-8.
    [26]Shukla S, Maclennan GT, Fu P, Gupta S. Apigenin Attenuates Insulin LikeGrowth Factor I Signaling in an Autochthonous Mouse Prostate Cancer Model.Pharm Res.2012;29(6):1506-17.
    [27]Ullah MF. Cancer multidrug resistance (MDR): a major impediment to effectivechemotherapy. Asian Pac J Cancer Prev.2008;9(1):1-6.
    [28]张凯茹,闫惠琴,王燕,马力,周清华. Nrf2及其靶基因在人肺腺癌A549顺铂耐药细胞株中的表达和意义.中国肺癌杂志.2009;12(11):1150-4.
    [29]Wang XJ, Sun Z, Villeneuve NF, Zhang S, Zhao F, Li Y, Chen W, Yi X, ZhengW, Wondrak GT, Wong PK, Zhang DD. Nrf2enhances resistance of cancer cellsto chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis.2008;29(6):1235-43.
    [30]Zhang P, Singh A, Yegnasubramanian S, Esopi D, Kombairaju P, Bodas M, WuH, Bova SG, Biswal S. Loss of Kelch-like ECH-associated protein1function inprostate cancer cells causes chemoresistance and radioresistance and promotestumor growth. Mol Cancer Ther.2010;9(2):336-46.
    [31]Homma S, Ishii Y, Morishima Y, Yamadori T, Matsuno Y, Haraguchi N, KikuchiN, Satoh H, Sakamoto T, Hizawa N, Itoh K,Yamamoto M. Nrf2enhances cellproliferation and resistance to anticancer drugs in human lung cancer. ClinCancer Res.2009;15(10):3423-32.
    [32]Cho JM, Manandhar S, Lee HR, Park HM, Kwak MK. Role of the Nrf2-antioxidant system in cytotoxicity mediated by anticancer cisplatin: Implicationto cancer cell resistance. Cancer Lett.2008(1-2);260:96-108.
    [33]Hong YB, Kang HJ, Kwon SY, Kim HJ, Kwon KY, Cho CH, Lee JM, KallakuryBV, Bae I. Nuclear factor (erythroid-derived2)-like2regulates drug resistancein pancreatic cancer cells. Pancreas.2010;39(4):463-72.
    [34]Wang XB, Wang SS, Zhang QF, Liu M, Li HL, Liu Y, Wang JN, Zheng F, GuoLY, Xiang JZ. Inhibition of tetramethylpyrazine on P-gp, MRP2, MRP3andMRP5in multidrug resistant human hepatocellular carcinoma cells. Oncol Rep.2010;23(1):211-5.
    [35]Cook AL, Vitale AM, Ravishankar S, Matigian N, Sutherland GT, Shan J,Sutharsan R, Perry C, Silburn PA, Mellick GD, Whitelaw ML,Wells CA,Mackay-Sim A, Wood SA. NRF2activation restores disease related metabolicdeficiencies in olfactory neurosphere-derivedcells from patients with sporadicParkinson's disease. PLoS One.2011;6(7):e21907.
    [36]Lu HF, Chie YJ, Yang MS, Lee CS, Fu JJ, Yang JS, Tan TW, Wu SH, Ma YS, IpSW, Chung JG. Apigenin induces caspase-dependent apoptosis in human lungcancer A549cells through Bax-and Bcl-2-triggered mitochondrial pathway. Int JOncol.2010;36(6):1477-84.
    [37]Shukla S, Gupta S. Apigenin: a promising molecule for cancer prevention. PharmRes.2010;27(6):962-78.
    [38]Leslie EM, Mao Q, Oleschuk CJ, Deeley RG, Cole SP. Modulation of multidrugresistance protein1(MRP1/ABCC1) transport and atpase activities byinteraction with dietary flavonoids. Mol Pharmacol.2001;59(5):1171-80.
    [39]Chan KF, Zhao Y, Burkett BA, Wong IL, Chow LM, Chan TH. Flavonoid dimersas bivalent modulators for P-glycoprotein-based multidrug resistance:syntheticapigenin homodimers linked with defined-length poly(ethylene glycol)spacersincrease drug retention and enhance chemosensitivity in resistant cancercells. J Med Chem.2006;49(23):6742-59.
    [40]Pritchard AL, Hayward NK. Molecular Pathways: MAP kinase pathwaymutations and drug resistance. Clin Cancer Res.2013Feb13.
    [41]Block M, Gründker C, Fister S, Kubin J, Wilkens L, Mueller MD, Hemmerlein B,Emons G, Günthert AR. Inhibition of the AKT/mTOR and erbB pathways bygefitinib, perifosine and analogs of gonadotropin-releasing hormone I and II toovercome tamoxifen resistance in breast cancer cells. Int J Oncol.2012;41(5):1845-54.
    [42]Lin CW, Wu MJ, Liu IY, Su JD, Yen JH. Neurotrophic and cytoprotective actionof luteolin in PC12cells through ERK-dependentinduction of Nrf2-driven HO-1expression. J Agric Food Chem.2010;58(7):4477-86.
    [43]Seo YJ, Kim BS, Chun SY, Park YK, Kang KS, Kwon TG. Apoptotic effects ofgenistein, B-iochanin A and apigenin on LNCaP and PC-3cells by p21throughtranscriptional inhibition of polo like kinase-1. J Korean Med Sci.2011;26(11):1489-94.
    [44]Babcook MA, Gupta S. Apigenin Modulates Insulin-like Growth Factor Axis:Implications for Prevention and Therapy of Prostate Cancer. Curr Drug Targets.2012Nov6.
    [45]Chan LP, Chou TH, Ding HY, Chen PR, Chiang FY, Kuo PL, Liang CH.Apigenin induces apoptosis via tumor necrosis factor receptor-andBcl-2-mediated pathway and enhances susceptibility of head and neck squamouscell carcinoma to5-fluorouracil and cisplatin. Biochim Biophys Acta.2012;1820(7):1081-91.
    [46]King JC, Lu QY, Li G, Moro A, Takahashi H, Chen M, Go VL, Reber HA, EiblG, Hines OJ. Evidence for activation of mutated p53by apigenin in humanpancreatic cancer. Biochim Biophys Acta.2012;1823(2):593-604.
    [47]Hayes JD, McMahon M. NRF2and KEAP1mutations: permanent activation ofan adaptive response in cancer. Trends Biochem Sci.2009;34(4):176-88.
    [48]Apopa PL, He X, Ma Q. Phosphorylation of Nrf2in the transcription activationdomain by casein kinase2(CK2) is critical for the nuclear translocation andtranscription activation function of Nrf2in IMR-32neuroblastoma cells. JBiochem Mol Toxicol.2008;22(1):63-76.
    [49]Lee SE, Jeong SI, Yang H, Park CS, Jin YH, Park YS. Fisetin inducesNrf2-mediated HO-1expression through PKC-and p38in human umbilicalvein endothelial cells. J Cell Biochem.2011;112(9):2352-60.
    [50]Rojo AI, Rada P, Egea J, Rosa AO, López MG, Cuadrado A. Functionalinterference between glycogen synthase kinase-3beta and the transcription factorNrf2in protection against kainate-induced hippocampal cell death. Mol CellNeurosci.2008;39(1):125-32.
    [51]Kim KH, Jeong JY, Surh YJ, Kim KW. Expression of stress-response ATF3ismediated by Nrf2in astrocytes. Nucleic Acids Res.2010;38(1):48-59.
    [52]Smolarek AK, So JY, Thomas PE, Lee HJ, Paul S, Dombrowski A, Wang CX,Saw CL, Khor TO, Kong AN, Reuhl K, Lee MJ, Yang CS, Suh N. Dietarytocopherols inhibit cell proliferation, regulate expression of ER, PPARγ, andNrf2, and decrease serum inflammatory markers during the development ofmammary hyperplasia. Mol Carcinog.2012Mar2.
    [53]Haskew-Layton RE, Payappilly JB, Xu H, Bennett SA, Ratan RR.15-Deoxy-Δ12,14-prostaglandin J2(15d-PGJ2) protects neurons from oxidativedeath via an Nrf2astrocyte-specific mechanism independent of PPARγ. JNeurochem.2013;124(4):536-47.
    [54]Sporn MB, Liby KT. NRF2and cancer: the good, the bad and the importance ofcontext. Nat Rev Cancer.2012;12(8):564-71.
    [55]Chen D, Landis-Piwowar KR, Chen MS, Dou QP. Inhibition of proteasomeactivity by the dietary flavonoid apigenin is associated with growth inhibition incultured breast cancer cells and xenografts. Breast Cancer Res.2007;9(6): R80.
    [56]Newell P, Villanueva A, Friedman SL, Koike K, Llovet JM. Experimental modelsof hepatocellular carcinoma. J Hepatol.2008;48(5):858-79.
    [57]Mafuvadze B, Liang Y, Besch-Williford C, Zhang X, Hyder SM. Apigenininduces apoptosis and blocks growth of medroxyprogesterone acetate-dependentBT-474xenograft tumors. Horm Cancer.2012;3(4):160-71.
    [58]Shi Y, Tong M, Wu Y, Yang Z, Hoffman RM, Zhang Y, Tian Y, Qi M, Lin Y,Liu Y, Dai L, Sun Y, Wang Z. VEGF-C ShRNA Inhibits Pancreatic CancerGrowth and Lymphangiogenesis in an Orthotopic Fluorescent Nude MouseModel. Anticancer Res.2013;33(2):409-17.
    [59]Cao J, Cui S, Li S, Du C, Tian J, Wan S, Qian Z, Gu Y, Chen WR, Wang G.Targeted Cancer Therapy with a2-Deoxyglucose-Based Adriamycin Complex.Cancer Res.2013;73(4):1362-1373.
    [60]吴细丕,钱林法.实验动物与肿瘤研究[M].北京:中国医药科技出版社,2000.
    [61]Hanna-Morris A, Badvie S, Cohen P, McCullough T, Andreyev HJ, Allen-MershTG. Minichromosome maintenance protein2(MCM2) is a strongerdiscriminator of increased proliferation in mucosa adjacent to colorectal cancerthan Ki-67. J Clin Pathol.2009;62(4):325-30.
    [62]Fatema CN, Zhao S, Zhao Y, Murakami M, Yu W, Nishijima KI, Tamaki N,Kitagawa Y, Kuge Y. Monitoring tumor proliferative response to radiotherapyusing (18)F-fluorothymidine in human head and neck cancer xenograft incomparison with Ki-67. Ann Nucl Med.2013Feb16.
    [63]Luczynska E, Gasinska A, Wilk W. Expression of Ki-67(MIB-1) and GLUT-1proteins in non-advanced prostatic cancer. Pol J Pathol.2012;63(4):272-7.
    [64]Ogata A, Kaise H, Kohno N. Ki-67labeling index as prognostic in breast cancer.Nihon Rinsho.2012;70Suppl7:180-4.
    [65]Fisher G, Yang ZH, Kudahetti S, M ller H, Scardino P, Cuzick J, Berney DM.Prognostic value of Ki-67for prostate cancer death in a conservatively managedcohort. Br J Cancer.2013;108(2):271-7.
    [66]Bai WK, Shen E, Hu B. The induction of the apoptosis of cancer cell bysonodynamic therapy: a review. Chin J Cancer Res.2012;24(4):368-73.
    [67]Zielinski RR, Eigl BJ, Chi KN. Targeting the apoptosis pathway in prostatecancer. Cancer J.2013;19(1):79-89.
    [68]Wang CL, Xia Y, Nie JZ, Zhou M, Zhang RP, Niu LL, Hou LH, Cao XH. MuscaDomestica Larva Lectin Induces Apoptosis in BEL-7402Cells Through aCa(2+)/JNK-mediated Mitochondrial Pathway. Cell Biochem Biophys.2012Dec18.
    [69]Oishi M, Iizumi Y, Taniguchi T, Goi W, Miki T, Sakai T. Apigenin SensitizesProstate Cancer Cells to Apo2L/TRAIL by Targeting Adenine NucleotideTranslocase-2. PLoS One.2013;8(2):e55922.
    [70]Kaur P, Shukla S, Gupta S. Plant flavonoid apigenin inactivates Akt to triggerapoptosis in human prostate cancer: an in vitro and in vivo study. Carcinogenesis.2008;29(11):2210-7.
    [71]Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ, Lee SJ. Apigenininduces c-Myc-mediated apoptosis in FRO anaplastic thyroid carcinoma cells.Mol Cell Endocrinol.2013Jan29.
    [1] Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmentalstresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol.2007;47:89-116.
    [2] Boutten A, Goven D, Artaud-Macari E, Boczkowski J, Bonay M. NRF2targeting:a promising therapeutic strategy in chronic obstructive pulmonary disease.Trends Mol Med.2011;17(7):363-71.
    [3] Du Y, Wooten MC, Gearing M, Wooten MW. Age-associated oxidative damageto the p62promoter: implications for Alzheimer disease. Free Radic Biol Med.2009;46(4):492-501.
    [4] Freigang S, Ampenberger F, Spohn G, Heer S, Shamshiev AT, Kisielow J,Hersberger M, Yamamoto M, Bachmann MF, Kopf M. Nrf2is essential forcholesterol crystal-induced inflammasome activation and exacerbation ofatherosclerosis. Eur J Immunol.2011;41(7):2040-51.
    [5] Kensler TW, Ng D, Carmella SG, Chen M, Jacobson LP, Mu oz A, Egner PA,Chen JG, Qian GS, Chen TY, Fahey JW, Talalay P, Groopman JD, Yuan JM,Hecht SS. Modulation of the metabolism of airborne pollutants byglucoraphanin-rich and sulforaphane-rich broccoli sprout beverages in Qidong,China. Carcinogenesis.2012;33(1):101-7.
    [6] Shureiqi I, Baron JA. Curcumin chemoprevention: the long road to clinicaltranslation. Cancer Prev Res (Phila).2011;4(3):296-8.
    [7] Linker RA, Lee DH, Ryan S, van Dam AM, Conrad R, Bista P, Zeng W,Hronowsky X, Buko A, Chollate S, Ellrichmann G, Brück W, Dawson K, GoelzS, Wiese S, Scannevin RH, Lukashev M, Gold R. Fumaric acid esters exertneuroprotective effects in neuroinflammation via activation of the Nrf2antioxidant pathway. Brain.2011;134(Pt3):678-92.
    [8] Pergola PE, Raskin P, Toto RD, Meyer CJ, Huff JW, Grossman EB, Krauth M,Ruiz S, Audhya P, Christ-Schmidt H, Wittes J, Warnock DG; BEAM StudyInvestigators. Bardoxolone methyl and kidney function in CKD with type2diabetes. N Engl J Med.2011;365(4):327-36.
    [9] Palsamy P, Subramanian S. Resveratrol protects diabetic kidney by attenuatinghyperglycemia-mediated oxidative stress and renal inflammatory cytokines viaNrf2-Keap1signaling. Biochim Biophys Acta.2011;1812(7):719-31.
    [10]Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of theKeap1–Nrf2pathway in stress response and cancer evolution. Genes Cells.2011;16(2):123-40.
    [11]Yamadori T, Ishii Y, Homma S, Morishima Y, Kurishima K, Itoh K, YamamotoM, Minami Y, Noguchi M, Hizawa N. Molecular mechanisms for the regulationof Nrf2-mediated cell proliferation in non-small-cell lung cancers. Oncogene.2012;31(45):4768-77.
    [12]Jain AK, Bloom DA, Jaiswal AK. Nuclear import and export signals in control ofNrf2. J Biol Chem.2005;280(32):29158-68.
    [13]Nioi P, Nguyen T, Sherratt PJ, Pickett CB. The carboxy-terminal Neh3domain ofNrf2is required for transcriptional activation. Mol Cell Biol.2005;25(24):10895-906.
    [14]Ziady AG, Sokolow A, Shank S, Corey D, Myers R, Plafker S, Kelley TJ.Interaction with CREB binding protein modulates the activities of Nrf2andNF-κB in cystic fibrosis airway epithelial cells. Am J Physiol Lung Cell MolPhysiol.2012;302(11):L1221-31.
    [15]Maher J, Yamamoto M. The rise of antioxidant signaling--the evolution andhormetic actions of Nrf2. Toxicol Appl Pharmacol.2010;244(1):4-15。
    [16]Wu JH, Miao W, Hu LG, Batist G. Identification and characterization of novelNrf2inducers designed to target the intervening region of Keap1. Chem BiolDrug Des.2010;75(5):475-80.
    [17]Ogura T, Tong KI, Mio K, Maruyama Y, Kurokawa H, Sato C, Yamamoto M.Keap1is a forked-stem dimer structure with two large spheres enclosing theintervening, double glycine repeat, and C-terminal domains. Proc Natl Acad SciU S A.2010;107(7):2842-7.
    [18]Zhao CR, Gao ZH, Qu XJ. Nrf2-ARE signaling pathway and natural products forcancer chemoprevention. Cancer Epidemiol.2010Oct;34(5):523-33.
    [19]Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A,Yamamoto M, Kensler TW, Talalay P. Protection against electrophile andoxidant stress by induction of the phase2response: fate of cysteines of theKeap1sensor modified by inducers. Proc Natl Acad Sci U S A.2004;101(7):2040-5.
    [20]Eggler AL, Liu G, Pezzuto JM, van Breemen RB, Mesecar AD. Modifyingspecific cysteines of the electrophile-sensing human Keap1protein is insufficientto disrupt binding to the Nrf2domain Neh2. Proc Natl Acad Sci U S A.2005;102(29):10070-5.
    [21]Tong KI, Katoh Y, Kusunoki H, Itoh K, Tanaka T, Yamamoto M. Keap1recruitsNeh2through binding to ETGE and DLG motifs: characterization of the two-sitemolecular recognition model. Mol Cell Biol.2006;26(8):2887-900.
    [22]Kobayashi A, Kang MI, Watai Y, Tong KI, Shibata T, Uchida K, Yamamoto M.Oxidative and electrophilic stresses activate Nrf2through inhibition ofubiquitination activity of Keap1. Mol Cell Biol.2006;26(1):221-9.
    [23]Rojo AI, Medina-Campos ON, Rada P, Zú iga-Toalá A, López-Gazcón A,Espada S, Pedraza-Chaverri J, Cuadrado A. Signaling pathways activated by thephytochemical nordihydroguaiaretic acid contribute to a Keap1-independentregulation of Nrf2stability: Role of glycogen synthase kinase-3. Free Radic BiolMed.2012;52(2):473-87.
    [24]McMahon M, Thomas N, Itoh K, Yamamoto M, Hayes JD. Redox-regulatedturnover of Nrf2is determined by at least two separate protein domains, theredox-sensitive Neh2degron and the redox-insensitive Neh6degron. J BiolChem.2004;279(30):31556-67.
    [25]Cullinan SB, Diehl JA. PERK-dependent activation of Nrf2contributes to redoxhomeostasis and cell survival following endoplasmic reticulum stress. J BiolChem.2004;279(19):20108-17.
    [26]Jain AK, Jaiswal AK. GSK-3beta acts upstream of Fyn kinase in regulation ofnuclear export and degradation of NF-E2related factor2. J Biol Chem.2007;282(22):16502-10.
    [27]Jain AK, Jaiswal AK. Phosphorylation of tyrosine568controls nuclear export ofNrf2. J Biol Chem.2006;281(17):12132-42.
    [28]Karapetian RN, Evstafieva AG, Abaeva IS, Chichkova NV, Filonov GS, RubtsovYP, Sukhacheva EA, Melnikov SV, Schneider U, Wanker EE, Vartapetian AB.Nuclear oncoprotein prothymosin alpha is a partner of Keap1: implications forexpression of oxidative stress-protecting genes. Mol Cell Biol.2005;25(3):1089-99.
    [29]Strachan GD, Morgan KL, Otis LL, Caltagarone J, Gittis A, Bowser R,Jordan-Sciutto KL. Fetal Alz-50clone1interacts with the human orthologue ofthe Kelch-like Ech-associated protein. Biochemistry.2004;43(38):12113-22.
    [30]Ishikawa M, Numazawa S, Yoshida T. Redox regulation of the transcriptionalrepressor Bach1. Free Radic Biol Med.2005;38(10):1344-52.
    [31]Wang XJ, Hayes JD, Henderson CJ, Wolf CR. Identification of retinoic acid as aninhibitor of transcription factor Nrf2through activation of retinoic acid receptoralpha. Proc Natl Acad Sci U S A.2007;104(49):19589-94.
    [32]Lau A, Villeneuve NF, Sun Z, Wong PK, Zhang DD. Dual roles of Nrf2in cancer.Pharmacol Res.2008;58(5-6):262-70.
    [33]Hu R, Saw CL, Yu R, Kong AN. Regulation of NF-E2-related factor2signalingfor cancer chemoprevention: antioxidant coupled with antiinflammatory.Antioxid Redox Signal.2010;13(11):1679-98.
    [34]Shen G, Khor TO, Hu R, Yu S, Nair S, Ho CT, Reddy BS, Huang MT, NewmarkHL, Kong AN. Chemoprevention of familial adenomatous polyposis by naturaldietary compounds sulforaphane and dibenzoylmethane alone and in combinationin ApcMin/+mouse. Cancer Res.2007;67(20):9937-44.
    [35]Hu R, Khor TO, Shen G, Jeong WS, Hebbar V, Chen C, Xu C, Reddy B, ChadaK, Kong AN. Cancer chemoprevention of intestinal polyposis in ApcMin/+miceby sulforaphane, a natural product derived from cruciferous vegetable.Carcinogenesis.2006;27(10):2038-46.
    [36]Liby KT, Sporn MB. Synthetic oleanane triterpenoids: multifunctional drugs witha broad range of applications for prevention and treatment of chronic disease.Pharmacol Rev.2012;64(4):972-1003.
    [37]Liby KT, Royce DB, Risingsong R, Williams CR, Maitra A, Hruban RH, SpornMB. Synthetic triterpenoids prolong survival in a transgenic mouse model ofpancreatic cancer. Cancer Prev Res (Phila).2010;3(11):1427-34.
    [38]Kim EH, Deng C, Sporn MB, Royce DB, Risingsong R, Williams CR, Liby KT.CDDO-methyl ester delays breast cancer development in BRCA1-mutated mice.Cancer Prev Res (Phila).2012;5(1):89-97.
    [39]Heiss E, Herhaus C, Klimo K, Bartsch H, Gerh user C. Nuclear factor kappa B isa molecular target for sulforaphane-mediated anti-inflammatory mechanisms. JBiol Chem.2001;276(34):32008-15.
    [40]Dickinson SE, Melton TF, Olson ER, Zhang J, Saboda K, Bowden GT. Inhibitionof activator protein-1by sulforaphane involves interaction with cysteine in thecFosDNA-binding domain: implications for chemoprevention of UVB-inducedskin cancer. Cancer Res.2009;69(17):7103-10.
    [41]Yore MM, Kettenbach AN, Sporn MB, Gerber SA, Liby KT. Proteomic analysisshows synthetic oleanane triterpenoid binds to mTOR. PLoS One.2011;6(7):e22862.
    [42]Kobayashi M, Li L, Iwamoto N, Nakajima-Takagi Y, Kaneko H, Nakayama Y,Eguchi M, Wada Y, Kumagai Y, Yamamoto M. The antioxidant defense systemKeap1-Nrf2comprises a multiple sensing mechanism forresponding to widerange of chemical compounds. Mol Cell Biol.2009;29(2):493-502.
    [43]Iida K, Itoh K, Kumagai Y, Oyasu R, Hattori K, Kawai K, Shimazui T, Akaza H,Yamamoto M. Nrf2is essential for the chemopreventive efficacy of oltiprazagainst urinary bladder carcinogenesis. Cancer Res.2004;64(18):6424-31.
    [44]Xu C, Huang MT, Shen G, Yuan X, Lin W, Khor TO, Conney AH, Kong AN.Inhibition of7,12-dimethylbenz(a)anthracene-induced skin tumorigenesis inC57BL/6mice bysulforaphane is mediated by nuclear factor E2-related factor2.Cancer Res.2006;66(16):8293-6.
    [45]Yates MS, Kwak MK, Egner PA, Groopman JD, Bodreddigari S, Sutter TR,Baumgartner KJ, Roebuck BD, Liby KT, Yore MM, Honda T,Gribble GW,Sporn MB, Kensler TW. Potent protection against aflatoxin-inducedtumorigenesis through induction of Nrf2-regulated pathways by the triterpenoid1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole. Cancer Res.2006;66(4):2488-94.
    [46]Khor TO, Huang MT, Prawan A, Liu Y, Hao X, Yu S, Cheung WK, Chan JY,Reddy BS, Yang CS, Kong AN. Increased susceptibility of Nrf2knockout miceto colitis-associated colorectal cancer. Cancer Prev Res (Phila).2008;1(3):187-91.
    [47]Kim YR, Oh JE, Kim MS, Kang MR, Park SW, Han JY, Eom HS, Yoo NJ, LeeSH. Oncogenic NRF2mutations in squamous cell carcinomas of oesophagus andskin. J Pathol.2010;220(4):446-51.
    [48]Wang J, Zhang M, Zhang L, Cai H, Zhou S, Zhang J, Wang Y. Correlation ofNrf2, HO-1, and MRP3in gallbladder cancer and their relationships toclinicopathologic features and survival. J Surg Res.2010;164(1):e99-105.
    [49]Shibata T, Ohta T, Tong KI, Kokubu A, Odogawa R, Tsuta K, Asamura H,Yamamoto M, Hirohashi S. Cancer related mutations in NRF2impair itsrecognition by Keap1-Cul3E3ligase and promote malignancy. Proc Natl AcadSci U S A.2008;105(36):13568-73.
    [50]Yoo NJ, Kim HR, Kim YR, An CH, Lee SH. Somatic mutations of the KEAP1gene in common solid cancers. Histopathology.2012;60(6):943-52.
    [51]Je EM, An CH, Yoo NJ, Lee SH. Mutational and expressional analyses of NRF2and KEAP1in sarcomas. Tumori.2012;98(4):510-5
    [52]Nioi P, Nguyen T. A mutation of Keap1found in breast cancer impairs its abilityto repress Nrf2activity. Biochem Biophys Res Commun.2007;362(4):816-21.
    [53]Hayes JD, McMahon M. NRF2and KEAP1mutations: permanent activation ofan adaptive response in cancer. Trends Biochem Sci.2009;34(4):176-88.
    [54]Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, Hoque MO, Herman JG,Baylin SB, Sidransky D, Gabrielson E, Brock MV, Biswal S. DysfunctionalKEAP1-NRF2interaction in non-small-cell lung cancer. PLoS Med.2006;3(10):e420.
    [55]Ohta T, Iijima K, Miyamoto M, Nakahara I, Tanaka H, Ohtsuji M, Suzuki T,Kobayashi A, Yokota J, Sakiyama T, Shibata T, Yamamoto M, Loss of Keap1function activates Nrf2and provides advantages for lung cancer cell growth.Cancer Res.2008;68(5):1303-9.
    [56]Kim JE, You DJ, Lee C, Ahn C, Seong JY, Hwang JI. Suppression of NF-kappaBsignaling by KEAP1regulation of IKKbeta activity throughautophagicdegradation and inhibition of phosphorylation. Cell Signal.2010;22(11):1645-54.
    [57]Wang R, An J, Ji F, Jiao H, Sun H, Zhou D. Hypermethylation of the Keap1genein human lung cancer cell lines and lung cancer tissues. Biochem Biophys ResCommun.2008;373(1):151-4.
    [58]Yu S, Khor TO, Cheung KL, Li W, Wu TY, Huang Y, Foster BA, Kan YW,Kong AN. Nrf2expression is regulated by epigenetic mechanisms in prostatecancer of TRAMP mice. PLoS One.2010;5(1):e8579.
    [59]Solis LM, Behrens C, Dong W, Suraokar M, Ozburn NC, Moran CA, CorvalanAH, Biswal S, Swisher SG, Bekele BN, Minna JD, Stewart DJ, Wistuba II. Nrf2and Keap1abnormalities in non-small cell lung carcinoma and association withclinicopathologic features. Clin Cancer Res.2010;16(14):3743-53.
    [60]Konstantinopoulos PA, Spentzos D, Fountzilas E, Francoeur N, Sanisetty S,Grammatikos AP, Hecht JL, Cannistra SA. Keap1mutations and Nrf2pathwayactivation in epithelial ovarian cancer. Cancer Res.2011;71(15):5081-9.
    [61]Akhdar H, Loyer P, Rauch C, Corlu A, Guillouzo A, Morel F. Involvement ofNrf2activation in resistance to5-fluorouracil in human colon cancer HT-29cells.Eur J Cancer.2009;45(12):2219-27.
    [62]Homma S, Ishii Y, Morishima Y, Yamadori T, Matsuno Y, Haraguchi N, KikuchiN, Satoh H, Sakamoto T, Hizawa N, Itoh K, Yamamoto M. Nrf2enhances cellproliferation and resistance to anticancer drugs in human lung cancer. ClinCancer Res.2009;15(10):3423-32.
    [63]Wang XJ, Sun Z, Villeneuve NF, Zhang S, Zhao F, Li Y, Chen W, Yi X, ZhengW, Wondrak GT, Wong PK, Zhang DD. Nrf2enhances resistance of cancer cellsto chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis.2008;29(6):1235-43.
    [64]Tarumoto T, Nagai T, Ohmine K, Miyoshi T, Nakamura M, Kondo T, Mitsugi K,Nakano S, Muroi K, Komatsu N, Ozawa K. Ascorbic acid restores sensitivity toimatinib via suppression of Nrf2-dependent gene expressionin theimatinib-resistant cell line. Exp Hematol.2004;32(4):375-81
    [65]Cavin C, Delatour T, Marin-Kuan M, Holzh user D, Higgins L, Bezen on C,Guignard G, Junod S, Richoz-Payot J, Gremaud E, Hayes JD, Nestler S, MantleP, Schilter B. Reduction in antioxidant defenses may contribute to ochratoxin Atoxicity and carcinogenicity. Toxicol Sci.2007;96(1):30-9.
    [66]Boesch-Saadatmandi C, Wagner AE, Graeser AC, Hundhausen C, Wolffram S,Rimbach G. Ochratoxin A impairs Nrf2-dependent gene expression in porcinekidney tubulus cells. J Anim Physiol Anim Nutr (Berl).2009;93(5):547-54.
    [67]Kweon MH, Adhami VM, Lee JS, Mukhtar H. Constitutive overexpression ofNrf2-dependent heme oxygenase-1in A549cells contributes toresistance toapoptosis induced by epigallocatechin3-gallate. J Biol Chem.2006;281(44):33761-72.
    [68]Ren D, Villeneuve NF, Jiang T, Wu T, Lau A, Toppin HA, Zhang DD. Brusatolenhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defensemechanism. Proc Natl Acad Sci U S A.2011;108(4):1433-8.
    [69]Tang X, Wang H, Fan L, Wu X, Xin A, Ren H, Wang XJ. Luteolin inhibits Nrf2leading to negative regulation of the Nrf2/ARE pathway and sensitizationofhuman lung carcinoma A549cells to therapeutic drugs. Free Radic Biol Med.2011;50(11):1599-609.
    [70]Lin CW, Wu MJ, Liu IY, Su JD, Yen JH. Neurotrophic and cytoprotective actionof luteolin in PC12cells through ERK-dependentinduction of Nrf2-driven HO-1expression. J Agric Food Chem.2010;58(7):4477-86.
    [71]DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, MangalD, Yu KH, Yeo CJ, Calhoun ES, Scrimieri F, Winter JM,Hruban RH,Iacobuzio-Donahue C, Kern SE, Blair IA, Tuveson DA. Oncogene-induced Nrf2transcription promotes ROS detoxification and tumorigenesis. Nature.2011;475(7354):106-9.
    [72]Shaw AT, Winslow MM, Magendantz M, Ouyang C, Dowdle J, Subramanian A,Lewis TA, Maglathin RL, Tolliday N, Jacks T. Selective killing of K-ras mutantcancer cells by small molecule inducers of oxidative stress. Proc Natl Acad Sci US A.2011;108(21):8773-8.
    [73]Siegel PM, Massagué J. Cytostatic and apoptotic actions of TGF-beta inhomeostasis and cancer. Nat Rev Cancer.2003;3(11):807-21.
    [74]Qian BF, Wahl SM. TGF-beta can leave you breathless. Curr Opin Pharmacol.2009;9(4):454-61.
    [75]Yates MS, Tran QT, Dolan PM, Osburn WO, Shin S, McCulloch CC, SilkworthJB, Taguchi K, Yamamoto M, Williams CR, Liby KT, Sporn MB, Sutter TR,Kensler TW. Genetic versus chemoprotective activation of Nrf2signaling:overlapping yet distinct geneexpression profiles between Keap1knockout andtriterpenoid-treated mice. Carcinogenesis.2009;30(6):1024-31.
    [76]Taguchi K, Maher JM, Suzuki T, Kawatani Y, Motohashi H, Yamamoto M.Genetic analysis of cytoprotective functions supported by graded expression ofKeap1. Mol Cell Biol.2010;30(12):3016-26.
    [77]Spencer SR, Wilczak CA, Talalay P. Induction of glutathione transferases andNAD(P)H:quinine reductase by fumaric acidderivatives in rodent cells andtissues. Cancer Res.1990;50(24):7871-5.
    [78]Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT. Cancerchemoprevention mechanisms mediated through the Keap1-Nrf2pathway.Antioxid Redox Signal.2010;13(11):1713-48.
    [79]Ooi A, Wong JC, Petillo D, Roossien D, Perrier-Trudova V, Whitten D, Min BW,Tan MH, Zhang Z, Yang XJ, Zhou M, Gardie B, MoliniéV,Richard S, Tan PH,Teh BT, Furge KA. An antioxidant response phenotype shared betweenhereditary and sporadic type2papillaryrenal cell carcinoma. Cancer Cell.2011;20(4):511-23.
    [80]Adam J, Hatipoglu E, O'Flaherty L, Ternette N, Sahgal N, Lockstone H, Baban D,Nye E, Stamp GW, Wolhuter K, Stevens M, Fischer R, Carmeliet P, Maxwell PH,Pugh CW, Frizzell N, Soga T, Kessler BM, El-Bahrawy M, Ratcliffe PJ, PollardPJ. Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phdpathway: roles forfumarate in KEAP1succination and Nrf2signaling. CancerCell.2011;20(4):524-37.
    [81]O'Flaherty L, Adam J, Heather LC, Zhdanov AV, Chung YL, Miranda MX, CroftJ, Olpin S, Clarke K, Pugh CW, Griffiths J, Papkovsky D, Ashrafian H, RatcliffePJ, Pollard PJ. Dysregulation of hypoxia pathways in fumaratehydratase-deficient cells is independent of defective mitochondrial metabolism.Hum Mol Genet.2010;19(19):3844-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700