用户名: 密码: 验证码:
瑜伽练习在慢性阻塞性肺疾病患者康复治疗中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)严重影响人们的身体健康,是许多人致死或致残的最重要疾病之一,严重影响着公共健康,到2020,COPD将会是世界上第三位致死病因,社会负担将会增至第五位。COPD以不完全可逆性气流受限为特征,肺功能逐渐下降,有效肺组织逐渐减少,生活质量逐渐下降,致死率高。COPD全球倡议(Global Initiative for Chronic Obstructive Lung Disease, GOLD)的管理策略中,包括减轻症状,避免并发症出现,减少急性发作,提高活动耐力,改善健康状况,降低死亡率。近来,基于临床证据,一些COPD相关的指南或声明指出,在COPD管理策略中,肺康复做为最有效的非药物治疗手段,已被广泛接受。研究显示,一些肺康复锻炼方法,如上肢练习、太极、瑜伽等,可缓解呼吸困难,改善肺功能,提高COPD患者生活质量。瑜伽,其含意为“一致”、“结合”或“和谐”。是一个通过提升意识,帮助人类充分发挥潜能的体系。瑜伽姿势运用古老而易于掌握的技巧,改善人们生理、心理、情感和精神方面的能力,是一种达到身体、心灵与精神和谐统一的运动方式,包括调身的体位法、调息的呼吸法、调心的冥想法等,以达至身心的合一。瑜伽可以健身、健美形体、缓解精神压力、锻炼柔韧性,在西方世界中变得流行。研究显示,瑜伽练习可使一些疾病患者明显受益,如哮喘,心脏病,糖尿病,结核病,抑郁症,骨性关节炎,胸腔积液等。一些临床研究结果显示,瑜伽练习可以明显提高COPD患者肺功能。然而,这些研究资料并不系统。因此,我们通过对随机临床试验研究进行系统综述和Meta分析,来评价瑜伽练习对COPD患者肺功能及其他临床指标的影响,从而了解瑜伽练习对COPD患者肺康复中的价值。
     目的
     本研究通过对随机临床试验研究进行系统综述和Meta分析,来评价瑜伽练习对COPD患者肺功能及其他临床指标的影响,从而了解瑜伽练习对COPD患者肺康复中的价值。
     方法
     通过计算机及手工全面检索PubMed、EMBASE, the Cochrane Library, Google Scholar、 ClinicalTrials.gov databases、超星Medlink、中国全文期刊数据库、万方数据库。主要指标为第一秒用力呼气容积(forced expiratory volume in one second, FEV1)、FEV1占预计值百分比(FEV1%percentage predicted,FEV1%pred).次要指标为6分钟步行距离(6min walking distance,6MWD),动脉血氧分压(arterial oxygen tension,Pa02)及动脉血二氧化碳分压(arterial carbon diocide tension,PaC02).连续变量资料采用加权均数差(weighted mean differences, WMDs),其以95%可信区间(confidence intervals,CIs)表示。异质性大小程度用12异质性的定量分析。
     结果
     5篇文献被纳入,包括233例患者。瑜伽练习可显著提高FEV1(WMD123.57ml,95%CI4.12-243,P=0.04),FEV1%pred(WMD3.90%,95%CI2.27-5.54,P<0.00001)和6MWD (WMD38.84m,95%CI15.52-62.16,P=0.001);瑜伽练习对PaO2(WMD1.29mmHg,95%CI-1.21-3.78,P=0-31)和PaC02(WMD-0.76mmHg,95%CI-2.06-0.53,P=0.25)没有影响。
     结论
     瑜伽练习可改善肺功能和活动耐力,可做为COPD患者肺康复治疗的一种有效方法,瑜伽练习对COPD患者肺康复的长期疗效需进一步研究。
     研究背景
     近年来,肺癌的发病率和病死率都在迅速上升。肺癌主要有小细胞肺癌(small cell lung cancer, SCLC)和非小细胞肺癌(non small cell lung carcinoma, NSCLC),小细胞肺癌一般在晚期发现,生存率远远低于非小细胞肺癌的生存率,因此,谈及小细胞肺癌,人们总是将之与死亡直接挂钩。伊立替康和顺铂方案目前已被美国国立综合癌症网络(National Comprehensive Cancer Network, NCCN)临床治疗指南定为广泛期SCLC的一线标准治疗方案。伊立替康在体内经强酸酯酶转化为7-乙基-10-羟基喜树碱,后者是一种拓扑异构酶I的抑制剂,能够抑制DNA单链断裂后的修复作用,从而干扰DNA复制和转录,产生毒性效应,而在体内,伊立替康代谢的关键酶是尿苷二磷酸葡萄糖苷酸转移酶(UGT1A1),该酶基因启动子区存在大量的TA碱基重复序列,野生型的UGT1A1为6个TA重复序列,即TA6/TA6,当其启动子区有7个TA重复学列,即UGT1A1*28,可分为两种突变型:TA7/TA7和TA6/TA7。 UGT1A1启动子区插入性突变可以降低其转录水平,因此,理论上讲,重复序列越多,基因转录表达就越少。UGT1A1家族常见的SNP共有3种,UGT1A1*1, UGT1A1*28, UGT1A1*6,而临床肿瘤报道最多的是UGT1A1*28多态性。小分子RNA (miRNA)是一类大小约为22个核苷酸的非编码单链分子,它在肿瘤发生发展过程中发挥重要作用。据报道,miRNA在肺癌中通过调控细胞周期,抑癌基因/癌基因和细胞凋亡等,调控了肺癌的发生发展。但是,在小细胞肺癌中,调控UGT1A1的1miRNAs的报道很少,因此,本研究致力于在大量小细胞肺癌患者中发现调控UGT1A1的miRNA,同时对临床样本UGT1A1*6多态性进行分析。
     目的
     1.对临床样本UGT1A1*6多态性进行分析。
     2.寻找小细胞肺癌患者中调控UGT1A1的miRNA。
     3.探索小细胞肺癌患者个体化治疗的分子靶标。
     方法
     通过定量聚合酶链反应(Polymerase Chain Reaction, PCR)检测了临床分离的138例小细胞肺癌和100例正常人群中UGT1A1和miR-143的相对表达,通过Sanger测序检测了小细胞肺癌人群和正常人群中UGT1A1多态性UGT1A1*6的分布;通过双荧光素酶报告系统确定了miR-143与UGT1A1的3'-UTR的结合,并将miR-143拟似物转染小细胞肺癌细胞株通过免疫印迹法确认了miR-143对UGT1A1的表达抑制作用。
     结果
     UGT1A1在小细胞肺癌患者体内显著低表达,miR-143显著抑制了荧光素酶的表达且miR-143在小细胞肺癌患者体内的表达与UGT1A1显著负性相关,同时UGT1A1多态性UGT1A1*6在小细胞肺癌和正常人群中的分布无统计学差异,但是其在使用了伊立替康治疗的小细胞肺癌患者体内高频率出现。
     结论
     通过检测UGT1A1*6多态性有助于指导小细胞肺癌患者伊立替康的个性化治疗,并且通过检测小细胞肺癌外周静脉血中UGT1A1基因的表达量能有效评估伊立替康对小细胞肺癌的疗效,从而指导临床用药。
Introduction
     Chronic obstructive pulmonary disease (COPD) is an important cause of morbidity and mortality and poses a major public health problem. By2020, COPD is predicted to rank as the third leading cause of death worldwide, whereas its social burden will rank fifth. COPD is characterized by irreversible airflow obstruction, a gradual decline in lung function, loss of lung tissue, reduced quality of life, and high rates of mortality. The GOLD (Global Initiative for Chronic Obstructive Lung Disease) management includes a reduction in symptoms, complications, and exacerbations, improved exercise tolerance, improved health status, and reduced mortality. Recent evidence-based clinical practice guidelines and statements have shown that pulmonary rehabilitation is widely accepted as the most effective non-pharmacotherapy in the management of COPD. Research have indicated that various exercises, such as upper extremity exercise, Tai Chi, and yoga training, can relieve dyspnea, improve lung function, and improve the quality of life of COPD patients. Yoga is a word that has come to describe a means of uniting or a method of discipline. It involves joining the body and the mind, and together they merge with the self (soul). It may also denote the union between the individual self and the transcendental self. First, the body's organs and systems are cleansed through asanas (postures) and pranayama (controlling the breath). Along with meditation, yoga asanas and pranayama have become popular in the West, and the practice of yoga has become "westernized." Postures are taught as ends in themselves, that is, to heal an illness, reduce stress, or to look better. Yogic exercises have been shown to have positive effects on people with asthma, cardiac diseases, diabetes, tuberculosis, depressive disorders, osteoarthritis, and pleural effusion. A number of clinical trials have suggested that yoga training may improve the pulmonary function of patients with COPD, but the quality of these studies have not been evaluated systematically. Therefore, we undertook a systematic review and meta-analysis of available randomized controlled trials (RCTs) to assess the efficacy of yoga training on pulmonary function and other clinical endpoints in patients with COPD.
     Objective
     To assess the efficacy of yoga training on pulmonary function and other clinical endpoints in patients with COPD.
     Methods
     PubMed, EMBASE, the Cochrane Library, Google Scholar, and ClinicalTrials.gov databases were searched for relevant studies. The primary outcomes were forced expiratory volume in one second (FEV1), FEV1%predicted (%pred). Secondary outcomes included6-min walking distance (6MWD), arterial oxygen tension (PaO2), and arterial carbon dioxide tension (PaC02). Weighted mean differences (WMDs) and95%confidence intervals (CIs) were calculated, and heterogeneity was assessed with the I2test.
     Results
     Five randomized controlled trials involving233patients fulfilled the inclusion criteria. Yoga training significantly improved FEV1(WMD:123.57ml,95%CI:4.12to243, P=0.04), FEV1%pred (WMD:3.90%,95%CI:2.27to5.54, P<0.00001), and6MWD (WMD:38.84m,95%CI:15.52to62.16, P=0.001). However, yoga training had no significant effects on PaO2(WMD:1.29mmHg,95%CI:-1.21to3.78, P=0.31) and PaCO2(WMD:-0.76mmHg,95%CI:-2.06to0.53, P=0.25).
     Conclusions
     The current limited evidence suggested that yoga training has a positive effect on improving lung function and exercise capacity and could be used as an adjunct pulmonary rehabilitation program in COPD patients. However, further studies are needed to substantiate our preliminary findings and to investigate the long-term effects of yoga training.
     Introduction
     Recent years, the incidence and mortality rate of lung cancer rising rapidly. Lung cancer mainly contains small cell lung cancer and nonsmall-cell lung cancer, in which nonsmall-cell lung cancer comprises80%-85%. Small-cell lung cancer is usually observed during terminal stage of cancer, and survival rate of which is much lower that nonsmall-cell lung cancer. Therefore, small-cell lung cancer is usually associated with death. Irinotecan and cisplatin treatment of extensive stage SCLC have been identified as the standard method by NCCN guidelines. Irinotecan is biotransformed by tissue and serum carboxylesterases to7-ethyl-10-hydroxycamptothecin, which is an inhibitor of topoisomerase I enzyme. Therefore, Irinotecan could inhibite the restoration breakage of single-strand DNA and disturb DNA replication and transcription. In vivo, the critical enzyme of Irinotecan metabolism is uridine diphosphate glucuronyltransferase1A1(UGT1A1)[9]. Numerous TA repetitive sequences exist in UGT1A1gene promoter, in which6TA in Wild-type UGT1A1(TA6/TA6)[10]. A dinucleotide (TA) insertion in the (TA)6TAA element resulting in (TA)7(UGT1A1*28), which contains two mutation:TA7/TA7and TA6/TA7[11]. Insertional mutation of promoter surpresses the transcriptional level of UGT1A1gene. Therefore, The UGT1A1activityappears to be inversely related to the number of TA repeats. There are three SNP classification in UGTIAI gene family:UGTIA1*1, UGT1A1*28, UGTIA1*6, in which UGTIA1*28polymorphism attracts the clinical oncology studies. MiRNAs (microRNAs) are a class of endogenous non-coding, single-stranded small regulatory RNA molecules, which are approximately22nucleotides in length. Numous studies report that miRNA plays essential role in Lung cancer through regulating cell cycle and apoptosis and the expression of oncogenes/anti-oncogenes. However, the role of miRNAs in UGT1A1regulation is poorly understood for a long time. Therefore, this study focus on the function of miRNA on UGT1A1regulation and the UGT1A1*6polymorphism analysis in SCLC patients.
     Objective
     1. To analysis UGTIA1*6polymorphism in SCLC patients.
     2. To study the function of miRNA on UGT1Al regulation in SCLC patients.
     3. To explore the molecular target of individualized treatment in SCLC patients.
     Methods
     Relative expression of UGT1A1and miR-143in normal population(100cases) and small cell lung cancer patients (138cases) were detected by Real-time PCR; The distribution of UGT1A1*6gene polymorphism in normal population and small cell lung cancer patients were determinated by Sanger sequencing; The binding between miR-143and3'-UTR of UGT1A1were confirmed by Dual luciferase report system, and the inhibition effection of miR-143on UGT1A1was confirmed through immune-blot after transfecting miR-143mimics into small cell lung cancer cell line.
     Results
     UGT1A1expresses at a low level in small cell lung cancer patients, miR-143significantly suppresses the expression of luciferase, and the expression of miR-143is inverse related to UGT1A1in small cell lung cancer patients. Meanwhile, no significant difference of UGT1A1*6distribution was detected between normal population and small cell lung cancer patients, while UGT1A1*6occurs frequently in small cell lung cancer patients with Irinotecan treatment.
     Conclusion
     The detection of UGT1A1*6genotypic polymorphism is beneficial to the individualized treatment of small cell lung cancer using Irinotecan. Meanwhile, the determination of UGT1A1relative expression in Peripheral venous blood of small cell lung cancer patients is in favor of the evaluation of the curative effect of Irinotecan on small cell lung cancer and further the clinical medication.
引文
1. Viegi G, Pistelli F, Sherrill DL, et al. Definition, epidemiology and natural history of COPD. Eur Respir J 2007;30:993-1013.
    2. Vestbo J, Hurd SS, Agusti AG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease:GOLD executive summary. Am J Respir Crit Care Med 2013;187:347-65.
    3. Murray CJ, Lopez AD. Mortality by cause for eight regions of the world:Global Burden of Disease Study. Lancet 1997;349:1269-76.
    4. Qaseem A, Wilt TJ, Weinberger SE, et al. Diagnosis and management of stable chronic obstructive pulmonary disease:a clinical practice guideline update from the American College of Physicians, American College of Chest Physicians, American Thoracic Society, and European Respiratory Society. Ann Intern Med 2011; 155:179-91.
    5. Pan L, Guo YZ, Yan JH, et al. Does upper extremity exercise improve dyspnea in patients with COPD? A meta-analysis. Respir Med 2012;106:1517-25.
    6. Yan JH, Guo YZ, Yao HM, et al. Effects of Tai Chi in patients with chronic obstructive pulmonary disease:preliminary evidence. PLoS One 2013;8:e61806.
    7. Donesky-Cuenco D, Nguyen HQ, Paul S, et al. Yoga therapy decreases dyspnea-related distress and improves functional performance in people with chronic obstructive pulmonary disease:a pilot study. J Altern Complement Med 2009; 15:225-34.
    8. Yoshimi K, Ueki J, Seyama K, et al. Pulmonary rehabilitation program including respiratory conditioning for chronic obstructive pulmonary disease (COPD):Improved hyperinflation and expiratory flow during tidal breathing. J Thorac Dis 2012;4:259-264.
    9. Garfmkel M, Schumacher HR, Jr. Yoga. Rheum Dis Clin North Am 2000;26:125-32, x.
    10. Manocha R, Marks GB, Kenchington P, et al. Sahaja yoga in the management of moderate to severe asthma:a randomised controlled trial. Thorax 2002;57:110-5.
    11. Sabina AB, Williams AL, Wall HK, et al. Yoga intervention for adults with mild-to-moderate asthma:a pilot study. Ann Allergy Asthma Immunol 2005;94:543-8.
    12. Jayasinghe SR. Yoga in cardiac health (a review). Eur J Cardiovasc Prev Rehabil 2004;11: 369-75.
    13. Malhotra V, Singh S, Tandon OP, et al. The beneficial effect of yoga in diabetes. Nepal Med Coll J 2005;7:145-7.
    14. Visweswaraiah NK, Telles S. Randomized trial of yoga as a complementary therapy for pulmonary tuberculosis. Respirology 2004;9:96-101.
    15. Sharma VK, Das S, Mondal S, et al. Effect of Sahaj Yoga on depressive disorders. Indian J Physiol Pharmacol 2005;49:462-8.
    16. Ernst E. Complementary or alternative therapies for osteoarthritis. Nat Clin Pract Rheumatol 2006;2:74-80.
    17. Prakasamma M, Bhaduri A. A study of yoga as a nursing intervention in the care of patients with pleural effusion. J Adv Nurs 1984;9:127-33.
    18. Tandon MK. Adjunct treatment with yoga in chronic severe airways obstruction. Thorax 1978;33:514-7.
    19. Kulpati DD, Kamath RK, Chauhan MR. The influence of physical conditioning by yogasanas and breathing exercises in patients of chronic obstructive lung disease. J Assoc Physicians India 1982;30:865-8.
    20. Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials:is blinding necessary? Control Clin Trials 1996;17:1-12.
    21. Kjaergard LL, Villumsen J, Gluud C. Reported methodologic quality and discrepancies between large and small randomized trials in meta-analyses. Ann Intern Med 2001;135:982-9.
    22. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions:explanation and elaboration. BMJ 2009;339:b2700.
    23. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21: 1539-58.
    24. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003;327:557-60.
    25. Katiyar, SK, Bihari S. Role of pranayama in rehabilitation of COPD patients-a randomized controlled study. Indian J Allergy Asthma Immunol 2006;20,98-104.
    26. Soni R, Munish K, Singh K, et al. Study of the effect of yoga training on diffusion capacity in chronic obstructive pulmonary disease patients:A controlled trial. Int J Yoga 2012;5:123-7.
    27. Donesky D, Melendez M, Nguyen HQ, et al. A responder analysis of the effects of yoga for individuals with COPD:who benefits and how? Int J Yoga Therap 2012:23-36.
    28. Donohue JF. Minimal clinically important differences in COPD lung function. COPD 2005;2: 111-24.
    29. Puhan MA, Chandra D, Mosenifar Z, et al. The minimal important difference of exercise tests in severe COPD. Eur Respir J 2011;37:784-90.
    30. Emery CF, Shermer RL, Hauck ER, et al. Cognitive and psychological outcomes of exercise in a 1-year follow-up study of patients with chronic obstructive pulmonary disease. Health Psychol 2003;22:598-604.
    31. Singh V. Effect of respiratory exercises on asthma. The Pink City lung exerciser. J Asthma 1987;24:355-9.
    32. Singh V, Wisniewski A, Britton J, et al. Effect of yoga breathing exercises (pranayama) on airway reactivity in subjects with asthma. Lancet 1990;335:1381-3.
    33. Ries AL, Bauldoff GS, Carlin BW, et al. Pulmonary Rehabilitation:Joint ACCP/AACVPR Evidence-Based Clinical Practice Guidelines. Chest 2007;131:4S-42S.
    34. Makwana K, Khirwadkar N, Gupta HC. Effect of short term yoga practice on ventilatory function tests. Indian J Physiol Pharmacol 1988;32:202-8.
    35. Joshi LN, Joshi VD, Gokhale LV. Effect of short term 'Pranayam' practice on breathing rate and ventilatory functions of lung. Indian J Physiol Pharmacol 1992;36:105-8.
    36. Behera D. Yoga therapy in chronic bronchitis. J Assoc Physicians India 1998;46:207-8.
    37. Fulambarker A, Farooki B, Kheir F, et al. Effect of yoga in chronic obstructive pulmonary disease. Am J Ther 2012;19:96-100.
    38. Bradley AF, Severinghaus JW, Stupfel M. Effect of temperature on PCO2 and PO2 of blood in vitro. J Appl Physiol 1956;9:201-4.
    39. Kapus J, Usaj A, Kapus V, et al. The influence of reduced breathing during swimming on some respiratory and metabolic values in blood. KinSI 2003;9:12-7.
    40. Olanrewaju H, Purswell J, Collier S, et al. Effect of varying light intensity on blood physiological reactions of broiler chickens grown to heavy weights. International Journal of Poultry Science 2012;11:81-7.
    41. Cunningham DJ, Cormack RS, O'Riordan JL, et al. An arrangement for studying the respiratory effects in man of various factors. Q J Exp Physiol Cogn Med Sci 1957;42:294-303.
    42. Udupa KN, Singh RH. The scientific basis of yoga. JAMA 1972;220:1365.
    43. Chanavirut R, Khaidjapho K, Jaree P, et al. Yoga exercise increases chest wall expansion and lung volumes in young healthy thais. Thai J Physiol Sci 2006; 19:1-7.
    44. Posadzki P, Parekh S. Yoga and physiotherapy:a speculative review and conceptual synthesis. Chinese journal of integrative medicine 2009; 15:66-72.
    45. Vedanthan P. Yoga breathing techniques (YBT) in chronic obstructive pulmonary disease (COPD):a preliminary study. International Journal of Yoga Therapy 2003;13:51-4.
    1. Bartel, D.P., MicroRNAs:genomics, biogenesis, mechanism, and function. Cell,2004. 116(2):p.281-97.
    2. Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993.75(5):p.843-54.
    3. Lee, Y, et al., MicroRNA genes are transcribed by RNA polymerase Ⅱ. EMBO J,2004. 23(20):p.4051-60.
    4. Lee, Y., et al., The nuclear RNase III Drosha initiates microRNA processing. Nature,2003. 425(6956):p.415-9.
    5. Dugas, D.V. and B. Bartel, MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol,2004.7(5):p.512-20.
    6. Hutvagner, G. and P.D. Zamore, A microRNA in a multiple-turnover RNAi enzyme complex. Science,2002.297(5589):p.2056-60.
    7. Doench, J.G., C.P. Petersen, and P.A. Sharp, siRNAs can function as miRNAs. Genes Dev, 2003.17(4):p.438-42.
    8. Zeng, Y, E.J. Wagner, and B.R. Cullen, Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell,2002.9(6):p. 1327-33.
    9. Zeng, Y, R. Yi, and B.R. Cullen, MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A,2003.100(17):p.9779-84.
    10. Huang, Y, et al., Biological functions of microRNAs:a review. J Physiol Biochem,2011. 67(1):p.129-39.
    11. Reinhart, B.J., et al., The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature,2000.403(6772):p.901-6.
    12. Lewis, B.P., et al., Prediction of mammalian microRNA targets. Cell,2003.115(7):p. 787-98.
    13. Tang, F., et al., Maternal microRNAs are essential for mouse zygotic development. Genes Dev,2007.21(6):p.644-8.
    14. Sempere, L.F., et al., Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol,2004.5(3):p. R13.
    15. Smirnova, L., et al., Regulation of miRNA expression during neural cell specification. Eur J Neurosci,2005.21(6):p.1469-77.
    16. Makeyev, E.V., et al., The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell,2007.27(3):p.435-48.
    17. Song, L. and R.S. Tuan, MicroRNAs and cell differentiation in mammalian development. Birth Defects Res C Embryo Today,2006.78(2):p.140-9.
    18. Visvanathan, J., et al., The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev,2007.21(7):p.744-9.
    19. Coulson, J.M., Transcriptional regulation:cancer, neurons and the REST. Curr Biol,2005. 15(17):p. R665-8.
    20. Shi, Y. and Y. Jin, MicroRNA in cell differentiation and development. Sci China C Life Sci, 2009.52(3):p.205-11.
    21. Melton, C., R.L. Judson, and R. Blelloch, Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature,2010.463(7281):p.621-6.
    22. Sugatani, T. and K.A. Hruska, Impaired micro-RNA pathways diminish osteoclast differentiation and function. J Biol Chem,2009.284(7):p.4667-78.
    23. O'Connell, R.M., et al., MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A,2007.104(5):p.1604-9.
    24. Williams, A.E., Functional aspects of animal microRNAs. Cell Mol Life Sci,2008.65(4):p. 545-62.
    25. Sullivan, C.S., et al., SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature,2005.435(7042):p.682-6.
    26. Triboulet, R., et al., Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science,2007.315(5818):p.1579-82.
    27. Pedersen, I.M., et al., Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature,2007.449(7164):p.919-22.
    28. Lanford, R.E., et al., Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science,2010.327(5962):p.198-201.
    29. Olsen, P.H. and V. Ambros, The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol,1999.216(2):p.671-80.
    30. Xiao, C. and K. Rajewsky, MicroRNA control in the immune system:basic principles. Cell, 2009.136(1):p.26-36.
    31. Johnnidis, J.B., et al., Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature,2008.451(7182):p.1125-9.
    32. Sonkoly, E., et al., MicroRNAs:novel regulators involved in the pathogenesis of psoriasis? PLoS One,2007.2(7):p. e610.
    33. Wu, H., et al., miRNA profiling of naive, effector and memory CD8 T cells. PLoS One,2007. 2(10):p. e1020.
    34. Tang, Y., et al., MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum,2009. 60(4):p.1065-75.
    35. Chen, T., et al., MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc Res,2009. 83(1):p.131-9.
    36. Calin, G.A., et al., Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A,2002.99(24): p.15524-9.
    37. Calin, GA. and C.M. Croce, MicroRNA signatures in human cancers. Nat Rev Cancer,2006. 6(11):p.857-66.
    38. Lu, J., et al., MicroRNA expression profiles classify human cancers. Nature,2005. 435(7043):p.834-8.
    39. Lambertz, I., et al., Monoallelic but not biallelic loss of Dicerl promotes tumorigenesis in vivo. Cell Death Differ,2010.17(4):p.633-41.
    40. Kumar, M.S., et al., Dicerl functions as a haploinsufficient tumor suppressor. Genes Dev, 2009.23(23):p.2700-4.
    41. Volinia, S., et al., A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A,2006.103(7):p.2257-61.
    42. Costinean, S., et al., Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci U S A,2006.103(18):p. 7024-9.
    43. Medina, P.P., M. Nolde, and F.J. Slack, OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature,2010.467(7311):p.86-90.
    44. Kota, J., et al., Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell,2009.137(6):p.1005-17.
    45. Glukhov, S.I., et al., The broken MLL gene is frequently located outside the inherent chromosome territory in human lymphoid cells treated with DNA topoisomerase Ⅱ poison etoposide. PLoS One,2013.8(9):p. e75871.
    46. Sevignani, C., et al., MicroRNA genes are frequently located near mouse cancer susceptibility loci. Proc Natl Acad Sci U S A,2007.104(19):p.8017-22.
    47. Tero, N., et al., Silene tatarica microsatellites are frequently located in repetitive DNA. J Evol Biol,2006.19(5):p.1612-9.
    48. Calin, G.A., et al., Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A,2004.101(9):p. 2999-3004.
    49. Lia, M., et al., Functional dissection of the chromosome 13ql4 tumor-suppressor locus using transgenic mouse lines. Blood,2012.119(13):p.2981-90.
    50. Elmen, J., et al., LNA-mediated microRNA silencing in non-human primates. Nature,2008. 452(7189):p.896-9.
    51. Hsu, S.H., et al., Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest,2012.122(8):p.2871-83.
    52. He, L., et al., A microRNA component of the p53 tumour suppressor network. Nature,2007. 447(7148):p.1130-4.
    53. Concepcion, C.P., et al., Intact p53-dependent responses in miR-34-deficient mice. PLoS Genet,2012.8(7):p. e1002797.
    54. Tsurusaki, Y., et al., Whole exome sequencing revealed biallelic IFT122 mutations in a family with CED1 and recurrent pregnancy loss. Clin Genet,2013.
    55. Makrythanasis, P., et al., Homozygous deletion of a gene-free region of 4p15 in a child with multiple anomalies:could biallelic loss of conserved, non-coding elements lead to a phenotype? Eur J Med Genet,2012.55(1):p.63-6.
    56. Xiao, C., et al., Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol,2008.9(4):p.405-14.
    57. He, L., et al., A microRNA polycistron as a potential human oncogene. Nature,2005. 435(7043):p.828-33.
    58. Mu, P., et al., Genetic dissection of the miR-17-92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev,2009.23(24):p.2806-11.
    59. Olive, V., et al., miR-19 is a key oncogenic component of mir-17-92. Genes Dev,2009. 23(24):p.2839-49.
    60. Ventura, A., et al., Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell,2008.132(5):p.875-86.
    61. Poliseno, L., et al., Identification of the miR-106b-25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal,2010.3(117):p. ra29.
    62. Hatley, M.E., et al., Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell,2010.18(3):p.282-93.
    63. Raveche, E.S., et al., Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood,2007.109(12):p.5079-86.
    64. O'Donnell, K.A., et al., c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 2005.435(7043):p.839-43.
    65. Castellano, L., et al., The estrogen receptor-alpha-induced microRNA signature regulates itself and its transcriptional response. Proc Natl Acad Sci U S A,2009.106(37):p.15732-7.
    66. Bast, R.C., Jr., B. Hennessy, and G.B. Mills, The biology of ovarian cancer:new opportunities for translation. Nat Rev Cancer,2009.9(6):p.415-28.
    67. Corney, D.C., et al., MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res,2007.67(18):p. 8433-8.
    68. Suzuki, H.I., et al., Modulation of microRNA processing by p53. Nature,2009.460(7254):p. 529-33.
    69. Suzuki, T. and H. Tamada, WITHDRAWN:Modulation of microRNA processing by p53. Biochem Biophys Res Commun,2009.
    70. Krutzfeldt, J., et al., Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res,2007.35(9):p.2885-92.
    71. Krutzfeldt, J., et al., Silencing of microRNAs in vivo with 'antagomirs'. Nature,2005. 438(7068):p.685-9.
    72. Levin, A.A., A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim Biophys Acta,1999.1489(1):p. 69-84.
    73. Esau, C., et al., miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab,2006.3(2):p.87-98.
    74. Nana-Sinkam, S.P. and C.M. Croce, Clinical applications for microRNAs in cancer. Clin Pharmacol Ther,2013.93(1):p.98-104.
    75. Bader, A.G., D. Brown, and M. Winkler, The promise of microRNA replacement therapy. Cancer Res,2010.70(18):p.7027-30.
    76. Grimm, D., et al., Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature,2006.441(7092):p.537-41.
    77. Wiggins, J.F., et al., Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res,2010.70(14):p.5923-30.
    78. Cherni, I. and GJ. Weiss, miRNAs in lung cancer:large roles for small players. Future Oncol,2011.7(9):p.1045-55.
    79. Juergens, R.A. and J.R. Brahmer, Adjuvant treatment in non-small cell lung cancer:Where are we now? J Natl Compr Canc Netw,2006.4(6):p.595-600.
    80. Carthew, R.W. and E.J. Sontheimer, Origins and Mechanisms of miRNAs and siRNAs. Cell, 2009.136(4):p.642-55.
    81. He, L. and G.J. Hannon, MicroRNAs:small RNAs with a big role in gene regulation. Nat Rev Genet,2004.5(7):p.522-31.
    82. Karube, Y., et al., Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci,2005.96(2):p.111-5.
    83. Kumar, M.S., et al., Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet,2007.39(5):p.673-7.
    84. Stahlhut Espinosa, C.E. and F.J. Slack, The role of microRNAs in cancer. Yale J Biol Med, 2006.79(3-4):p.131-40.
    85. Esquela-Kerscher, A. and F.J. Slack, Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer,2006.6(4):p.259-69.
    86. Takamizawa, J., et al., Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res,2004.64(11):p.3753-6.
    87. Shell, S., et al., Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci U S A,2007.104(27):p.11400-5.
    88. Boyerinas, B., et al., Identification of let-7-regulated oncofetal genes. Cancer Res,2008. 68(8):p.2587-91.
    89. Kumar, M.S., et al., Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A,2008.105(10):p.3903-8.
    90. Esquela-Kerscher, A., et al., The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle,2008.7(6):p.759-64.
    91. Chin, L.J., et al., A SNP in a let-7 microRNA complementary site in the KRAS 3' untranslated region increases non-small cell lung cancer risk. Cancer Res,2008.68(20):p. 8535-40.
    92. Johnson, S.M., et al., RAS is regulated by the let-7 microRNA family. Cell,2005.120(5):p. 635-47.
    93. Droge, P. and C.A. Davey, Do cells let-7 determine stemnness? Cell Stem Cell,2008.2(1):p. 8-9.
    94. Mayr, C., M.T. Hemann, and D.P. Bartel, Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science,2007.315(5818):p.1576-9.
    95. Park, S.M., et al., Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMGA2. Cell Cycle,2007.6(21):p.2585-90.
    96. Lee, Y.S. and A. Dutta, The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev,2007.21(9):p.1025-30.
    97. Davidson, M.R., et al., MicroRNA-218 is deleted and downregulated in lung squamous cell carcinoma. PLoS One,2010.5(9):p. e12560.
    98. Ling, H., et al., Pachymic acid inhibits cell growth and modulates arachidonic acid metabolism in nonsmall cell lung cancer A549 cells. Mol Carcinog,2010.49(3):p.271-82.
    99. Xie, Y., et al., Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer,2010.67(2):p.170-6.
    100. Barshack, I., et al., MicroRNA expression differentiates between primary lung tumors and metastases to the lung. Pathol Res Pract,2010.206(8):p.578-84.
    101. Wang, X.C., et al., Expression and function of miRNA in postoperative radiotherapy sensitive and resistant patients of non-small cell lung cancer. Lung Cancer,2011.72(1):p. 92-9.
    102. Ortholan, C., et al., MicroRNAs and lung cancer:new oncogenes and tumor suppressors, new prognostic factors and potential therapeutic targets. Curr Med Chem,2009.16(9):p. 1047-61.
    103. Yanaihara, N., et al., Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell,2006.9(3):p.189-98.
    104. Wang, Q., et al., MicroRNAs:novel biomarkers for lung cancer diagnosis, prediction and treatment. Exp Biol Med (Maywood),2012.237(3):p.227-35.
    105. Bonci, D., MicroRNA-21 as therapeutic target in cancer and cardiovascular disease. Recent Pat Cardiovasc Drug Discov,2010.5(3):p.156-61.
    106. Jazbutyte, V. and T. Thum, MicroRNA-21:from cancer to cardiovascular disease. Curr Drug Targets,2010.11(8):p.926-35.
    107. Rotunno, M., et al., Inherited polymorphisms in the RNA-mediated interference machinery affect microRNA expression and lung cancer survival. Br J Cancer,2010.103(12):p. 1870-4.
    108. Zhang, J.G., et al., MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta,2010. 411(11-12):p.846-52.
    109. Lu, Z., et al., MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene,2008.27(31):p.4373-9.
    110. Fassan, M., et al., PDCD4 nuclear loss inversely correlates with miR-21 levels in colon carcinogenesis. Virchows Arch,2011.458(4):p.413-9.
    111. Garofalo, M., et al., MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene,2008.27(27):p.3845-55.
    112. Garofalo, M., et al., miR-221 & 222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell,2009.16(6):p.498-509.
    113. Navarro, A., et al., MicroRNAs expressed during lung cancer development are expressed in human pseudoglandular lung embryogenesis. Oncology,2009.76(3):p.162-9.
    114. Jiang, S., et al., MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res,2010.70(8):p.3119-27.
    115. Ebi, H., et al., Counterbalance between RB inactivation and miR-17-92 overexpression in reactive oxygen species and DNA damage induction in lung cancers. Oncogene,2009. 28(38):p.3371-9.
    116. Johnson, C.D., et al., The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res,2007.67(16):p.7713-22.
    117. Chang, T.C., et al., Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet,2008.40(1):p.43-50.
    118. Miko, E., et al., miR-126 inhibits proliferation of small cell lung cancer cells by targeting SLC7A5. FEBS Lett,2011.585(8):p.1191-6.
    119. Sun, Y, et al., miR-126 inhibits non-small cell lung cancer cells proliferation by targeting EGFL7. Biochem Biophys Res Commun,2010.391(3):p.1483-9.
    120. Wong, M.Y., et al., microRNA-34 family and treatment of cancers with mutant or wild-type p53 (Review). Int J Oncol,2011.38(5):p.1189-95.
    121. Korpal, M., et al., The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem,2008.283(22):p.14910-4.
    122. Kong, W., et al., MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem,2010.285(23):p.17869-79.
    123. Hayashita, Y., et al., A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res,2005.65(21):p.9628-32.
    124. Matsushima, K., et al., MiRNA-205 modulates cellular invasion and migration via regulating zinc finger E-box binding homeobox 2 expression in esophageal squamous cell carcinoma cells. J Transl Med,2011.9:p.30.
    125. Raponi, M., et al., MicroRNA classifiers for predicting prognosis of squamous cell lung cancer. Cancer Res,2009.69(14):p.5776-83.
    126. Tokumaru, S., et al., let-7 regulates Dicer expression and constitutes a negative feedback loop. Carcinogenesis,2008.29(11):p.2073-7.
    127. Gallardo, E., et al., miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer. Carcinogenesis,2009.30(11):p.1903-9.
    128. Landi, M.T., et al., MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin Cancer Res,2010.16(2):p.430-41.
    129. Tarasov, V., et al., Differential regulation of microRNAs by p53 revealed by massively parallel sequencing:miR-34a is a p53 target that induces apoptosis and Gl-arrest. Cell Cycle, 2007.6(13):p.1586-93.
    130. Mudduluru, G., et al., Regulation of Axl receptor tyrosine kinase expression by miR-34a and miR-199a/b in solid cancer. Oncogene,2011.30(25):p.2888-99.
    131. National Lung Screening Trial (NLST) http://clinicaltrials.gov/ct2/show/NCT00047385.
    132. Henschke, C.I., et al., Survival of patients with stage I lung cancer detected on CT screening. N Engl J Med,2006.355(17):p.1763-71.
    133. Institute NC. Lung cancer trial results show mortality benefit with low-dose CT. Twenty percent fewer lung cancer deaths seen among those who were screened with low-dose spiral CT than with chest X-ray. NLST Updates November 4 2010 www.cancer.gov/newscenter/pressreleases/2010/NLSTresultsRelease.
    134. Hirsch, F.R., et al., Early detection of lung cancer:clinical perspectives of recent advances in biology and radiology. Clin Cancer Res,2001.7(1):p.5-22.
    135. Toloza, E.M., L. Harpole, and D.C. McCrory, Noninvasive staging of non-small cell lung cancer:a review of the current evidence. Chest,2003.123(1 Suppl):p.137S-146S.
    136. Barba, M., et al., Reducing the risk of overdiagnosis in lung cancer:a support from molecular biology. J Cell Physiol,2011.226(9):p.2213-4.
    137. Mitchell, P.S., et al., Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A,2008.105(30):p.10513-8.
    138. Foss, K.M., et al., miR-1254 and miR-574-5p:serum-based microRNA biomarkers for early-stage non-small cell lung cancer. J Thorac Oncol,2011.6(3):p.482-8.
    139. Shen, J., et al., Plasma microRNAs as potential biomarkers for non-small-cell lung cancer. Lab Invest,2011.91(4):p.579-87.
    140. Boeri, M., et al., MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc Natl Acad Sci U S A,2011. 108(9):p.3713-8.
    141. Edition, W.H.O.H.T.o.L.T.n., World Health Organization, Geneva, Switzerland.1981.
    142. Brambilla, E., et al., The new World Health Organization classification of lung tumours. Eur Respir J,2001.18(6):p.1059-68.
    143. Stang, A., et al., Diagnostic agreement in the histopathological evaluation of lung cancer tissue in a population-based case-control study. Lung Cancer,2006.52(1):p.29-36.
    144. Bishop, J.A., et al., Accurate classification of non-small cell lung carcinoma using a novel microRNA-based approach. Clin Cancer Res,2010.16(2):p.610-9.
    145. Del Vescovo, V., et al., miR-205 Expression levels in nonsmall cell lung cancer do not always distinguish adenocarcinomas from squamous cell carcinomas. Am J Surg Pathol, 2011.35(2):p.268-75.
    146. Oh, Y., et al., Number of metastatic sites is a strong predictor of survival in patients with nonsmall cell lung cancer with or without brain metastases. Cancer,2009.115(13):p. 2930-8.
    147. Potti, A., et al., A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer. N Engl J Med,2006.355(6):p.570-80.
    148. Brock, M.V., et al., DNA methylation markers and early recurrence in stage I lung cancer. N Engl J Med,2008.358(11):p.1118-28.
    149. Chen, H.Y., et al., A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med,2007.356(1):p.11-20.
    150. Patnaik, S.K., et al., Evaluation of microRNA expression profiles that may predict recurrence of localized stage I non-small cell lung cancer after surgical resection. Cancer Res,2010.70(1):p.36-45.
    151. Yu, S.L., et al., MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell,2008.13(1):p.48-57.
    152. Hu, Z., et al., Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol,2010. 28(10):p.1721-6.
    153. Raponi, M., et al., Gene expression signatures for predicting prognosis of squamous cell and adenocarcinomas of the lung. Cancer Res,2006.66(15):p.7466-72.
    154. Paul, S., et al., Survival of patients with clinical stage ⅢA non-small cell lung cancer after induction therapy:age, mediastinal downstaging, and extent of pulmonary resection as independent predictors. J Thorac Cardiovasc Surg,2011.141(1):p.48-58.
    155. Tian, T., et al., A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer Epidemiol Biomarkers Prev,2009.18(4):p. 1183-7.
    156. Voortman, J., et al., MicroRNA expression and clinical outcomes in patients treated with adjuvant chemotherapy after complete resection of non-small cell lung carcinoma. Cancer Res,2010.70(21):p.8288-98.
    157. Iwatsuki, M., et al., Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci,2010.101(2):p.293-9.
    158. Korpal, M. and Y. Kang, The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol,2008.5(3):p.115-9.
    159. Gibbons, D.L., et al., Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev,2009.23(18):p.2140-51.
    160. Ceppi, P., et al., Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer. Mol Cancer Res,2010.8(9):p. 1207-16.
    161. Jiang, L., et al., Hsa-miR-125a-3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells. BMC Cancer,2010.10:p.318.
    162. Grinberg-Rashi, H., et al., The expression of three genes in primary non-small cell lung cancer is associated with metastatic spread to the brain. Clin Cancer Res,2009.15(5):p. 1755-61.
    163. Liu, H., S.J. Gao, and Y. Huang, A Bayesian Approach for Identifying miRNA Targets by Combining Sequence Prediction and Expression Profiling. Proc Int Joint Conf Bioinforma Syst Biol Intell Comput,2009.2009:p.185-189.
    164. Gerdan, L., et al., Brain metastasis from non-small cell lung cancer (NSCLC):prognostic importance of the number of involved extracranial organs. Strahlenther Onkol,2014.190(1): p.64-7.
    165. Arora, S., et al., MicroRNA-328 is associated with (non-small) cell lung cancer (NSCLC) brain metastasis and mediates NSCLC migration. Int J Cancer,2011.129(11):p.2621-31.
    166. Wang, X., et al., MicroRNA-206 is associated with invasion and metastasis of lung cancer. Anat Rec (Hoboken),2011.294(1):p.88-92.
    167. Guo, L., et al., Gene expression profiling of drug-resistant small cell lung cancer cells by combining microRNA and cDNA expression analysis. Eur J Cancer,2010.46(9):p. 1692-702.
    168. Bian, H.B., et al., Upregulation of microRNA-451 increases cisplatin sensitivity of non-small cell lung cancer cell line (A549). J Exp Clin Cancer Res,2011.30:p.20.
    169. Borralho, P.M., et al., MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells. FEBS J,2009.276(22):p. 6689-700.
    170. Wang, C.J., et al., Suppression of microRNA-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells. BMC Cancer, 2010.10:p.616.
    171. Allen, K.E. and GJ. Weiss, Resistance may not be futile:microRNA biomarkers for chemoresistance and potential therapeutics. Mol Cancer Ther,2010.9(12):p.3126-36.
    172. Trang, P., et al., Regression of murine lung tumors by the let-7 microRNA. Oncogene,2010. 29(11):p.1580-7.
    173. Trang, P., et al., Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther,2011.19(6):p.1116-22.
    174. Micro RNA-122 and the Clinical Course of Patients With Chronic Hepatitis C http://clinicaltrials.gov/ct2/show/NCT00980161.
    175. Chen, J.J., R.L. Kodell, and D.W. Gaylor, Using the biological two-stage model to assess risk from short-term exposures. Risk Anal,1988.8(2):p.223-30.
    176. Desai, A.A., F. Innocenti, and M.J. Ratain, Pharmacogenomics:road to anticancer therapeutics nirvana? Oncogene,2003.22(42):p.6621-8.
    177. Innocenti, F., et al., Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol,2004.22(8):p.1382-8.
    178. Massacesi, C., et al., Uridine diphosphate glucuronosyl transferase 1A1 promoter polymorphism predicts the risk of gastrointestinal toxicity and fatigue induced by irinotecan-based chemotherapy. Cancer,2006.106(5):p.1007-16.
    179. Shulman, K., et al., Clinical implications of UGT1A1*28 genotype testing in colorectal cancer patients. Cancer,2011.117(14):p.3156-62.
    180. Kaniwa, N., et al., Racial variability in haplotype frequencies of UGT1A1 and glucuronidation activity of a novel single nucleotide polymorphism 686C>T (P229L) found in an African-American. Drug Metab Dispos,2005.33(3):p.458-65.
    181. Olson, P., et al., MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev,2009.23(18):p.2152-65.
    182. Negrini, M., M.S. Nicoloso, and GA. Calin, MicroRNAs and cancer--new paradigms in molecular oncology. Curr Opin Cell Biol,2009.21(3):p.470-9.
    183. Cervantes, A., et al., Current questions for the treatment of advanced gastric cancer. Cancer Treat Rev,2013.39(1):p.60-7.
    184. Schwartzman, A.D., R. Sethi, and R. Smith, Multiorgan failure in a patient treated with the 5-fluorouracil, leucovorin, oxaliplatin, and irinotecan regimen. Clin Colorectal Cancer,2013. 12(2):p.136-9.
    185. Kawahara, M., Irinotecan in the treatment of small cell lung cancer:a review of patient safety considerations. Expert Opin Drug Saf,2006.5(2):p.303-12.
    186. de Jong, F.A., et al., Role of pharmacogenetics in irinotecan therapy. Cancer Lett,2006. 234(1):p.90-106.
    187. Mitry, E., et al., Predictive factors of survival in patients with advanced colorectal cancer:an individual data analysis of 602 patients included in irinotecan phase III trials. Ann Oncol, 2004.15(7):p.1013-7.
    188. Roy, S. and A.P. Majumdar, Cancer Stem Cells in Colorectal Cancer:Genetic and Epigenetic Changes. J Stem Cell Res Ther,2012. Suppl 7(6).
    189. Suehiro, Y. and Y. Hinoda, [Genetic and epigenetic changes in colorectal cancer and genetic testing for personalized medicine]. Rinsho Byori,2012.60(10):p.976-81.
    190. Miranda, E., et al., Genetic and epigenetic changes in primary metastatic and nonmetastatic colorectal cancer. Br J Cancer,2006.95(8):p.1101-7.
    191. Hazama, S., et al., Phase I study of irinotecan and doxifluridine for metastatic colorectal cancer focusing on the UGT1A1*28 polymorphism. Cancer Sci,2010.101(3):p.722-7.
    192. Ichikawa, W., et al., Re:UGT1A1*28 genotype and irinotecan-induced neutropenia:dose matters. J Natl Cancer Inst,2008.100(3):p.224-5; author reply 225.
    193. Hoskins, J.M., et al., UGT1A1*28 genotype and irinotecan-induced neutropenia:dose matters. J Natl Cancer Inst,2007.99(17):p.1290-5.
    194. Nishi, T., T. Komaki, and Y. Hamamoto, [Treatment with CPT-11 based on the UGT1A1 genetic polymorphism]. Nihon Rinsho,2011.69 Suppl 3:p.545-9.
    195. Huang, J., J.K. Wang, and Y. Sun, Molecular pathology of prostate cancer revealed by next-generation sequencing:opportunities for genome-based personalized therapy. Curr Opin Urol,2013.23(3):p.189-93.
    196. Yee, N.S., Toward the goal of personalized therapy in pancreatic cancer by targeting the molecular phenotype. Adv Exp Med Biol,2013.779:p.91-143.
    1. Viegi G, Pistelli F, Sherrill DL, et al. Definition, epidemiology and natural history of COPD. Eur Respir J 2007;30:993-1013.
    2. Vestbo J, Hurd SS, Agusti AG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease:GOLD executive summary. Am J Respir Crit Care Med 2013;187:347-65.
    3. Murray CJ, Lopez AD. Mortality by cause for eight regions of the world:Global Burden of Disease Study. Lancet 1997;349:1269-76.
    4. Qaseem A, Wilt TJ, Weinberger SE, et al. Diagnosis and management of stable chronic obstructive pulmonary disease:a clinical practice guideline update from the American College of Physicians, American College of Chest Physicians, American Thoracic Society, and European Respiratory Society. Ann Intern Med 2011;155:179-91.
    5. Pan L, Guo YZ, Yan JH, et al. Does upper extremity exercise improve dyspnea in patients with COPD? A meta-analysis. Respir Med 2012;106:1517-25.
    6. Yan JH, Guo YZ, Yao HM, et al. Effects of Tai Chi in patients with chronic obstructive pulmonary disease:preliminary evidence. PLoS One 2013;8:e61806.
    7. Donesky-Cuenco D, Nguyen HQ, Paul S, et al. Yoga therapy decreases dyspnea-related distress and improves functional performance in people with chronic obstructive pulmonary disease:a pilot study. J Altern Complement Med 2009; 15:225-34.
    8. Yoshimi K, Ueki J, Seyama K, et al. Pulmonary rehabilitation program including respiratory conditioning for chronic obstructive pulmonary disease (COPD):Improved hyperinflation and expiratory flow during tidal breathing. J Thorac Dis 2012;4:259-264.
    9. Garfinkel M, Schumacher HR, Jr. Yoga. Rheum Dis Clin North Am 2000;26:125-32, x.
    10. Manocha R, Marks GB, Kenchington P, et al. Sahaja yoga in the management of moderate to severe asthma:a randomised controlled trial. Thorax 2002;57:110-5.
    11. Sabina AB, Williams AL, Wall HK, et al. Yoga intervention for adults with mild-to-moderate asthma:a pilot study. Ann Allergy Asthma Immunol 2005;94:543-8.
    12. Jayasinghe SR. Yoga in cardiac health (a review). Eur J Cardiovasc Prev Rehabil 2004;11: 369-75.
    13. Malhotra V, Singh S, Tandon OP, et al. The beneficial effect of yoga in diabetes. Nepal Med Coll J 2005;7:145-7.
    14. Visweswaraiah NK, Telles S. Randomized trial of yoga as a complementary therapy for pulmonary tuberculosis. Respirology 2004;9:96-101.
    15. Sharma VK, Das S, Mondal S, et al. Effect of Sahaj Yoga on depressive disorders. Indian J Physiol Pharmacol 2005;49:462-8.
    16. Ernst E. Complementary or alternative therapies for osteoarthritis. Nat Clin Pract Rheumatol 2006;2:74-80.
    17. Prakasamma M, Bhaduri A. A study of yoga as a nursing intervention in the care of patients with pleural effusion. J Adv Nurs 1984;9:127-33.
    18. Tandon MK. Adjunct treatment with yoga in chronic severe airways obstruction. Thorax 1978;33:514-7.
    19. Kulpati DD, Kamath RK, Chauhan MR. The influence of physical conditioning by yogasanas and breathing exercises in patients of chronic obstructive lung disease. J Assoc Physicians India 1982;30:865-8.
    20. Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials:is blinding necessary? Control Clin Trials 1996;17:1-12.
    21. Kjaergard LL, Villumsen J, Gluud C. Reported methodologic quality and discrepancies between large and small randomized trials in meta-analyses. Ann Intern Med 2001; 135:982-9.
    22. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions:explanation and elaboration. BMJ 2009;339:b2700.
    23. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21: 1539-58.
    24. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003;327:557-60.
    25. Katiyar, SK, Bihari S. Role of pranayama in rehabilitation of COPD patients-a randomized controlled study. Indian J Allergy Asthma Immunol 2006;20,98-104.
    26. Soni R, Munish K, Singh K, et al. Study of the effect of yoga training on diffusion capacity in chronic obstructive pulmonary disease patients:A controlled trial. Int J Yoga 2012;5:123-7.
    27. Donesky D, Melendez M, Nguyen HQ, et al. A responder analysis of the effects of yoga for individuals with COPD:who benefits and how? Int J Yoga Therap 2012:23-36.
    28. Donohue JF. Minimal clinically important differences in COPD lung function. COPD 2005;2: 111-24.
    29. Puhan MA, Chandra D, Mosenifar Z, et al. The minimal important difference of exercise tests in severe COPD. Eur Respir J 2011;37:784-90.
    30. Emery CF, Shermer RL, Hauck ER, et al. Cognitive and psychological outcomes of exercise in a 1-year follow-up study of patients with chronic obstructive pulmonary disease. Health Psychol 2003;22:598-604.
    31. Singh V. Effect of respiratory exercises on asthma. The Pink City lung exerciser. J Asthma 1987;24:355-9.
    32. Singh V, Wisniewski A, Britton J, et al. Effect of yoga breathing exercises (pranayama) on airway reactivity in subjects with asthma. Lancet 1990;335:1381-3.
    33. Ries AL, Bauldoff GS, Carlin BW, et al. Pulmonary Rehabilitation:Joint ACCP/AACVPR Evidence-Based Clinical Practice Guidelines. Chest 2007;131:4S-42S.
    34. Makwana K, Khirwadkar N, Gupta HC. Effect of short term yoga practice on ventilatory function tests. Indian J Physiol Pharmacol 1988;32:202-8.
    35. Joshi LN, Joshi VD, Gokhale LV. Effect of short term 'Pranayam' practice on breathing rate and ventilatory functions of lung. Indian J Physiol Pharmacol 1992;36:105-8.
    36. Behera D. Yoga therapy in chronic bronchitis. J Assoc Physicians India 1998;46:207-8.
    37. Fulambarker A, Farooki B, Kheir F, et al. Effect of yoga in chronic obstructive pulmonary disease. Am J Ther 2012;19:96-100.
    38. Bradley AF, Severinghaus JW, Stupfel M. Effect of temperature on PCO2 and PO2 of blood in vitro. J Appl Physiol 1956;9:201-4.
    39. Kapus J, Usaj A, Kapus V, et al. The influence of reduced breathing during swimming on some respiratory and metabolic values in blood. KinSI 2003;9:12-7.
    40. Olanrewaju H, Purswell J, Collier S, et al. Effect of varying light intensity on blood physiological reactions of broiler chickens grown to heavy weights. International Journal of Poultry Science 2012;11:81-7.
    41. Cunningham DJ, Cormack RS, O'Riordan JL, et al. An arrangement for studying the respiratory effects in man of various factors. Q J Exp Physiol Cogn Med Sci 1957;42:294-303.
    42. Udupa KN, Singh RH. The scientific basis of yoga. JAMA 1972;220:1365.
    43. Chanavirut R, Khaidjapho K, Jaree P, et al. Yoga exercise increases chest wall expansion and lung volumes in young healthy thais. Thai J Physiol Sci 2006; 19:1-7.
    44. Posadzki P, Parekh S. Yoga and physiotherapy:a speculative review and conceptual synthesis. Chinese journal of integrative medicine 2009;15:66-72.
    45. Vedanthan P. Yoga breathing techniques (YBT) in chronic obstructive pulmonary disease (COPD):a preliminary study. International Journal of Yoga Therapy 2003;13:51-4.
    1. Ridge, C.A., A.M. McErlean, and M.S. Ginsberg, Epidemiology of Lung Cancer. Semin Intervent Radiol,2013.30(2):p.93-98.
    2. Louie, A.V., et al., Stereotactic body radiotherapy versus surgery for medically operable Stage I non-small-cell lung cancer:a Markov model-based decision analysis. Int J Radiat Oncol Biol Phys,2011.81(4):p.964-73.
    3. Reck, M., et al., Management of non-small-cell lung cancer:recent developments. Lancet, 2013.382(9893):p.709-19.
    4. Cagle, P.T., T.C. Allen, and R.J. Olsen, Lung cancer biomarkers:present status and future developments. Arch Pathol Lab Med,2013.137(9):p.1191-8.
    5. Chau, I. and D. Cunningham, Adjuvant therapy in colon cancer--what, when and how? Ann Oncol,2006.17(9):p.1347-59.
    6. Kohara, H., et al., Synergistic effects of topoisomerase I inhibitor, 7-ethyl-10-hydroxycamptothecin, and irradiation in a cisplatin-resistant human small cell lung cancer cell line. Clin Cancer Res,2002.8(1):p.287-92.
    7. Mullany, S., et al., Effect of adding the topoisomerase I poison 7-ethyl-10-hydroxycamptothecin (SN-38) to 5-fluorouracil and folinic acid in HCT-8 cells: elevated dTTP pools and enhanced cytotoxicity. Cancer Chemother Pharmacol,1998.42(5): p.391-9.
    8. Iyer, L., et al., Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest,1998.101(4):p.847-54.
    9. Schulz, C., et al., UGT1A1 genotyping:a predictor of irinotecan-associated side effects and drug efficacy? Anticancer Drugs,2009.20(10):p.867-79.
    10. Innocenti, F. and M.J. Ratain, Irinotecan treatment in cancer patients with UGT1A1 polymorphisms. Oncology (Williston Park),2003.17(5 Suppl 5):p.52-5.
    11. Turatti, L., et al., Short communication:UGT1A1*28 variant allele is a predictor of severe hyperbilirubinemia in HIV-infected patients on HAART in southern Brazil. AIDS Res Hum Retroviruses,2012.28(9):p.1015-8.
    12. Desai, A.A., F. Innocenti, and M.J. Ratain, UGT pharmacogenomics:implications for cancer risk and cancer therapeutics. Pharmacogenetics,2003.13(8):p.517-23.
    13. Gil, J. and M.M. Sasiadek, Gilbert syndrome:the UGT1 Al*28 promoter polymorphism as a biomarker of multifactorial diseases and drug metabolism. Biomark Med,2012.6(2):p. 223-30.
    14. Hu, Z.Y., Q. Yu, and Y.S. Zhao, Dose-dependent association between UGT1A1*28 polymorphism and irinotecan-induced diarrhoea:a meta-analysis. Eur J Cancer,2010. 46(10):p.1856-65.
    15. Olson, P., et al., MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev,2009.23(18):p.2152-65.
    16. Ling, H., M. Fabbri, and G.A. Calin, MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov,2013.12(11):p.847-65.
    17. Negrini, M., M.S. Nicoloso, and G.A. Calin, MicroRNAs and cancer--new paradigms in molecular oncology. Curr Opin Cell Biol,2009.21(3):p.470-9.
    18. Takahashi, R.U., H. Miyazaki, and T. Ochiya, The role of microRNAs in the regulation of cancer stem cells. Front Genet,2014.4:p.295.
    19. Liu, S., S.G. Clouthier, and M.S. Wicha, Role of microRNAs in the regulation of breast cancer stem cells. J Mammary Gland Biol Neoplasia,2012.17(1):p.15-21.
    20. Cervantes, A., et al., Current questions for the treatment of advanced gastric cancer. Cancer Treat Rev,2013.39(1):p.60-7.
    21. Schwartzman, A.D., R. Sethi, and R. Smith, Multiorgan failure in a patient treated with the 5-fluorouracil, leucovorin, oxaliplatin, and irinotecan regimen. Clin Colorectal Cancer,2013. 12(2):p.136-9.
    22. Kawahara, M., Irinotecan in the treatment of small cell lung cancer:a review of patient safety considerations. Expert Opin Drug Saf,2006.5(2):p.303-12.
    23. de Jong, F.A., et al., Role of pharmacogenetics in irinotecan therapy. Cancer Lett,2006. 234(1):p.90-106.
    24. Mitry, E., et al., Predictive factors of survival in patients with advanced colorectal cancer:an individual data analysis of 602 patients included in irinotecan phase III trials. Ann Oncol, 2004.15(7):p.1013-7.
    25. Suehiro, Y. and Y. Hinoda, [Genetic and epigenetic changes in colorectal cancer and genetic testing for personalized medicine]. Rinsho Byori,2012.60(10):p.976-81.
    26. Hazama, S., et al., Phase I study of irinotecan and doxifluridine for metastatic colorectal cancer focusing on the UGT1A1*28 polymorphism. Cancer Sci,2010.101(3):p.722-7.
    27. Schulz, C., et al., UGT1A1 gene polymorphism:impact on toxicity and efficacy of irinotecan-based regimens in metastatic colorectal cancer. World J Gastroenterol,2009. 15(40):p.5058-66.
    28. Hoskins, J.M., et al., UGT1A1*28 genotype and irinotecan-induced neutropenia:dose matters. J Natl Cancer Inst,2007.99(17):p.1290-5.
    29. Nishi, T., T. Komaki, and Y. Hamamoto, [Treatment with CPT-11 based on the UGT1A1 genetic polymorphism]. Nihon Rinsho,2011.69 Suppl 3:p.545-9.
    30. Huang, J., J.K. Wang, and Y. Sun, Molecular pathology of prostate cancer revealed by next-generation sequencing:opportunities for genome-based personalized therapy. Curr Opin Urol,2013.23(3):p.189-93.
    31. Yee, N.S., Toward the goal of personalized therapy in pancreatic cancer by targeting the molecular phenotype. Adv Exp Med Biol,2013.779:p.91-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700