用户名: 密码: 验证码:
我国东北、华北地区典型林蛙谱系生物地理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物多样性分布格局及其成因是生物地理学研究的核心内容之一,对于理解生物多样性的演化规律、物种形成的生态学过程与进化路径、制定物种保护与管理对策等具有重要意义。两栖动物是全球生物多样性受到最严重威胁的物种类群,濒危物种比例居各种生物类群之首。同时,两栖类物种的低迁移能力、生境敏感性以及高家域忠实度,是研究谱系生物地理学与生物多样性演化规律的理想物种。我国东北、华北地区共记载了蛙科(Ranidae)林蛙属(Rana)6个物种,分别是黑龙江林蛙(Rana amurensis Booulenger,1886)、昆嵛林蛙(Rana kunyuensis Lu et Li,2002).东北林蛙(Rana dybowskii Gunther,1876)、中国林蛙隐存种(研究中称为“中国林蛙近似种”,Rana cf. chensinensis)、桓仁林蛙(Rana huanrenensis Liu, Zhang et Liu,1993)、徂徕林蛙(Rana culaiensis Li, Lu and Li,2008),其中,黑龙江林蛙(Rana amurensis Booulenger,1886)、东北林蛙(Rana dybowskii Gunther,1876)、中国林蛙隐存种(研究中称为“中国林蛙近似种”,Rana cf.chensinensis)、为广泛分布种,昆嵛林蛙(Rana kunyuensis Lu et Li,2002)为山东昆嵛山特有种,其它两种特别稀有,本次野外调查没有采集到任何标本,因此本研究以这4个物种为研究对象,聚焦以下几个关键科学问题:
     (1)我国东北、华北地区四种林蛙与已知蛙科物种的线粒体基因组全序列结构是否一致?有何重要特征?
     (2)三种广泛分布林蛙(黑龙江林蛙、东北林蛙、中国林蛙近似种)的种群空间遗传结构及其种群的历史动态是否呈现相同趋势?
     (3)导致三种林蛙种群遗传多样性空间结构及种群动态变化的因素有哪些?是否符合气候隔离假说、河流障碍假说、山脊障碍假说?
     (4)如何根据林蛙的种群的历史变化规律制定物种保护对策?
     为此,本研究通过在东北、华北地区广泛调查采样,通过分子生物学方法获得序列信息,利用线粒体基因和核基因为分子标记,重建系统发育关系及分子钟估算,结合古冰期气候信息和地质事件证据开展研究,得到如下主要研究结果:
     (1)四个林蛙属物种线粒体基因组全序列特征
     通过黑龙江林蛙(Rana amurensis)、昆嵛林蛙(R. kunyuensis)、东北林蛙(R.dybowskii)、中国林蛙近似种(R. cf. chensinensis)四种林蛙标本线粒体基因组全序列的测试,发现林蛙属中存在着新型全序列结构。黑龙江林蛙(R. amurensis)和昆嵛林蛙(R. kunyuensis)的全长分别为20,564bp和22,255bp,均包含13个蛋白质编码基因、22个转运RNA、2个核糖体RNA基因、2段控制区,与己知蛙科物种的线粒体全序列存在差异,体现在2段控制区以及tRNALeu(CUN)和ND5的易位。东北林蛙(R. dybowskii)和中国林蛙近似种(R. cf. chensinensis)的全长分别是18,864bp和18,808bp,均包含13个蛋白质编码基因、22个转运RNA、2个核糖体RNA基因、1段控制区,与己知蛙科物种的线粒体基因组全序列结构一致。根据四个物种序列长度较长的8个蛋白质编码基因以及D-loop基因的分析,ND1/ND2/ND4、ND5、cytb较COⅠ、COⅡ、COⅢ变异程度高,可以提供了更多了系统发育信息。
     (2)三种广泛分布林蛙的种群空间遗传结构及其种群的历史演变规律
     黑龙江林蛙、东北林蛙、中国林蛙近似种等三种林蛙的遗传多样性空间分布格局清晰,即遗传谱系分化明显,地理分布区域相互隔离。黑龙江林蛙(Rana amurensis)的2个谱系分别分布在大兴安岭的高纬度高海拔区域,以及嫩江主干及以东的低海拔区域。东北林蛙(R. dybowskii)2个谱系分别分布在小兴安岭南麓,以及长白山、大兴安岭、小兴安岭。中国林蛙近似种(R. cf. chensinensis)共划分为4个谱系,谱系A分布于黄河中游(由北向南段)右岸、毛乌素沙地以南至渭河区域,谱系B分布于毛乌素沙地区域,谱系C分布于黄河中游(由北向南段)左岸,及海河流域,谱系D分布于燕山以北的东北区域。不同物种的种群历史动态稍有不同:黑龙江林蛙(R. amurensis)2个地理组在晚更新世至今存在种群扩张势;东北林蛙(R. dybowskii)3个地理组在历史上种群稳定,中更新时末期至今呈现种群扩张趋势;中国林蛙近似种(R. cf. chensinensis)4个谱系中,谱系A、B、D在历史上种群平稳,晚更新世至今存在扩张趋势,谱系C在历史上种群平稳,近期存在多次扩张过程。
     (3)导致三种林蛙种群空间结构变化的主要原因
     影响我国东北、华北地区林蛙遗传多样性空间的成因包括三种,分别是气候变化、河流和山脊。黑龙江林蛙的谱系地理结构受到希夏邦马冰期气候振荡以及大兴安岭山脊障碍的影响;东北林蛙的谱系地理结构受到古乡冰期气候振荡,以及大小兴安岭、长白山三座山脊的障碍作用。中国林蛙近似种的谱系地理结构受到更新世冰期气候变化的影响,同时黄河和燕山也分别起到了河流障碍和山脊障碍作用。
     (4)物种保护对策
     本研究的三种广布种均存在生物冰期避难所,建议建立自然保护区或者保护地。黑龙江林蛙2个谱系内部分别存在一个生物冰期避难所,分别位于海拉尔盆地和松花江中游;根据生物避难所及特有单倍型物种分布区域的重要程度,东北林蛙栖息地的重要性依次为长白山中部、小兴安岭南麓、小兴安岭北麓、大兴安岭东麓;中国林蛙近似种4个谱系内部各存在一个生物避难所,分别位于渭河流域、毛乌素沙地、太行山区域以及东北的低纬度区域,建议作为重点保护区域加以管理。
     综上所述,本研究探讨了四种林蛙的线粒体基因组全序列信息及特征,并且基于线粒体基因和核基因的分子证据,通过东北、华北地区三种林蛙的系统发育关系重建及分子钟估算,明确了三种林蛙的谱系地理格局,并结合地质学证据和古气候信息,揭示形成上述格局的成因包括历史气候振荡、河流障碍以及山脊障碍,为我国两栖动物的保护提供了科学依据。在本研究的基础上,后续研究可在如下几个方面开展:中国林蛙及隐存种物种确定及蛙科系统发育研究、利用生态学方法解析生物多样性空间格局、特有种的形成机理研究、我国北方地区比较生物地理学研究、未来不同环境变化情景下的物种分布格局模拟等。
Biodiversity pattern and its formation mechanism is one of the key subjects of the biogeographic studies. It is the basis to understand the evolution of biodiversity, reveal the ecological and evolutionary process of speciation, and thus is critical important for setting biodiversity conservation and management strategies. Amphibians have been identified as the most threatened vertebrate group due to the highest percentage of the threated species among all species groups. Meanwhile, amphibian is the ideal species for phylogeographical and evolution of biodiveristy studies due to its low individual mobility, sensitive to habitat quality and its high loyalty to home range. Six Rana species are recorded in Northeast and North China, e.g., Rana amurensis Booulenger,1886, Rana kunyuensis Lu et Li,2002, Rana dybowskii Gunther,1876, a cryptic species of R. chensinensis(henceforth referred to as R. cf. chensinensis), Rana huanrenensis Liu, Zhang et Liu,1993, Rana culaiensis Li, Lu and Li,2008. Among the six known species to the region,Rana amurensis Booulenger,1886, Rana dybowskii Gunther,1876, a cryptic species of R. chensinensis(henceforth referred to as R. cf. chensinensis) are the widely distributed species, whereas Rana kunyuensis Lu et Li,2002is endemic to KunyuMountains in Shandong province. The other two species are extremely rare, and they were not found in the field survey, and thus, the study focus on the four Rana species (Ranidae) to address the following questions:
     (i) Whether the mtDNA mitochondrial genome structure and novel feature of the four Rana species is different from the known Rana species?
     (ii) What are the genetic structure and its demography of three widely distributed Rana species;
     (iii) What are the causes of phylogeographical patterns of three Rana species,? and whether the Climate barrier hypothesis, Riverrine barrier hypothesis and Ridge barrier hypothesis can explain such pattern?
     (iv) How to develop conservation strategies using the findings of this study?
     In order to address these questions, this study surveyed northest and northen China for the collection of experimental samples; applied mitochondrial genes and nuclear genes mark to obtain full gene sequences of the four species; reconstructed the phylogenetic relationship and population history using molecular clock, as well as the geological evidence, and obtained the following results:
     (i) Feature of complete mitochondrial genome structure of four Rana species
     The mitogenome length of R. amurensis and R. kunyuensis were20,564bp and22,255bp, respectively, including13protein-coding genes,22transfer RNA genes,2ribosomal RNA genes, and2control region (D-loop).We first found a novel gene order arrangement with the translocation of tRNALeu(CUN) and ND5, and duplicated D-loop genes from this two species. The length of R. dybowskiiand R. cf. chensinensiswere18,864bp and18,808bp,respectively, including13protein-coding genes,22transfer RNA genes,2ribosomal RNA genes, and1control region (D-loop). The genes structure of above two species displayed a similar pattern to that of known Rana species. According to analysis of the8protein-coding genes and D-loop gene, we found that ND1, ND2, ND4, ND5and cytb contain more phylogenetic information than COI, COⅡ and COⅢ.
     (ii) The genetic structure and population demography of three common Rana species
     The distribution pattern of genetic diversity showed phylogenetic discontinuities and spatial separation amongRana amurensis, R. dybowskii, and R. cf. chensinensis,. For R. amurensis, Clade A was distributed in the high-altitude and high-latitude of GreatHinganMountain, Clade B was distributed in NenjiangRiver and Songnen Plain. For R. dybowskii, Clade A was restricted to south slope of LessHinganMountain, Clade B was distributed in east slope of Great Hingan Mountain, north and south of Less Hingan Mountain, and Changbai Mountain. Four Clades were identified in R. cf. chensinensis. Clade A was distributed in Weihe River, Clade B was distributed in Mu us derset, Clade C was distributed in the left bank of Yellow River and Hai River Basin, and Clade D was distributed to north of Yan Mountain.
     There are some difference in the population demography among three Rana species. Population expansion of R. amurensis, R. dybowskii and clade A, B and D of R. cf. chensinensis were occurred since late-Pleistocene, mid-Pleistocene and late-Pleistocene, respectively. Clade C of R. cf. chensinensis have been indicated relative stable population demography.
     (iii) Factors that contributed to the phylogeographical patterns of three Rana species
     Climatic events, large river and mountain ridge are the major factors that influence the phylogeographic parttern of the three Rana species. The major divergence of Rana amurensis was trigged by climate oscillation of Xixiabangma Glaciation and the isolation of Great Hingan Mountains. The phylogeographical pattern of R. dybowskii was influenced by climate oscillation of Guxiang Glaciation and the isolation of Great Hingan Mountains, Less Hingan Mountains and Changbai Mountain. The phylogeographical pattern of R.cf.chensinensis indicated that the divergence time of clades were consistent withclimate oscillation of Xixiabangma Glaciation and the penultimate glaciation. Meanwhile, both Yellow River and Yan Mountain played an important role in shaping the phylogeograpohical pattern of R. cf.chensinensis.
     (iv) Conservation strategies for the three Rana species
     The glacial refugia should be protected as wildlife habitat areas. The refugia of Rana amurensis are located in Hailar Basin and middle reach of Songhua River. The refugia and regions of unique haplotype for R. dybowskii are situated in middle Changbai Mountain, southern slopes of Less Hingan Mountains, northern slopes of Less Hingan Mountains, and eastern slopes of Great Hingan Mountains. Four refugia of R. cf. chensinensis are as follows: Weihe river, Mu us desert, Taihang Mountain and low-latitude area of Northeast China.
     In summary, this study determined the mitogenome of four Rana species, described phylogeographical pattern for the three widely distributed species, and analyzed causes for the spatial genetic distribution of the three studies species based on Mitochondrial DNA genes and nuclear genes. Clear clades were identified in three species distribution range, and climate oscillation, river and mountain ridge were found important in the phylogeographical pattern formulation. However, due to limited time and resources, a number of key questions have not yet addressed in this study, which include diversification history of R. chensinensis and R. cf. chensinensis, the phylogenetic study of Rana species, the spatial patterns of genetic diversity through ecological method, the speciation mechanism of endemic species in China, comparative biogeographical study in North region scale, and modeling of the species distribution patterns in the future environmental scenarios.
引文
Akin, C., Bilgin, C.C., Beerli, P., et al. Phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs were determined by geological processes and climate change in the Late Cenozoic[J]. Journal of Biogeography,2010, 37(11):2111-2124.
    Alam, M.S., Kurabayashi, A., Hayashi, Y., et al. Complete mitochondrial genomes and novel gene rearrangements in two dicroglossid frogs, Hoplobatrachus tigerinus and Euphlyctis hexadactylus, from Bangladesh[J]. Genes and Genetic Systems,2010,85(3):219-232.
    Alford, R.A., Richards, S.J. Global amphibian declines:a problem in applied ecology[J]. Annual Review of Ecology and Systematics,1999,30:133-162.
    Austin, J.D., Zamudio, K.R. Incongruence in the pattern and timing of intra-specific diversification in bronze frogs and bullfrogs (Ranidae)[J]. Molecular Phylogenetics and Evolution,2008,48(3):1041-1053.
    Austin, J.D., Lougheed, S.C., Boag, P.T. Discordant temporal and geographic patterns in maternal lineages of eastern north American frogs, Rana catesbeiana (Ranidae) and Pseudacris crucifer (Hylidae)[J]. Molecular Phylogenetics and Evolution, 2004,32:799-816.
    Austin, J.D., Lougheed, S.C., Moler, P.E., et al. Phylogenetics, zoogeography, and the role of dispersal and vicariance in the evolution of the Rana catesbeiana (Anura: Ranidae) species group[J]. Biological Journal of the Linnean Society,2003,80(4): 601-624.
    Avise, J.C. Molecular markers, natural history and evolution[M]. Chapman & Hall, 1994.
    Avise, J.C. Phylogeography: The history and formation of species.[M]. Harvard University Press,2000.
    Avise, J.C., Walker, D., Johns, G.C. Speciation durations and Pleistocene effects on vertebrate phylogeography[J]. Proceedings of the Royal Society,1998,265: 1707-1712.
    Avise, J.C., Arnold, J., Ball, R.M., et al. Intraspecific phylogeography:the mitochondrial DNA bridge between population genetics and systematics[J]. Annual Review of Ecology and Systematics,1987,18:489-522.
    Axelrod, D., Al Shehbaz, I., Raven, P. History of the modern flora of China. [C].Floristic characteristics and diversity of East Asian plants:proceedings of the first international symposium of floristic characteristics and diversity of East Asian plants. Springer Verlag Beijing, China.1996.
    Baele, G., Li, W.L.S., Drummond, A.J., et al. Accurate model selection of relaxed molecular clocks in Bayesian phylogenetics[J]. Molecular Biology and Evolution, 2012,30(2):239-243.
    Bandelt, H.J., Forster, P., Rohl, A. Median-joining networks for inferring intraspecific phylogenies[J]. Molecular Biology and Evolution,1999,16:37-48.
    Beebee, T.J.C. Ecology and Conservation of Amphibians. [M]. Chapman & Hall, 1996.
    Beebee, T.J.C. Conservation genetics of amphibians[J]. Heredity,2005,95(6): 423-427.
    Beheregaray, L.B., Caccone, A. Cryptic biodiversity in a changing world[J]. Journal of Biology,2007,6:
    Bickford, D., Lohman, D.J., Sohdi, N.S., et al. Cryptic species as a window on diversity and conservation[J]. Trends in Ecology and Evolution,2006,22(3): 148-155.
    Blaustein, A.R., Belden, L.K. Amphibian defenses against ultraviolet-B radiation[J]. Evolution and development,2003,5(1):89-97.
    Blaustein, A.R., Romansic, J.M., Kiesecker, J.M., et al. Ultraviolet radiation, toxic chemicals and amphibian population declines[J]. Diversity and Distributions 2003,9:123-140.
    Blouin, M.S., Phillipsen, I.C., Monsen, K.J. Population structure and conservation genetics of the Oregon spotted frog, Rana pretiosa[J]. Conserv Genet,2010,11: 2179-2194.
    Boore, J.L. Animal mitochondrial genomes.[J]. Nucleic Acids Research,1999,27(8): 1767-1780.
    Boore, J.L., Brown, W.M. Complete DNA sequence of the mitochondrial genome of the black chiton, Katharina tunicata.[J]. Genetics,1994,138(2):423-443.
    Boulenger, G.A. A monograph of the South Asian, Papuan, Melanesian and Australian frogs of the genus Rana[R].1920.
    Canestrelli, D., Salvi, D., Maura, M., et al. One Species, Three Pleistocene Evolutionary Histories: Phylogeography the Italian Crested Newt, Triturus carnifex[J]. Plos One,2012,7(7):
    Cao, M.M., Jin, Y.T., Liu, N.F., et al. Effects of the Qinghai-Tibetan Plateau uplift and environmental changes on phylogeographic structure of the Daurian Partridge (Perdix dauuricae) in China[J]. Molecular Phylogenetics and Evolution,2012,65: 823-830.
    Capparella, A.P. Genetic variation in neotropical birds:implications for the speciation process[J]. Acta Congressus Internationalis Ornithologici,1988,19:1658-1664.
    Carnaval, A.C., Bates, J.M. Amphibian DNA shows marked genetic structure and tracks Pleistocene climate change in Northeastern Brazil[J]. Evolution,2007, 61(12):2942-2957.
    Che, J., Pang, J.F., Zhao, E.M., et al. Phylogenetic relationships of the Chinese brown frogs (Genus Rana) inferred from partial mitochondrial 12S and 16S rRNA gene sequences[J]. Zoological Science,2007,24(1):71-80.
    Collins, J.P. Amphibian decline and extinction: What we know and what we need to learn[J]. Diseases of Aquatic Organisms,2010,92(2-3):93-99.
    Collins, J.P., Crump, M.L. Extinction in our times. Global amphibian decline. [M]. Oxford University Press,2009.
    Collins, W.D., Bitz, C.M., Blackmon, M.L., et al. The Community Climate System Model Version 3 (CCSM3)[J]. Journal of Climate,2006,19:2122-2143.
    Cox, C.B., Moore, P.D. Biogeography:An Ecological and Evolutionary Approach.[M]. Blackwell Science,2000.
    Craw, D., Burridge, C.P., Upton, P., et al. Evolution of biological dispersal corridors through a tectonically active mountain range in New Zealand. [J]. Journal of Biogeography,2008,35:1790-1802.
    Crawford, A.J. Huge populations and old species of Costa Rican and Panamanian dirt frogs inferred from mitochondrial and nuclear gene sequences[J]. Molecular Ecology,2003,12(10):2525-2540.
    Culling, M.A., Janko, K., Boron, A., et al. European colonization by the spined loach (Cobitis taenia) from Ponto-Caspian refugia based on mitochondrial DNA variation[J]. Molecular Ecology,2006,15:173-190.
    Cumming, M.P., Otto, S.P., Wakeley, J. Sampling properties of DNA sequence data in phylogenetic analysis[J]. Molecular Biology and Evolution,1995,12:814-822.
    Cushman, S.A. Effects of habitat loss and fragmentation on amphibians:A review and prospectus[J]. Journal of Applied Ecology,2005,8:0-9.
    Dever, J.A. Fine-scale genetic structure in the threatened foothill yellow-legged frog (Rana boylii)[J]. Journal of Herpetology,2007,41(1):168-173.
    Ding, L., Gan, X., He, S., et al. A phylogeographic, demographic and historical analysis of the short-tailed pit viper (Gloydius brevicaudus):evidence for early divergence and late expansion during the Pleistocene[J]. Molecular Ecology, 2011,20:1905-1922.
    Dong, B.J., Che, J., Ding, L., et al. Testing Hypotheses of Pleistocene Population History Using Coalescent Simulations:Refugial Isolation and Secondary Contact in Pseudepidalea raddei (Amphibia: Bufonidae)[J]. Asian Herpetological Research,2012,3(2):103-113.
    Donnellan, S.C., McGuigan, K., Knowles, R., et al. Genetic evidence for species boundaries in frogs of the Litoria citropa species-group (Anura: Hylidae)[J]. Australian Journal of Zoology,1999,47:275-293.
    Drummond, A.J., Rambaut, A., Shapiro, B., et al. Bayesian coalescent inference of past population dynamics from molecular sequences[J]. Molecular Biology and Evolution,2005,22(5):1185-1192.
    Drummond, A.J., Suchard, M.A., Xie, D., et al. Bayesian phylogenetics with BEAUti and the BEAST 1.7[J]. Molecular Biology and Evolution,2012,29(8): 1969-1973
    Duellman, W.E., Trueb, L.Biology of Amphibians[M]. Johns Hopkins University Press,1994.
    Dupanloup, I., Schneider, S., Excoffier, L. A simulated annealing approach to define the genetic structure of populations[J]. Molecular Ecology,2002,11(12): 2571-2581.
    Dynesius, M., Jansson, R. Evolutionary consequences of changes in species' geographical distributions driven by Milankovitch climate oscillations[J]. PNAS, 2000,91(16):9115-9120.
    Edwards, D.L. Biogeography and speciation of a direct developing frog from the coastal arid zone of Western Australia[J]. Molecular Phylogenetic and Evolution, 2007,45:494-505.
    Edwards, D.L., Roberts, J.D. Genetic diversity and biogeographic history inform future conservation management strategies for the rare sunset frog (Spicospina flammocaerulea)[J]Australian Journal of Zoology,2011,59:63-72.
    Edwards, D.L., Roberts, J.D., Keogh, J.S. Impact of Plio-Pleistocene arid cycling on the population history of a southwestern Australian frog. [J]. Molecular Ecology, 2007,16(13):2782-2796.
    Elmer, K.R., Davila, J.A., Lougheed, S.C. Cryptic diversity and deep divergence in an upper Amazonian leaflitter frog, Eleutherodactylus ockendeni[J]BMC Evolutionary Biology,2007,7:247.
    Evanno, G., Regnaut, S., Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study[J]. Molecular Ecology, 2005,14:2611-2620.
    Excoffier, L., Lischer, H.E.L. Arlequin suite ver 3.5:a new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources,2010,10:564-567.
    Fei, L. Atlas of Amphibians of China[M]. Henan Publishing House of Science and technology,1999.
    Felsenstein, J. Estimating effective population size from samples of sequences: inefficiency of pairwise and segregating sites as compared to phylogenetic estimates[J]. Genetic Research,1992,59:139-147.
    Fitzpatrick, S.W., Brasileiro, C.A., Haddad, C.F.B., et al. Geographical variation in genetic structure of an Atlantic Coastal Forest frog reveals regional differences in habitat stability[J]. Molecular Ecology,2009,18:2877-2896.
    Flot, J.F. SEQPHASE:a web tool for interconverting phase input/output files and fasta sequence alignments [J]. Molecular Ecology Resources,2010,10:162-166.
    Fouquet, A., Ledoux, J.B., Dubut, V., et al. The interplay of dispersal limitation, rivers, and historical events shapes the genetic structure of an Amazonian frog[J]. Biological Journal of the Linnean Society,2012,106:356-373.
    Freeland, J.R., Kirk, H., Petersen, S.D. Molecular Ecology[M]. Willey Blackwell. 2011.
    Frost, D.R. Amphibian Species of the World: an Online Reference. Version 6.0 (Date of access).[R].2014.
    Fu, J.Z., Weadick, C.J., Zeng, X.M., et al. Phylogeographic analysis of the Bufo gargarizans species complex:a revisit[J]. Molecular Phylogenetics and Evolution, 2005,37.
    Fu, Y.X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection [J]. Genetics,1997,147:915-925.
    Funk, W.C., Caldwell, J.P., Peden, C.E., et al. Tests of biogeographic hypotheses for diversification in the Amazonian forest frog, Physalaemus petersi[J]. Molecular Phylogenetic Ecology,2007,44:825-837.
    Funk, W.C., Blouin, M.S., Corn, P.S., et al. Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape[J]. Molecular Ecology,2005,14:483-496.
    Gao, Q.B., Zhang, D.J., Duan, Y.Z., et al. Intraspecific divergences of Rhodiola alsia (Crassulaceae) based on plastid DNA and internal transcribed spacer fragments[J]. Botanical Journal of the Linnean society,2012,168:204-215.
    Grant, W.S., Bowen, B.W. Shallow Population histories in deep evolutionary lineages of marine fishes:insights from sardines and anehovies and lessons for conservation. [C].AGA Symposium on Conservation and Genetics of Marine Organisms, University Victoria, Victoria, Canada.1998.
    Guo, J., Liu, Y.F., Wang, Y.S., et al. Population structure of the wild soybean (Glycine soja) in China:implications from microsatellite analyses[J]. Annals of Botany, 2012:
    Hanfling, B., Dumpelmann, C, Bogutskaya, N.G., et al. Shallow phylogeographic structuring of Vimba vimba across Europe suggests two distinct refugia during the last glaciation[J]. Journal of Fish Biology,2009,75:2269-2286.
    Hader, D.P., Kumar, H.D., Smith, R.C., et al. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change[J]. Photochemical & Photobiological Sciences,2007,6(3):267-285.
    Hasumi, H., Emori, S. K-1 coupled GCM (MIROC) description. K-1 Technical Report 1[R].2004.
    Henning, W., Kienle, P., Steichele, E., et al. Magnetic properties of the K=1/2 rotational brand of 171Yb [J]. Physics Letters,22(3):446-448.
    Hewitt, G.M. Some genetic consequences of ice ages, and their role in divergence and speciation[J]. Biological Journal of the Linnean Society,1996,58:247-276.
    Hewitt, G.M. Post-glacial re-colonization of European biota[J]. Biological Journal of the Linnean Society,1999,68:87-112.
    Hewitt, G.M. The genetic legacy of the Quatenary Ice ages[J]. Nature,2000,405: 907-913.
    Hewitt, G.M. Genetic consequences of climatic oscillations in the Quaternary[J]. Philosophical Transactions of the Royal Society B:Biological Sciences,2004a, 359:183-195.
    Hewitt, G.M. The structure of biodiversity—insights from molecular phylogeography[J]. Frontiers in Zoology,2004b,1:401-416.
    Hixson, J.E., Wong, T.N., Clayton, D.A. Both the conserved stem-loop and divergent5'-flankingsequences are required for initiationat the human mitochondrial origin of light-strandDNAreplication[J]. The Journal of Biological Chemistry,1986,261:2384-2390.
    Hu, Y.L., Wu, X.B., Jiang, Z.G., et al. Population genetics and phylogeography of Bufo gargarizans in China[J]. Biochemical genetics,2007,45:697-711.
    Huang, S., He, S.P., Peng, Z.G., et al. Molecular phylogeography of endangered sharp-snouted pitviper (Deinagkistrodon acutus; Reptilia, Viperidae) in Mainland China[J]. Molecular Phylogenetics and Evolution,2007,44:942-952.
    Hughes, J.M., Schmidt, D.J., Finn, D.S. Genes in streams:using DNA to understand the movement of freshwater fauna and their riverine habitat[J]. BioScience,2009, 59(7):573-583.
    IUCN and NatureServe.Global Amphibian Assessment[R].2006.
    Jakobsson, M., Rosenberg, N.A. CLUMPP:a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure.[J]. Bioinformatics,2007,23(14):1801-1806.
    Jiang, F.C., Fu, J.L., Wang, S.B., et al. Formation of the Yellow River, inferred from loess-palaeosol sequence in Mangshan and lacustrine sediments in Sanmen Gorge, China[J]. Quaternary International 2007,175:62-70.
    Jin, L.L., Li, Q., Song, S.S., et al. Characterization of antimicrobial peptides isolated from the skin of the Chinese frog, Rana dybowskii[J]. Comparative Biochemistry and Physiology, Part B,2009,154:174-178.
    Johnson, K.P., Lanyon, S.M. Molecular Systematics of the Grackles and Allies, and the effect of additional sequence (CytB and ND2)[J]. The Auk,1999,116(3): 759-768.
    Kahlke, H.D. On the complex of the Stegodon-Ailuropoda founa of Southern China and the chronological position of Gigantpitheus blacki. V. Koenigswald.[J]. Vertebrata Palasiatica,1961,2:85-103.
    Kass, R.E., Raftery, A.E. Bayes factors[J]. Journal of the American Statistical Association,1995,90(430):773-795.
    Kats, L.B., Ferrer, R.P. Alien predators and amphibian declines:Review of two decades of science and the transition to conservation[J]. Diversity and Distributions,2003,9:99-110.
    Kurabayashi, A., Sumida, M. Afrobatrachian mitochondrial genomes:genome reorganization, gene rearrangement mechanisms, and evolutionary trends of duplicated and rearranged genes[J]. BMC Genomics,2013,14:633.
    Kurabayashi, A., Usuki, C., Mikami, N., et al. Complete nucleotide sequence of the mitochondrial genome of a Malagasy poison frog Mantella madagascariensis: Evolutionary implications on mitochondrial genomes of higher anuran groups[J]. Molecular Phylogenetics and Evolution,2006,39(1):223-236.
    Kurabayashi, A., Yoshikawa, N., Sato, N., et al. Complete mitochondrial DNA sequence of the endangered frog Odorrana ishikawae (family Ranidae) and unexpected diversity of mt gene arrangements in ranids[J]. Molecular Phylogenetic Ecology,2010,56:543-553.
    Kuzmin, S., Ishchenko, V., Maslova, I., et al. Rana dybowskii[R]. IUCN 2012. IUCN Red List of Threatened Species. 2004a.
    Kuzmin, S.L., Maslova, I., Matsui, M., et al. Rana amurensis[R]. IUCN 2012. IUCN Red List of Threatened Species.www.iucnredlist.org.,2004b.
    Kuzmin, S.L., Matsui, M., Zhao, W.G., et al. Rana chensinensis[R]. IUCN Red List of Threatened Species.www.iucnredlist.org.,2004c
    Lopez-Alcaide, S., Macip-Rios, R. Effects of Climate Change in Amphibians and Reptiles[M]. Biodiversity Loss in a Changing Planet.2011.
    Lampert, K.P., Rand, A.S., Mueller, U.G., et al. Fine-scale genetic pattern and evidence for sex-biased dispersal in the tungara frog, Physalaemus pustulosus[J] Molecular Ecology,2003,12:3325-3334.
    Lanfear, R., Calcott, B., Ho, S.Y.W., et al. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses[J]. Molecular Biology and Evolution,2012,29:1695-1701.
    Lawson, L.P. The discordance of diversification:evolution in the tropical-montane frogs of the Eastern Arc Mountains of Tanzania[J]. Molecular Ecology,2010,19: 4046-4060.
    Li, P.P., Lu, Y.Y., Li, A., et al. Natural history studies of Chinese endemic amphibians I. Life history of wood frogs in Shandong Peninsula[J]. Sichuan Journal of Zoology,2006,25(2):340-343.
    Li, R., Chen, W., Tu, L., et al. Rivers as barriers for high elevation amphibians:a phylogeographic analysis of the alpine stream frog of the Hengduan Mountains[J]. Journal of Zoology,2009a,277:309-316.
    Li, S.H., Yeung, C.K.L., Feinstein, J., et al. Sailing through the Late Pleistocene: unusual historical demography of an East Asian endemic, the Chinese Hwamei (Leucodioptron canorum canorum), during the last glacial period[J]. Molecular Ecology,2009b,18:622-633.
    Li, Z., Yu, G., Rao, D., et al. Phylogeography and Demographic History of Babina pleuraden (Anura, Ranidae) in Southwestern China[J]. PLos One,2012,7(3): e34013.
    Librado, P., Rozas, J. DnaSP v5:a software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics,2009,25:1451-1452.
    Lind, A.J., Spinks, P.Q., Fellers, G.M., et al. Rangewide phylogeography and landscape genetics of the Western U.S. endemic frog Rana boylii (Ranidae): implications for the conservation of frogs and rivers[J]. Conservation Genetics, 2011:269-284.
    Longcore, J.C., Pessier, A.P., Nichols, D.K., Batrachochytrium dendrobatidis gen. et sp. Nov., a chytrid pathogenic to amphibians[J]. Mycologia,1999,91:219-227.
    Lougheed, S.C., Gascon, C., Jones, D.A., et al. Ridges and rivers:a test of competing hypotheses of Amazonian diversification using a dart-poison frog[J]. Philosophical Transactions of the Royal Society B:Biological Sciences,1999, 266:1829-1835.
    Lu, B., Zheng, Y.C., Murphy, R.W., et al. Coalescence patterns of endemic Tibetan species of stream salamanders (Hynobiidae:Batrachuperus)[J].Molecular Ecology,2012,21:3308-3324.
    Macey, J.R., Larson, A., Ananjeva, N.B., et al. Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate Mitochondrial genome [J]. Mitochondrial Genome Organization and Mechanisms,1997,14(1):91-104.
    Macey, J.R., Strasburg, J.L., Brisson, J.A., et al. Molecular phylogenetics of western North American frogs of the Rana boylii species group[J]. Molecular Phylogenetics and Evolution,2001,19(1):131-143.
    Macey, J.R., Schulte II, J.A., Ananjeva, N.B., et al. Phylogenetic Relationships among Agamid Lizards of the Laudakia caucasia Species Group:Testing Hypotheses of Biogeographic Fragmentation and an Area Cladogram for the Iranian Plateau[J]. Molecular Phylogenetic Ecology,1998a,10(1):118-131.
    Macey, J.R., Schulte Ⅱ, J.A., Larson, A., et al. Phylogenetic relationships of toads in the Bufo bufo species group from the eastern escarpment of the Tibetan Plateau:a case of vicariance and dispersal [J]. Molecular Phylogenetics and Evolution, 1998b,9:80-87.
    Mateos, M., Sanjur, O.I., Vrijenhoek, R.C. Historical biogeography of the livebearing fish genus Poeciliopsis (Poeciliidae:Cyprinodontiformes)[J]. Evolution,2007, 56(5):972-984.
    McCormack, J.E., Huang, H., Knowles, L.L. Sky islands[M]. Encyclopedia of Islands. University of California Press, Berkeley, CA.2009.
    Meffe, G.K., Carroll, C.R. Principles of conservation biology[M], Sinauer Associates, Inc.,1994.
    Miller, S., Dykes, D., Polesky, H. A simple salting out procedure for extracting DNA from human nucleated cells[J]. Nucleic Acids Research,1988,16:1215.
    Nigro, L., Solignac, M., Sharp, P.M. Mitochondrial DNA sequence divergence in the melanogaster and oriental species subgroups of Drosophila[J]. Journal of Molecular Evolution,1991,33:156-162.
    Nunez, J.J., Wood, N.K., Rabanal, F.E., et al. Amphibian phylogeography in the Antipodes:Refugia and postglacial colonization explain mitochondrial haplotype distribution in the Patagonian frog Eupsophus calcaratus (Cycloramphidae)[J]. Molecular Phylogenetics and Evolution,2011,58:343-352.
    Osborne, M.J., Christidis, L., Norman, J.A. Molecular phylogenetics of the Diprotodontia (kangaroos, wombats, koala, possums, and allies)[J]. Molecular Phylogenetic Ecology,2002,25:219-228.
    Palumbi, S.R., Martin, A., Romano, S., et al. The Simple Fool's Guide to PCR[M]. Department Zoology, University of Hawaii,2002.
    Peterson, A.C., Richgels, K.L.D., Johnson, P.T., et al. Investigating the dispersal routes used by an invasive amphibian, Lithobates catesbeianus, in human-dominated landscapes[J]. Biological Invasions,2013,15:2179-2191.
    Phillips, S.J., Dudik, M. Modeling of species distributions with Maxent:new extensions and a comprehensive evaluation[J]. Ecography,2008,31(161-175):
    Phillips, S.J., Anderson, R.P., Schapire, R.E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling,2006,190:231-259.
    Polezhaeva, M.A., Lascoux, M., Semerikov, V.L. Cytoplasmic DNA variation and biogeography of Larix Mill. in Northeast Asia[J]. Molecular Ecology,2010,19: 1239-1252.
    Polzin, T., Daneschmand, S.V. On Steiner trees and minimum spanning trees in hypergraphs[J]. Operations Research Letters,2003,31:12-20.
    Posada, D. jModeltest:Phylogenetic model averaging[J]. Molecular Biology and Evolution,2008,25:1253-1256.
    Pounds, J.A., Bustamante, M.R., Coloma, L.A., et al. Widespread amphibian extinctions from epidemic disease driven by global warming[J]. Nature,2006, 439:161-167.
    Prado, C.P.A., Haddad, C.F.B., Zamudio, K.R. Cryptic lineages and Pleistocene population expansion in a Brazilian Cerrado frog[J]. Molecular Ecology,2012,21: 921-941.
    Pritchard, J.K., Stephens, M., Donnelly, P. Inference of population structure using multilocus genotype data[J]. Genetics,2000,155:945-959.
    Qu, Y., Lei, F., Zhang, R., et al. Comparative phylogeography of five avian species: implications for Pleistocene evolutionary history in the Qinghai-Tibetan plateau.[J]. Molecular Ecology,2010,19:338-351.
    Qu, Y.H., Luo, X., Zhang, R.Y., et al. Lineage diversification and historical demography of a montane bird Garrulax elliotii-implications for the Pleistocene evolutionary history of the eastern Himalayas.[J]. BMC Evolutionary Biology, 2011,11:174.
    Rambaut, A., Drummond, A.J. Tracer v 1.5.[CP].2007.
    Ramos-Onsins, S.E., Rozas, J. Statistical properties of new neutrality tests against population growth[J]. Molecular Biology and Evolution,2002,19:2092-2100.
    Ray, N., Gurrat, M., Excoffier, L. Intra-deme molecular diversity in spatially expanding populations[J]. Molecular Biology and Evolution,2003,20:76-86.
    Relyea, R.A. The lethal impact of roundup on aquatic and terrestrial amphibians.[J]. Ecological Applications,2005,15(4):1118-1124.
    Rice, W.R. Analyzing tables of statistical tests[J].Evolution,1989,43:223-225.
    Riddle, B.R., Hafner, D.J. A step-wise approach to integrating phylogeographic and phylogenetic biogeographic perspectives on the history of a core North American warm deserts biota[J]. Journal of Arid Environments,2006,66:435-461.
    Rogers, A.R., Harpending, H. Population Growth Makes Waves in the Distribution of Pairwise Genetic Differences [J]. Molecular Biology and Evolution,1992,9(3): 552-569.
    Ronquist, F., Teslenko, M., van der Mark, P., et al. MrBayes 3.2:efficient Bayesian phylogenetic inference and model choice across a large model space[J]. Systematic Biology,2012,61(3):539-542.
    Russo, C.A., Takezaki, N., Nei, M. Efficiencies of different genes and different tree-building methods in recovering a known vertebrate phylogeny[J]. Molecular Biology and Evolution,1996,13:525-536.
    Ryan, M.J., Rand, A.S., Weigt, L.A. Allozyme and advertisement call variation in the tungara frog, Physalaemus pustulosus[J]. Evolution,1996,50:2435-2453.
    Sano, N., Kurabayashi, A., Fujii, T., et al. Complete nucleotide sequence of the mitochondrial genome of Schlegel's tree frog Rhacophorus Schlegelii (family Rhacophoridae):duplicated control regions and gene rearrangements[J]. Genes and Genetic Systems,2005,80:213-224.
    Schonrogge, K., Barr, B., Wardlaw, J.C., et al. When rare species become endangered: cryptic speciation in myrmecophilous hoverflies[J]. Biologcal Journal of the Linnean Society,2002,75:291-300.
    Schneider, C.J., Cunningham, M., Moritz, C. Comparative phylogeography and the history of endemic vertebrates in the wet tropics rainforests of Australia[J]. Molecular Ecology,1998,7:487-498.
    Shi, Y.F., Cui, Z.J., SU, Z. The Quaternary Glaciations and Environmental Variations in China[M]. Hebei Science and Technology Press,2006.
    Slatkin, M., Barton, N.H. A comparison of three indirect methods for estimating average levels of gene flow[J]. Evolution,1989,43:1349-1368.
    Slatkin, M., Hudson, R.R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations[J]. Genetics,1991,129:555-562.
    Song, G., Qu, Y.H., Yin, Z.H., et al. Phylogeography of the Alcippe morrisonia (Aves: Timaliidae):long population history beyond late Pleistocene glaciations[J]. BMC Evolutionary Biology,2009,9(143):
    Souder, W. A plague of frogs:the horrifying true story[M]. Hyperion,2000.
    Sumida, M., Kanamori, Y, Kaneda, H., et al. Complete nucleotide sequence and gene rearrangement of the mitochondrial genome of the Japanese pond frog Rana nigromaculata[J]. Genes and Genetic Systems,2001,76:311-325.
    Sun, Y, An, Z. Chinese Loess Plateau mass accumulation rate data.[R]. IGBP PAGES/World Data Center for Paleoclimatology. Data Contribution Series# 2006-034. NOAA/NCDC Paleoclimatology Programme,2006.
    Swofford, D.L. PAUP*. Phylogenetic Analysis Using Parsimony.[CP]. Sinauer Associates,2003.
    Taberlet, P., Fumagalli, L., Wust-Saucy, A.G., et al. Comparative phylogeography and postglacial colonization routes in Europe[J]. Molecular Ecology,1998,7: 453-464.
    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics,1989,123:585-595.
    Tamura, K., Peterson, D., Peterson, N., et al. MEGA5:Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods[J]. Molecular Biology and Evolution,2011, 28(10):2731-2739.
    Tang, L.Z., Wang, L.Y., Cai, Z.Y, et al. Allopatric divergence and phylogeographic structure of the plateau zokor(Eospalax baileyi), a fossorial rodent endemic to the Qinghai-Tibetan Plateau[J]. Journal of Biogeography,2010,37:657-668.
    Thome, M.T.C., Zamudio, K.R., Giovanelli, J.G.R., et al. Phylogeography of endemic toads and post-Pliocene persistence of the Brazilian Atlantic Forest[J]. Molecular Phylogenetic Ecology,2010,55:1018-1031.
    Thompson, J.D., Higgins, D.G., Gibson, T.J. Clustal-W-Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice[J]. Nucleic Acids Research,1994,22:4673-4680.
    Thompson, J.D., Gibson, T.J., Plewniak, F., et al. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.[J]. Nucleic Acids Research,1997,24:4876-4882.
    Tian, B., Liu, R.R., Wang, L.Y., et al. Phylogeographic analyses suggest that a deciduous species (Ostryopsis davidiana Decne., Betulaceae) survived in northern China during the Last Glacial Maximum[J]. Journal of Biogeography, 2009,36:2148-2155.
    Tiffney, B.H., Manchester, S.R. The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere tertiary [J]. International Journal of Plant Sciences,2001,162(S6,Historical Biogeography of th Northern Hemisphere):S3-S17.
    Tonini, J.F.R., Costa, L.P., Carnaval, C.C. Phylogeographic structure is strong in the Atlantic Forest; predictive power of correlative paleodistribution models, not always[J]. Journal of Zoological Systematics and Evolutionary Research,2013, 51(2):114-121.
    Tzedakis, P.C., Emerson, B.C., Hewitt, G.M. Cryptic or mystic? Glacial tree refugia in northern Europe.[J]. Trends in Ecology & Evolution,2013,28(12):696-704.
    Wake, D.B. Declining amphibian populations[J]. Science,1991,253:860.
    Wallace, A.R. On the monkeys of the Amazon[M].1852.
    Wang, B., Jiang, J.P., Xie, F., et al. Postglacial Colonization of the Qinling Mountains: Phylogeography of the Swelled Vent Frog(Feirana quadranus)[J].Plos one, 2012,7(7):
    Wang, B., Jiang, J.P., Xie, F., et al. Phylogeographic Patterns of mtDNA Variation Revealed Multiple Glacial Refugia for the Frog Species Feirana taihangnica Endemic to the Qinling Mountains[J]. Journal of Molecular Evolution,2013a,76: 112-128.
    Wang, S.M., Wu, X.H., Zhang, Z.K., et al. Sedimentary records of environmental evolution in the Sanmen Lake Basin and the Yellow River running through the Sanmenxia Gorge eastward into the sea[J]. Science in China Series D-Earth Sciences,2002,45(7):595-608.
    Wang, X.B., Wang, Y., Yue, B.S., et al. The complete mitochondrial genome of the Bufo tibetanus (Anura:Bufonidae)[J]. Mitochondrial DNA,2013b,24(3): 186-188.
    Wersrock, D.W., Macey, J.R., Ugurtas, I.H., et al. Molecular Phylogenetics and Historical Biogeography among Salamandrids of the "True" Salamander Clade: Rapid Branching of Numerous Highly Divergent Lineages in Mertensiella luschani Associated with the Rise of Anatolia[J]. Molecular Phylogenetics and Evolution,2001,18(3):434-448.
    Wu, X.B., Hu, Y.L. Genetic diversity and molecular differentiation of Chinese toad based on microsatellite markers[J]. Molecular biology reports,2010,37(5): 2379-2386
    Xia, X., Xie, Z. DAMBE:data analysis in molecular biology and evolution[J]. Journal of Heredity,2001,92(4):371-373.
    Xiang, T.M., Wang, B., Jiang, J.P., et al. The complete mitochondrial genome of Megophrys shapingensis (Amphibia, Anura, Megophryidae)[J]. Mitochondrial DNA,2013a,24(1):43-45.
    Xiang, T.M., Wang, B., Liang, X.X., et al. Complete mitochondrial genome of Paramegophrys oshanensis (Amphibia, Anura, Megophryidae)[J]. Mitochondrial DNA,2013b,24(5):472-474.
    Xie, W., Lewis, P.O., Fan, Y., et al. Improving marginal likelihood estimation for Bayesian phylogenetic model selection[J]. Systematic Biology,2011,60: 150-160.
    Yan, F., Jiang, K., Chen, H., et al. Matrilineal History of the Rana longicrus Species Group (Rana, Ranidae, Anura) and the Description of a New Species from Hunan, Southern China[J]. Asian Herpetological Research,2011,2(2):61-71.
    Yan, F.,Zhou, W.W., Zhao, H.T., et al. Geological events play a larger role than Pleistocene climatic fluctuations in driving the genetic structure of Quasipaa boulengeri (Anura:Dicroglossidae)[J]. Molecular Ecology,2013,22:1120-1133.
    Yu, D.N., Zhang, J.Y., Zheng, R.Q. The complete mitochondrial genome of Babina adenopleura (Anura:Ranidae)[J]. Mitochondrial DNA,2012a,23(6):423-425.
    Yu, D.N., Zhang, J.Y., Zheng, R.Q., et al. The complete mitochondrial genome of Hoplobatrachus rugulosus (Anura:Dicroglossidae)[J]. Mitochondrial DNA, 2012b,23(5):336-337.
    Yu, G.H., Zhang, M.W., Rao, D.Q., et al. Effect of Pleistocene Climatic Oscillations on the Phylogeography and Demography of Red Knobby Newt (Tylototriton shanjing) from Southwestern China[J]. PLoS One,2013,8(2):e56066.
    Zardoya, R., Measey, A. The Complete Nucleotide Sequence of the Mitochondrial Genome of the Lungfish (Protopterus dolloi) Supports Its Phylogenetic Position as a Close Relative of Land Vertebrates[J]. Genetics,1996,142(4):1249-1263.
    Zardoya, R., Meyer, A.H. Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates[J]. Molecular Biology and Evolution,1996,13(7):933-942.
    Zeisset, I., Beebee, T.J.C. Amphibian phylogeography:a model for understanding historical aspects of species distributions[J]. Heredity,2008,101:109-119.
    Zhan, A., Li, C., Fu, J. Big mountains but small barriers:Population genetic structure of the Chinese wood frog (Rana chensinensis) in the Tsinling and Daba Mountain region of northern China[J]. BMC Genetics,2009,10:1-10.
    Zhan, X.J., Zheng, Y.F., Wei, F.W., et al. Molecular evidence for Pleistocene refugia at the eastern edge of the Tibetan Plateau[J]. Molecular Ecology,2011,20: 3014-3026.
    Zhang, D.R., Chen, M.Y., Murphy, R.W., et al. Genealogy and palaeodrainage basins in Yunnan Province:phylogeography of the Yunnan spiny frog, Nanorana yunnanensis (Dicroglossidae)[J]. Molecular Ecology,2010,19:3406-3420.
    Zhang, H., Yan, J., Zhang, G., et al. Phylogeography and demographic history of Chinese black-spotted frog populations (Pelophylax nigromaculata):evidence for independent refugia expansion and secondary contact[J]. BMC Evolutionary Biology,2008,8(21):
    Zhang, M., Wang, W.S., Xu, Y.C., et al. Effects of Anthropogenic Intermixing on the Genetic Structure of Dybowski's Frog Populations in Northeast China[J]. The Journal of Wildlife Management,2013a,77(3):555-566.
    Zhang, P., Liang, D., Mao, R.L., et al. Efficient sequencing of anuran mtDNAs and a mitogenomic exploration of the phylogeny and evolution of frogs[J]. Molecular Biology and Evolution,2013b,30(8):1899-1915.
    Zhang, W., Cui, Z., Li, Y. Review of the timing and extent of glaciers during the last glacial cycle in the bordering mountains of Tibet and in East Asia[C]. Quaternary International.2006.
    Zhao, E., Adler, K. Herpetology of China. [M]. Society for the Study of Amphibians and reptiles.,1993.
    Zhao, E., Zhao, H. Chinese Herpetological Literature:Catalogue and Indices. [M]. Chengdu University of Science and Technology,1994.
    Zhao, Q., Liu, H.X., Luo, L.G., et al. Comparative population genetics and phylogeography of two lacertid lizards(Eremias argus and E. brenchleyi) from China[J]. Molecular Phylogenetic Ecology,2011,58:478-491.
    Zhao, S., Dai, Q.F., J. Do rivers function as genetic barriers for the plateau wood frog at high elevations?[J]. Journal of Zoology,2010,279:270-276.
    Zhao, Y., Zhang, Y, Li, X. Molecular Phylogeography and Population Genetic Structure of an Endangered Species Pachyhynobius shangchengensis (hynobiid Salamander) in a Fragmented Habitat of Southeastern China[J]. PLoS One,2013, 8(10):e78064.
    Zheng, B., Xu, Q., Shen, Y. The relationship between climate change and Quaternary glacial cycles on the Qinghai-Tibetan Plateau:review and speculation[J]. Quaternary International,2002,97-98:93-101.
    Zhou, W.W., Yan, F., Fu, J.Z., et al. River islands, refugia and genetic structuring in the endemic brown frog Rana kukunoris (Anura, Ranidae) of the Qinghai-Tibetan Plateau[J]. Molecular Ecology,2013,22:130-142.
    Zhou, W.W., Wen, Y., Fu, J.Z., et al. Speciation in the Rana chensinensis species complex and its relationship to the uplift of the Qinghai-Tibetan Plateau[J]. Molecular Ecology,2012,21(4):960-973.
    Zuckerkandl,E.,Pauling,L.Molecules as Documents of Evolutionary History[J].1965,8:357-366.
    巴山.辽宁省东北林蛙遗传多样性与环渤海地区林蛙系统发育研究[D].沈阳师范大学,沈阳,2011.
    曾琳,鹿化煜,弋双文,等.我国东北地区黄土堆积的磁性地层年代与古气候变化[J].科学通报,2011,56(27):2267-2275.
    陈光照,肖羽,陈学平,等.尾斑瘰螈种群的D-loop区遗传多样性分析[J].动物学杂志,2011,46(3):55-63.
    陈胜前.燕山—长城南北地区史前文化的适应变迁[J].考古学报,2011,1:1-22.
    费梁,叶昌媛,黄永昭.中国两栖动物检索[M].科学技术出版社重庆分社,1990.
    费梁,胡淑琴,叶昌媛,等.中国动物志[M].科学出版社,2009.
    费梁,叶昌媛,江建平.中国两栖动物及其分布彩色图鉴[M].四川科学技术出版社,2012.
    龚洁.黑斑侧褶蛙SSR位点分离及种群遗传结构分析[D].浙江大学,浙江,2012.
    高国柱,吴孝兵.两栖动物数量减少的原因探讨[J].安徽技术师范学院学报,2005,19(1):37-41.
    顾辉清,马小梅,王珏等.安吉小鲵种群数量和数量动态的研究[J].四川动物,1999,18(3):104-106.
    郭东信,李作福.我国东北地区晚更新世以来多年冻土历史演变及其形成时代[J].冰川冻土,1981,3(4):1-16.
    郭旭东.中国第四纪气候环境的初步研究[J].冰川冻土,1984,6(1):49-60.
    国家药典委员会.中华人民共和国药典[M].化学工业出版社,2005.
    黄华,郑荣泉,张加勇,等.隐种及其在两栖动物中的研究进展[J].生命科学,2012,24(5):483-491.
    何晓瑞.我国特有物种滇螈的绝灭及原因分析[J].四川动物,1998,17(2):58-59.
    李桂芬,骆侠,贝永建,等.基于线粒体细胞色素b基因序列的版纳鱼螈四个种群遗传多样性与遗传结构研究[J].动物分类学报,2010a,35(3):494-503.
    李桂芬,蒙绍权,骆侠,等.使用分子遗传学方法对版纳鱼螈分布、起源及扩散的初步研究[J].动物分类学报,2010b,35(2):338-344.
    李吉均.青藏高原的地貌演化与亚洲季风[J].海洋地质与第四纪地质,1999,19(1):1-11.
    李吉均,方小敏,潘保田,等.新生代晚期青藏高原强烈隆起及其对周边环境的影响[J].第四纪研究,2001,21(5):381-391.
    李丕鹏,陆宇燕,王伟,等.环渤海区域林蛙的多样性初探.[C].中国动物学会两栖爬行动物分会2005年学术研讨会暨会员大表大会论文集,南京.2005.
    梁佳轩.基于Cytb和D-loop区序列分析太白山溪鲵的谱系地理学[D].陕西师范大学,西安,2010.
    刘承钊,胡淑琴.中国无尾两栖类[M].科学出版社,1961.
    刘东升,李治国.亚洲地理[M].商务出版社,1996.
    刘明玉,张树清,刘敏.辽宁蛙科一新种(无尾目)[J].动物分类学报,1993,18(04):493-497.
    刘明玉,柳永青,李剑源.桓仁林蛙的繁殖习性[J].四川动物,2004,23(3): 183-184.
    刘欣,张伟,遇宝成,等.东北三省中国林蛙资源调查研究[J].林业资源管理,2007,(03):82-85.
    刘志杰,孙永军.青藏高原隆升与黄河形成演化[J].地理与地理信息科学,2007,23(1):79-82.
    刘忠权.中国泽蛙线粒体基因组结构及种群系统地理学研究[D].南京师范大学,南京,2003.
    路庆芳.利用线粒体DNA分子标记探讨棘胸蛙种群遗传结构[D].浙江师范大学,金华,2008.
    马瑞俊,蒋志刚.全球气候变化对野生动物的影响[J].生态学报,2005,25(11):3061-3066.
    曲淑燕.基于共有区间的基因组重排问题研究[D].大连海事大学,大连,2006.
    任美锷.黄河的输沙量:过去、现在和将来——距今15万年以来的黄河泥沙收支表[J].地球科学进展,2006,21(6):551-563.
    邵济安,张履桥,肖庆辉,等.中生代大兴安岭的隆起——一种可能的陆内造山机制[J].岩石学报,2005,21(3):789-794.
    邵济安,韩庆军,张履桥,等.陆壳垂向增生的两种方式:以大兴安岭为例[J].岩石学报,1999,15(4):600-606.
    施雅风,郑本兴,李世杰,等.青藏高原中东部最大冰期时代高度与气候环境探讨[J].冰川冻土,1995,17(2):97-112.
    施雅风,李吉均,李炳元,等.晚新生代青藏高原的隆升与东亚环境变化[J].地理学报,1999,54(1):10-20.
    佘宽,刘鹏.黑龙江省两种林蛙的分布及保护现状[J].哈尔滨师范大学自然科学学报,2009,25(03):101-103.
    孙肇春,锺金岳,胡俭彬,等.东北河流阶地与河流劫夺[J].吉林师大学报,1964,2:135-152.
    王均平.黄河中游晚新生代地貌演化与黄河发育[D].兰州大学,兰州,2006.
    王苏民,吴锡浩,张振克,等,三门古湖沉积记录的环境变迁与黄河贯通东流研究[J].中国科学(D辑),2001,31(9):760-768.
    王怡婷.秦岭地区隆肛蛙谱系地理学及群体遗传结构初步研究[D].陕西师范大学,西安,2009.
    王宇.生境片段化对花臭蛙食性、遗传结构及其偏性扩散的影响[D].浙江大学,浙江,2012.
    吴福莉,方小敏,马玉贞,等.黄土高原中部1.5Ma以来古生态环境演化的孢粉记录[J].科学通报,2004,49(1):99-105.
    夏睿.黑龙江林蛙和黑斑侧褶蛙抗菌肽的差异及其对种群扩散的潜在影响[D].硕士,东北林业大学,2011.
    肖羽,陈光照,谷晓明.贵州疣螈D-loop区和tRNAPhe序列变异及群体遗传多样性[J].动物学杂志,2010,45(3):21-29
    谢锋,叶昌媛,费梁,等.中国东北地区林蛙属物种的分类学研究(两栖纲:蛙科)[J].动物分类学报,1999,24(2):224-231.
    徐钦琦.中更新世以来兽类地理分布的变化及其天文气候学的解释[J].古脊椎动 物学报,1992,30(3):233-241.
    薛建华,卓丽环,周世良.黑龙江野生莲遗传多样性及其地理式样[J].科学通报,2006,51(3):299-308.
    杨玉慧,张德兴,李义明,等.中国黑斑蛙种群的线粒体DNA多样性和生物地理演化过程的初探[J].动物学报,2004,50(2):193-201.
    叶昌媛,费梁,胡淑琴.中国珍稀及经济两栖动物[M].四川科学技术出版社,1993.
    殷志强,秦小光,刘嘉麒,等.扎龙湿地的形成背景及其生态环境意义[J].地理科学进展,2006,25(3):32-38.
    应璐,徐艳春,黄孝明,等.东北林蛙8个地理种群的形态聚类分析[J].安徽农业科学,2008,36(18):7699-7700.
    张国强.ISSR分子标记揭示黑斑侧褶蛙中国种群的遗传结构和遗传多样性[D].南京师范大学,南京,2005.
    章克家.大鲵保护生物学及其研究进展[J].生物多样性,2002,10(3):291-297.
    张明.东北林蛙(Rana dybowskii)遗传多样性及异地引种对种群遗传结构的影响[D].东北林业大学,哈尔滨,201 0.
    张树清,吕蕊,张天觉,等.桓仁林蛙的生态观察[J].辽宁林业科技,2008,3:28-30
    张荣祖.中国动物地理[M].科学出版社,1999.
    张荣祖.中国地质事件与哺乳动物的分布[J].动物学报,2002,48:141-153.
    张雄飞,周开亚,常青.中国大陆黑斑侧褶蛙基于mtDNA控制区序列的种群遗传结构[J].遗传学报,2004,31(11):1232-1240.
    赵文阁.黑龙江省两栖爬行动物志[M].科学出版社,2008.
    赵正阶.中国林蛙的生态研究[J].东北师大学报(自然科学版),1982,3:89-96.
    钟大赉,丁林.青藏高原的隆起过程及其机制探讨[J].中国科学(D辑),1996,26(4):289-295.
    周尚红,许刘冰,Colgan,P.M.,等.古乡冰期和白玉冰期的宇宙成因核素 10Be定年[J].科学通报,2007,52(8):945-950.
    周倚良.中国东北植物地理[M].科学出版社,1997.
    周瑜,杨宝田,陆宇燕,等.基于ISSR标记的辽宁4个东北林蛙种群遗传多样性分析[J].四川动物,2011,30(3):321-325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700