用户名: 密码: 验证码:
油松人工林天然更新特征对林隙和皆伐年限的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
林隙对于促进森林天然更新具有重要作用。间伐对林隙特征的影响,以及天然更新特征对林隙和皆伐年限响应的研究,对于揭示采伐干扰对森林更新的作用机制,从而优化经营措施,实现人工纯林的近自然经营具有重要现实意义。本文以河北省平泉县40年生、50年生油松人工纯林,皆伐后2年、5年和8年的油松人工纯林皆伐迹地为研究对象,在2011-2013年标准地和样线调查的基础上,应用点格局和地统计学等分析方法,对间伐对林隙特征的影响、林隙和皆伐年限对更新数量特征、年龄特征和分布格局的影响,以及林隙、皆伐年限与枯落物、草本生物量的关系进行了研究。研究结果表明:
     (1)40和50年生林分实施间伐后,林隙的线密度无变化,CG(林冠空隙)和EG(扩展林隙)开敞度的分布范围扩大,林隙更接近圆形,平均边界木数量增加10.0%和3.0%。实施间伐后40年生林分内CG和EG平均面积增加10.19%和19.84%,CG和EG面积比例增加35.24%和24.29%;50年生林分内CG和EG平均面积增加85.51%和50.23%,CG和EG面积比例增加65.59%和22.95%。
     (2)40年生林分内,更新树种只有油松,50年生林分内和皆伐迹地内油松数量比例均在90%以上。在40年和50年生林冠下更新密度从4.90/m2下降到2.03/m2;平均高度和基径从26.04cm和4.33mm增加到29.79cm和4.98mm,平均年龄从5.47下降到4.94。皆伐后随时间延长更新密度递减,从2.10/m2下降到0.72/m2;平均高度、基径和年龄递增,从82.03cm、21.71mm和5.85增加到159.23cm、37.52mm和7.06。各样地内高度和基径分布都为单峰型。在40和50年生林分内,林隙提高了更新密度,且更新密度分别与林隙面积正相关和负相关;小林隙内适合幼苗生长,大林隙内适合幼树生长。林隙对更新个体的高度、基径和年龄影响有限。
     (3)40和50年生林分内和皆伐迹地内油松的年龄结构都呈单峰型。40年生、50年生和皆伐迹地内更新群落分别主要由3-7年生、2-7年生和4-8年生个体组成。油松种群年龄结构失调,3年生以下的幼苗数量严重不足,平均寿命短,一般第8年时出现死亡高峰。存活曲线多接近Deevey Ⅱ型。
     (4)40和50年生林分内,林冠下更新种群都为聚集分布,皆伐后更新种群都为小尺度上聚集分布,大尺度上随机分布;油松幼苗和幼树、冠层木与更新层始终空间不相关。在40年生林分内,林隙内随林隙面积增加,更新群落由随机分布变为在小尺度上聚集分布,大尺度上随机分布;林隙降低了聚集强度。在50年生林分内,林隙内都为随机分布,随林隙面积增加聚集强度峰值对应的尺度变大。
     (5)40年生林分内,在10-15m2林隙内枯落物密度比林冠下提高21.28%,其余林隙内比林冠下减少33.02%-35.42%。枯落物厚度和有效拦蓄率在15m2-20m2林隙内比林冠下分别降低21.12%和16.60%,其余林隙内与林冠下差异不大。草本生物量密度在林隙内与林冠下基本一致。在50年生林分内,林隙内枯落物密度比林冠下提高16.95%-65.61%。林隙对枯落物厚度影响不显著。林隙内枯落物有效拦蓄率较林冠下下降15.73%-27.91%。林隙内草本生物量密度比林冠下提高18.18%-32.36%。40和50年生林分内,枯落物密度、厚度和草本生物量密度对更新密度影响很小。皆伐后2年到8年,枯落物的密度和厚度增加29.57%和51.64%;有效拦蓄率和草本生物量密度下降34.71%和19.61%;趋势有利于幼苗定居与生长。林隙和皆伐年限影响了枯落物特征和草本生物量密度的空间异质性。
     (6)实施主伐后该林地未来将形成油松复层异龄林,林分垂直结构和年龄结构的异质性增强,但仍然存在树种单一的问题。因此在缺乏其他树种种源的现状下,应考虑通过人工引进其他树种,增加树种多样性逐步营建复层异龄混交林。有必要在不同林龄的人工油松林内,制造面积更大的林隙或皆伐带,探索伐前更新的最适生境和最有效的人工干扰措施。
Forest gaps play an important role in promoting the natural recruitment. Research of effects of thinning on gap characteristics and response of natural recruitment to gap characteristics and clear cutting fixed number of year have important practical significance in revealing mechanism of cutting disturbance on forest recruitment so as to optimize the management measures and realize close to nature management of artificial pure forest. Taking40and50years old pinus tabulaeformis plantation and clearing areas of pinus tabulaeformis plantation2,5and8years after clear cutting were taken as research objects in Pingquan County of Hebei province. On the basis of sample plot and line transect investigation in2011to2013, used analysis method of point pattern and geostatistics, the effects of thinning on gap characteristics as well as effect of gap and clear cutting fixed number of year on recruitment quantitative and age characteristics and distribution pattern, the relationship between gaps as well as clear cutting fixed number of year and litter as well as herbaceous biomass were studied. The results are as follows:
     (1) In40and50years stand, after thinning there were no change on gaps linear density, the distribution range of opening degree of CG (canopy gap) and EG (extended gap) were enlarged, gaps were more close to round and the boundary wood quantity were increased10.0%and3.0%respectively. After thinning in40years stand, CG and EG average area increased by10.19%and19.84%, EG and CG area proportion increased by35.24%and24.29%; In50years stand CG and EG average area increased by85.51%and50.23%; EG and CG area proportion increased by65.59%and22.95%.
     (2) In40years stand, pinus tabulaeformis was the only recruit tree species, in50years stand and clearing areas quantity proportion of pinus tabulaeformis were all above90%. From40to50years under the canopy density decreased from2.03/m2to4.90/m2; average height and base diameter increased progressively from26.04cm and4.33mm to29.79cm and4.98mm respectively; average age decreased from5.47to4.94. After clear cutting with the extension of time recruit density decreased progressively from2.10/m2down to0.72/m2; average height, base diameter and age increased progressively from82.03cm,21.71mm and5.85to159.23cm,37.52and7.06. In all sample plot distribution type of height and base diameter were unimodal. In40and50years stand, gap increased recruit density, and recruit density positively correlated and negatively correlated with gaps area respectively; the area of gap suitable for growth was gradually amplified with the increase of recruit age. Gaps had limited impact on the height, base diameter and age.
     (3) In40and50years stand and all clear areas age structures of pinus tabulaeformis populations were all unimodal type. Recruitment populations were mainly composed of3to7year,2to7years and4to8years in40years stand,50years stand and clear areas respectively. Pinus tabulaeformis age structures were imbalance, there was a serious shortage of seedling number below3years, the average life expectancy was short, generally mortality peak appeared in the eighth year, survival curves closed to Deevey type II.
     (4) In40and50years stand, the distribution of recruitment population presents a spatial aggregation at all scales under canopy. After clear cutting, the recruitment populations were all exhibited clumped distribution at smaller scales and random distribution at larger scales. Pinus tabulaeformis seedlings were always spatially independent of saplings. Canopy woods were always spatially independent of recruitment poulations. In40years stand, with the increase of gaps area the recruitment poulations were changed from random distribution to clumped at smaller scales and randomly distributed at larger scales. Aggregation intensity was decreased by gaps. In50years stand, the scale values corresponding to peak value of aggregation intensity increased with the increase of gap area.
     (5) In40years stand, litter density in10-15m2gaps was increased by21.28%and litter in the rest gaps was decreased by30.02-35.42%than that under canopy. Litter thickness and the effective rate in15to20m2were decreased by21.12%and16.60%than that under canopy, and there were no significant differences between that in rest gaps and under canopy. In50years stand, litter density in gaps was increased by16.95-65.61%than that under canopy. Gaps had no significant impact on litter thickness. The effective rate in gaps was decreased by15.73-27.91%than that under canopy. Herb biomass were18.1832.36%higher than that under canopy.2years to8years after clear cutting, litter density and thickness was increased by29.57%and51.64%, the effective rate and herb biomass were decreased by34.71%and19.61%, the trend was favour of settlement and growth of seedlings. In40and50years stand litter density, litter thickness and herb biomass had limited impact on recruitment density. Gaps and clear cutting fixed number of year influenced the spatial heterogeneity of litter characteristics and herb biomass density,
     (6) After final felling the stand would become multi-layer uneven-age Chinese pine stand in future, the heterogeneity of vertical structure and age structure would be enhanced. However, the stand will still have the difficulty of low tree species diversity. Therefore to enhance the tree species diversity and to establish stratified uneven-aged mixed forest should be considered to induce other tree species in the case of lack of other tree provenance. Therefore, it is necessary to create larger gaps and clear tapes in different age stand to to find out the most effective interference measurements.
引文
1. 柏广新,张彦东.水曲柳天然更新及其影响因子[J].东北林业大学学报,2013,41(1):7-10.
    2. 蔡小英,范海兰,洪滔等.福建安曹下丰产杉木人工林林窗边缘效应的研究[J].热带亚热带植物学报,2007,15(3):229-236.
    3. 陈永刚,汤孟平,施拥军.样方形状对空间点格局的性能影响分析-以天目山阔叶林为例[J].地理研究,2012.31(4):665-671.
    4. 陈志刚,樊大勇,张旺锋,.林隙与林下环境对锐齿槲栎和米心水青冈种群更新的影响[J].植物生态学报,2005,29(3):354-360.
    5. 杜晓军,姜凤岐,曾德慧,等.辽西油松纯林可持续经营途径探讨.生态学杂志,1999,18(5):36-40.
    6. 冯玉婷,常禹,胡远满等.大兴安岭呼中森林景观的空间点格局分析[J].生态学杂志,2012,31(4):1016-1021.
    7. 韩广轩,张志东,王光美,等.山东半岛北部黑松海防林幼龄植株生长动态及其种群数量特征,生态学杂志,2009,28(6):1013-1020.
    8. 韩文娟,袁晓青,张文辉.油松人工林林窗对幼苗天然更新的影响.应用生态学报,2012,23(11):2940-2948.
    9. 何友均,梁星云,覃林,等.南亚热带人工针叶纯林近自然改造早期对群落特征和土壤性质的影响[J].生态学报,2013,33(8):2484-2495.
    10.胡蓉,林波,刘庆.林窗与凋落物对人工云杉林早期更新的影响[J].林业科学,2011,47(6):23-29.
    11.胡蓉,林波,刘庆.林窗与凋落物对人工云杉林早期更新的影响[J].林业科学,2011,47(6):23-29.
    12.黄剑坚,李际平,刘素青,等.2013.红树林扩展林窗空间营养指数[J].林业科学,2013,49(9):16-22.
    13.黄全,李意德.海南岛尖峰岭热带山地雨林采伐迹地更新群落的初步分析[J].植物生态学与地植物学学报,1988.12(1):12-22.
    14.贾国栋,余新晓,邓文平.北京山区典型流域不同海拔椴树种群的空间点格局分析[J].生态环境学报,2011,20(6-7):996-1002.
    15.兰国玉,雷瑞德,安锋,等.秦岭华山松种群格局规模与林窗特征[J].生态学杂志,2006,25(6):652-656.
    16.李根柱,王贺新,朱书全等.东北次生林区枯落物对天然更新的障碍作用[J].辽宁工程技术大学学报,2008.27(2):295-298.
    17.李荣,罗惠文,宋于洋,等.天山北坡天山云杉的种群结构特征和空间分布格局[J].干 旱区资源与环境,2013.27(1):91-96.
    18.李晓磊,毕永华,姜立春.用地统计学方法分析择伐迹地的天然更新[J].森林工程,1999.15(5):17-20.
    19.刘云,侯世全,李明辉等.两种不同干扰方式下的天山云杉更新格局[J].北京林业大学学报,2005.27(1):47-50.
    20.龙翠玲,余世孝.茂兰喀斯特森林的林隙物种组成动态及更新模式[J].林业科学,2007,43(9):7-12.
    21.龙翠玲,余世孝.茂兰喀斯特森林林隙幼苗出现的时空格局[J].云南植物研究,2007,29(5):569-574.
    22.卢训令,丁圣彦,游莉等.伏牛山自然保护区森林冠层结构对林下植被特征的影响[J].生态学报,2013,33(15):4715-4723.
    23.陆元昌.2006.近自然森林经营的理论与实践.北京:科学出版社.
    24.马莉薇,张文辉,薛瑶芹,等.秦岭北坡不同生境栓皮栎实生苗生长及其影响因素[J].生态学报,2010,30(23):6512-6520.
    25.史小华,刘毅,彭佳龙,等.秦岭冷杉和巴山冷杉种群年龄结构及动态的比较分析[J].东北林业大学学报,2009,37(1):10-14.
    26.宋英春,李凤日.乌兰布和沙漠灌木种群空间格局研究[J].植物研究,2007.27(3):231-237.
    27.孙志虎,牟长城,张彦东.地统计学方法在长白落叶松人工林凋落物现存量估测中的应用[J].生物数学学报,2007.22(4):703-710.
    28.谭笑,孙向阳,阎海平等.北京西山地区人工针叶林林窗特征的研究[J].北京林业大学学报,2000.22(6):64-66.
    29.王彬,王辉,杨君珑.子午岭油松林更新特征研究[J].西北林学院学报,2009,24(5)58-60.
    30.王梅,张文辉.不同密度油松人工林生长更新状况及群落结构[J].西北农林科技大学学报,2009.37(7):75-80.
    31.王中磊,高贤明.锐齿槲栎林的天然更新—坚果、幼苗库和径级结构[J].生态学报,2005.25(5):986-993.
    32.乌吉斯古楞,王俊峰,郑小贤,等.金沟岭林场过伐林更新幼苗空间结构分析[J].中南林业科技大学学报,2009.29(4):21-25.
    33.吴大荣,吴永彬.闽楠(Phoebe bournei (Hemsl.) Yang)种群的天然更新[J].植物资源与环境,1998,7(3):8-12.
    34.武小钢,郭晋平.关帝山华北落叶松天然更新种群结构与空间格局研究[J].武汉植物学研究,2009,27(2):165-170.
    35.闫淑君,洪伟,林勇明,等.闽江口琅岐岛风景区朴树种群天然更新特征[J].林业科学, 2013,49(4):147-151.
    36.闫兴富,曹敏.林窗对热带雨林冠层树种绒毛番龙眼幼苗生长的影响[J].应用生态学报,2008,19(2):238-244.
    37.杨立文,石清峰.太行山主要植被枯枝落叶层的水文作用[J].林业科学研究,1997,10(3):283-288.
    38.杨玲.天童常绿阔叶林萌枝更新的生态学研究(M).上海:华东师范大学.2007.
    39.张吕醉,王孝安,郭华,等.辽东栎林林隙特征及其对群落更新的影响[J].生态学杂志,2008,27(11):1835-1840.
    40.张希彪,王瑞娟,周天林,等.黄土丘陵区油松天然次生林林窗特征与更新动态[J].应用生态学报,2008.19(10):2103-2108.
    41.张象君,王庆成,郝龙飞,等.长白落叶松人工林林隙间伐对林下更新及植物多样性的影响.林业科学,2011,47(8):7-13.
    42.张远东,刘世荣,赵常明.川西亚高山森林恢复的空间格局分析[J].应用生态学报,2005.16(9):1706-1710.
    43.郑丽凤,周新年,罗积长,等.择伐强度对天然针阔混交林更新格局的影响[J].福建林学院学报,2008.28(4):3110-313.
    44.周建云,李荣,何景峰,等.近自然经营对辽东栎林优势乔木更新的影响[J].林业科学,2013.49(8):15-20.
    45.周先叶,李鸣光,王伯荪.1997.广东黑石顶森林群落黄果厚壳桂(Cryptocarya concinna)幼苗的年龄结构和高度结构.热带亚热带植物学报,1997,5(1):39-44.
    46.朱教君,李凤芹,松崎健,等.间伐对日本黑松海岸林更新的影响.应用生态学报,2002,13(11):136-1367.
    47.朱小龙,赖志华,黄承勇,等.长苞铁杉幼苗在林窗不同位置的建立[J].广西植物.2008,28(4):473-477.
    48. Akhavan R, Sagheb-Talebi K, Zenner E K, et al. Spatial patterns in different forest development stages of an intact old-growth Oriental beech forest in the Caspian region of Iran. European Journal of Forest Research,2012,131:1355-1366.
    49. Albrecht M A, McCarthy B C. Effects of prescribed fire and thinning on tree recruitment patterns in central hardwood forests. Forest Ecology and Management,2006,226(1):88-103.
    50. Anthony R, Taylor, Hart, et al. Tree community structural development in young boreal forests:A comparison of fire and harvesting disturbance. Forest Ecology and Management, 2013,310:19-28.
    51. Ares A, Neill A R, Puettmann K J. Understory abundance, species diversity and functional attribute response to thinning in coniferous stands. Forest Ecology and Management,2010, 260(7):1104-1113.
    52. Arevalo J R, Fernandez-Palacios J M. Treefall gaps and regeneration composition in the laurel forest of Anaga (Tenerife):a matter of size?. Plant ecology,2007,188(2):133-143.
    53. Arrieta S, Suarez F. Spatial patterns of seedling emergence and survival as a critical phase in holly (Ilex aquifolium L.) woodland recruitment in Central Spain. Forest Ecology and Management,2005,205(1):267-282.
    54. Barbeito I, Fortin M J, Montes F, et al. Response of pine natural regeneration to small-scale spatial variation in a managed Mediterranean mountain forest. Applied Vegetation Science, 2009,12(4):488-503.
    55. Baskent E Z, Baaya S, Terzioglu S. Developing and implementing participatory and ecosystem based multiple use forest management planning approach (ETCAP):Yalmzcam case study. Forest Ecology and Management,2008,256:798-807.
    56. Brokaw N V L. Gap-phase regeneration of three pioneer tree species in a tropical forest. Journal of Ecology,1987,75:9-19.
    57. Brokaw N V L. The definition of treefall gap and its effect on measures of forest dynamics[J]. Biotropica,1982,11:158-160.
    58. Buckley DS, Crow T R, Nauertz E A, et al. Influence of skid trails and haul roads on understory plant richness and composition in managed forest landscape in Upper Michigan, USA. Forest Ecology and Management,2003,175:509-520.
    59. Busing R T. Disturbance and the population dynamics of Liriodendron tulipifera:simulations with a spatial model of forest succession. Journal of Ecology,1995,83(1):45-53.
    60. Call, L. J. and E. T. Nilsen E T. Analysis of spatial patterns and spatial association between the invasive tree-of-heaven (Ailanthus altissima) and the native black locust (Robinia pseudoacacia). American Midland Naturalist,2003,150 (1):1-14.
    61. Camarero, J J, Gutierrez E, Fortin M, et al. Spatial patterns of tree recruitment in a relict population of Pinus uncinata:forest expansion through stratified diffusion. Journal of Biogeography,2005,32 (11):1979-1992.
    62. Canham C D, Denslow J S, Platt W J, et al. Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Canadian Journal of Forest Research,1990, 20 (5):620-631.
    63. Carrer M, Soraruf L, Lingua E. Convergent space-time tree regeneration patterns along an elevation gradient at high altitude in the Alps. Forest Ecology and Management,2013,304: 1-9.
    64. Carvalho-Ribeiro S, Lovett M A, O'Riordan T. Multifunctional forest management in Northern Portugal:Moving from scenarios to governance for sustainable development. Land Use Policy,2010,7:1111-1122.
    65.. Laminated root rot of Douglas-Fir in Western Oregon and Washington. USDA Forest Service Research Paper PNW-102,1970, pp:27.
    66. Clark J S, Beckage B, Camilla P, et al. Interpreting recruitment limitation in forests. American Journal of Botany,1999,86 (1):1-16.
    67. Clark J S, Macklin E, Wood L. Stages and spatial scales of recruitment limitation in southern Appalachian forests. Ecological Monographs,1988,68 (2):213-235.
    68. Coates K D, Burton P J. A gap-based approach for development of silvicultural systems to address ecosystem management objectives. Forest Ecology and Management,1997,99 (3): 337-354.
    69. Coates K D. Conifer seedling response to northern temperate forest gaps. Forest Ecology and Management,2002,127:249-269.
    70. Coates K D. Tree recruitment in gaps of various size, clearcuts and undisturbed mixed forest of interior British Columbia, Canada. Forest Ecology and Management,2002,155 (1): 387-398.
    71. Coates, K D, Burton P J. A gap-based approach for development of silvicultural systems to address ecosystem management objectives. Forest Ecology and Management,1997,99(3): 337-354.
    72. Coates, K D. Tree recruitment in gaps of various size, clearcuts and undisturbed forest of interior British Columbia, Canada. Forest Ecology and Management,2002,155,387-398.
    73. Cole K L, Wahl E. A late Holocene paleoecological record from Torrey Pines State Reserve, California. Quat Res,2000,53 (3):341-351.
    74. Condit R, Ashton P S, Baker P, et al. Spatial patterns in the distribution of tropical tree species. Science,2000,288 (5470):1414-1418.
    75. d'Oliveira M V N, Ribas L A. Forest regeneration in artificial gaps twelve years after canopy opening in Acre State Western Amazon. Forest Ecology and Management,2011,261(11): 1722-1731.
    76. Dale M R T, Powell R D. A new method for characterizing point patterns in plant ecology. Journal of Vegetation Science,2001,12(5),597-608.
    77. Debski 1, D.F.R.P. Burslem E F P R, Lamb D. Ecological processes maintaining differential tree species distributions in an Australian subtropical rain forest:implications for models of species coexistence. Journal of Tropical Ecology,2000,16:387-415.
    78. Diaci J, Gyoerek N, Gilha J, et al. Response of Quercus robur L. seedlings to north-south asymmetry of light within gaps in floodplain forests of Slovenia. Annals of Forest Science, 2008,65(1):105-105.
    79. Dickinsona M B, Whigham D F, Hermann S M. Tree regeneration in felling and natural treefall disturbances in a semideciduous tropical forest in Mexico. Forest Ecology and Management,2000,134:137-151.
    80. Dobrowolska D, Thomas T. Veblen T T. Treefall-gap structure and regeneration in mixedAbies albastands in central Poland. Forest Ecology and Management,2008,255: 3469-3476.
    81. Dodson E K, Ares A, Puettmann K J. Early responses to thinning treatments designed to accelerate late successional forest structure in young coniferous stands of western Oregon, USA. Canadian Journal of Forest Research,2012,42(2):345-355.
    82. Dorota D, Veblen T T. Treefall-gap structure and regeneration in mixed Abies alba stands in central Poland. Forest Ecology and Management,2008,255 (8):3469-3476.
    83. Elias R B, Dias E. Gap dynamics and regeneration strategies in Juniperus-Laurus forests of the Azores Islands. Plant Ecology,2009,200 (2):179-189.
    84. Facelli J M, Pickett S T A. Plant litter:light interception and effects on an old 2 field plant community. Ecology,1991,72:1024-1031.
    85. Facelli J M. Multi ple indirect effect s of plant litter effect the establishment of woody seedling in old fields. Ecology,1994,75:1727-1735.
    86. Fahey R T, Puettmann K J. Patterns in spatial extent of gap influence on understory plant communities. Forest Ecology and Management,2008,255:2801-2810.
    87. Fajardo A, Goodburn J M, Graham J. Spatial patterns of regeneration in managed uneven-aged ponderosa pine/Douglas-fir forests of Western Montana, USA. Forest Ecology and Management,2006,223:255-266.
    88. Farmer R E. Seed Ecophysiology of Temperate and Boreal Zone Forest Trees. St. Lucie Press, Delray Beach, FL, USA,1997.
    89. Fujii S, Kubota Yand, Enoki T. Long-term ecological impacts of clear-fell logging on tree species diversity in a subtropical forest, southern Japan. Journal of Forest Research,2010, 15:289-298.
    90. Gagnon J L, Jokela E J, Moser W K, et al. Dynamics of artificial regeneration in gaps within a longleaf pine flatwoods ecosystem. Forest Ecology and Management,2003,172(2): 133-144.
    91. Garbarino M, Mondino E B, Lingua E, et al. Gap disturbances and regeneration patterns in a Bosnian old-growth forest:a multispectral remote sensing and ground-based approach. Annals of Forest Science,2012,69 (5):617-625.
    92. Green D F, Johnson E A. Wind dispersal of seeds from a forest into a clearing. Ecology,1996, 82:595-609.
    93. Greene D F, Kneeshaw D D, Messier C, et al. Modelling silvicultural alternatives for conifer regeneration in boreal mixedwood stands (aspen/white spruce/balsam fir). For Chron,2002, 78:281-95.
    94. Grime J P, Hodgson J G, Hunt R. Comparative Plant Ecology[D]. A functional approach to common British species, Unwin-Hyman, London,1988.
    95. Haeussler S, Bergeron Y. Range of variability in boreal aspen plant communities after wildfire and clear-cutting. Canadian Journal of Forest Research,2004,34,274-288.
    96. Hall J S, Medjibe V, Berlyn G P, et al. Seedling growth of three co-occurring Entandrophragma species (Meliaceae) under simulated light environments:implications for forest management in central Africa. Forest Ecology and Management,2003,179(1): 135-144.
    97. Harmer R, Morgan G. Storm damage and the conversion of coniferplantations to native broadleaved woodland. Forest Ecology and Management,2009,258 (5):879-886.
    98. Harvey B, Brais S. Effects of mechanized careful logging on natural regeneration and vegetation competition in the southeastern Canadian boreal forest. Canadian Journal of Forest Research,2002,32:653-666.
    99. Hastings A. Complex interactions between dispersal and dynamics:lessons from coupled logistic equations. Ecology,1993,74 (5):1362-1372.
    100. Hiromi Mizunaga H. Do finer gap mosaics provide a wider niche for Quercus gilvain young Japanese cedar plantations than coarser mosaics? Simulation of spatial heterogeneity of light availability and photosynthetic potential. Canadian Journal of Forest Research,2007,37: 1545-1553.
    101. Holgen, Hanell. Performance of planted and naturally regenerated seedlings in Picea abices-dominated shelterwood stands and clearcuts in Sweden. Forest Ecology and Management, 2000,127:129-138.
    102. Hou, J H, Mi X C, Liu C R, et al. Spatial patterns and associations in a Quercus-Betula forest in northern China. Journal of Vegetation Science,2004,15:407-414.
    103.Ignacio B, Marie-Josee F, Fernando M, et al. Response of pine natural regeneration to small-scale spatial variation in a managed Mediterranean mountain forest. Applied Vegetation Science,2009,12:488-503.
    104. Ilisson T, Chen H Y H. Response of Six Boreal Tree Species to Stand Replacing Fire and Clearcutting. Ecosystems,2009,12:820-829.
    105. Kozlowski T T. Physiological ecology of natural regeneration of harvested and disturbed forest stands:Implications for forest management. Forest Ecology and Management,2002, 158:195-221.
    106. Lan G, Zhu H, Cao M, et al. Spatial dispersion patterns of trees in a tropical rainforest in Xishuangbanna, southwest China. Ecological Research,2009,24:1117-1124.
    107. Larsen D R, Lawrence C B. An analysis of structure of tree seedling populations on a Lahar. Landscape Ecology,1998,13:307-322.
    108. Legendre P, Fortin M J. Spatial pattern and ecological analysis. Vegetatio,1989,80(2): 107-138.
    109. Lindh B C, Muir P S. Understory vegetation in young Douglas-fir forests:does thinning help restore old-growth composition? Forest Ecology and Management,2004,192(2):85-296.
    110. Lookingbill T R, Zavala M A. Spatial pattern of Quercus ilex and Quercus pubescens recruitment in Pinus halepensis dominated woodlands. Journal of Vegetation Science,2000, 11:607-612.
    111. Messier C, Doucet R, Ruel J, et al. Functional ecology of advance regeneration in relation to light in boreal forests. Canadian Journal of Forest Research,1999,29 (6):812-823.
    112. Miller G W, Kochenderfer J N. Maintaining species diversity in the central Appalachians. Journal of Forestry,1998,96 (7):28-33.
    113.Moeur, M. Characterizing spatial patterns of trees using stem-mapped data. Forest Science, 1993,39 (4):756-775.
    114. Moktan M R, Gratzer G, Richards W H, et al. Regeneration of mixed conifer forests under group tree selection harvest management in western Bhutan Himalayas. Forest Ecology and Management,2009,257(10):2121-2132.
    115. Morrissey R C, Jacobs D F, Davis A S, et al. Survival and competitiveness of Quercus rubra regeneration associated with planting stock type and harvest opening intensity. New Forestry, 2010,40:273-287.
    116. Myers G P, Newton A C, Melgarejo O. The influence of canopy gap size on natural regeneration of Brazil nut (Bertholletia excelsa) in Bolivia. Forest Ecology and Management, 2000,127(1):119-128.
    117. Naaf T, Wulf M Effects of gap size, light and herbivory on the herb layer vegetation in European beech forest gaps. Forest Ecology and Management,2007,244(1):141-149.
    118.Nabel M R, Newton M, Cole E C. Abundance of natural regeneration and growth comparisons with planted seedlings 10-13 years after commercial thinning in 50-year-old Douglas-fir, Douglas-fir/western hemlock, Oregon Coast Range. Forest Ecology and Management,2013,292:96-110.
    119. Nakamura A, Morimoto Y, Mizutani Y. Adaptive management approach to increasing the diversity of a 30-year-old planted forest in an urban area of Japan. Landscape and Urban Planning,2005,70:291-300.
    120. Newton M, Cole E C. Linkage between riparian buffer features and regeneration, benthic communities and water temperature in headwaters streams, western Oregon. In:Harrington, C., Schoenholtz, S. (Eds.), Productivity of Western Forests:A Forest Products Focus. USDA Forest Service, Pacific Northwest Research Station, Portland, Oreg., General Technical, Report PNWGTR-642,2005. pp.81-101.
    121.Nyland R D. Silviculture:Concepts and Applications, second ed. Waverland Press, Inc., Long Grove, IL, USA,2002, p.682.
    122. Otto R A, Juday G P. Canopy gap characteristics and their implications for management in the temperate rainforests of southeast Alaska. Forest Ecology and Management,2001,159(3): 271-291.
    123. Otto R, Garcia-del-Rey E, Mendez J, et al. Effects of thinning on seed rain, regeneration and understory vegetation in a Pinus canariensis plantation (Tenerife, Canary Islands). Forest Ecology and Management,2012,280(12):71-81.
    124. Palmiotto P A, Davies S J, Vogt, et al. Soil-related habitat specialization in dipterocarp rain forest tree species in Borneo, journal of ecology,2004,92:609-623.
    125. Parsons W F J, Knight D H, Miller S L. Root Gap Dynamics in Lodgepole Pine Forest: Nitrogen Transformations in Gaps of Different Size. Ecological Applications,1994,4 (2): 354-362.
    126. Poorter L, Hayashida-O liver Y.Effects of seasonal drought on gap and understory seedlings in a Bolivian moist forest. Journal of Tropical Ecology,2000,16:481-498。
    127. Pothier D, Prevost M. Regeneration development under shelterwoods in alowland red spruce-balsam fir stand. Canadian Journal of Forest Research,2008,38:31-39.
    128. Prevost M, Gauthier M. Shelterwood cutting in a red spruce-balsam fir lowland site:Effects of final cut on water table and regeneration development. Forest Ecology and Management, 2013,291:404-416.
    129. Ripley B D. Spatial Statistics. Wiley press, New York,1981, pp:252.
    130. Robert A, John J, Anne K, et al. Giant Sequoia (Sequoiadendron giganteum) Regeneration in Experimental Canopy Gaps. Restoration Ecology,2011,19:14-23.
    131. Rodwell J, Patterson G. Creating new native woodlands[M]. HMSO,1994.
    132. Romell E, Hallsby G, Karlsson A, et al. Artificial canopy gaps in a Macaranga spp. dominated secondary tropical rain forest-Effects on survival and above ground increment of four under-planted dipterocarp species. Forest ecology and management,2008,255(5): 1452-1460.
    133. Rozas V. Regeneration patterns, dendroecology, and forest-use history in an old-growth beech-oak lowland for-est in Northern Spain. Forest ecology and management,2013,182: 175-194.
    134. Ryniker K A, Bush J K, Van Auken O W. Structure of Quercus gambelii communities in the Lincoln National Forest, New Mexico, USA. Forest Ecology and Management,2006.233, 69-77.
    135. Sanchez Meador A J, Moore M M, Bakker J D, et al.108 years of change in spatial pattern following selective harvest of a Pinus ponderosa stand in northern Arizona, USA. Journal of Vegetation Science,2009,20:79-90.
    136. Seiwa K, Eto Y, Hishita M, et al. Effects of thinning intensity on species diversity and timber production in a conifer (Cryptomeria japonica) plantation in Japan. Journal of Forest Research,2012,17:468-478.
    137. Selmants P C, Knight D H. Understory plant species composition 30-50 years after clearcutting in southeastern Wyoming coniferous forests. Forest Ecology and Management, 2003,185:275-289.
    138. Seymour R S, White A S, deMaynadier P G, Natural disturbance regimes in northeastern North America-evaluating silvicultural systems using natural scales and frequencies. Forest Ecology and Management,2002,155(1):357-367.
    139. Smith P G. Quantitative Plant Ecology. Blackwell Scientific Publications.3rd Edn, London, 1983, pp:21-36.
    140. Sousa W P. Intertidal mosaics:propagule availability and spatially variable patterns of succession. Ecology,1984,65(6):1918-1935.
    141. Spracklen B D, Lane J V, Spracklen D V, et al. Regeneration of native broadleaved species on clearfelled conifer plantations in upland Britain. Forest Ecology and Management,2013,310: 204-212.
    142. Taki H., Inoue T, Tanaka H et al. Responses of community structure, diversity, and abundance of understory plants and insect assemblages to thinning in plantations. Forest Ecology andManagement,2010,259:607-613.
    143. Thomas A, Spies T A, Franklin J F. Gap characteristics and vegetation response in coniferous forest of the Pacific Northwest. Ecology.1989,70(3):543-545.
    144. Thomas Degena, Freddy Devilleza, Anne-Laure Jacquemart. Gaps promote plant diversity in beech forests (Luzulo-Fagetum), North Vosges, France. Annals of Forest Science,2005,62: 429-440.
    145. Van Der Meer P J, Paul Dignan, Andrea G. Saveneh. Effect of gap size on seedling establishment, growth and survival at three years in mountain ash (Eucalyptus regnansF. Muell.) forest in Victoria, Australia. Forest Ecology and Management,1999,117:33-42.
    146. Verschuyl J, Riffell S, Miller D, et al. Biodiversity response to intensive biomass production from forest thinning in North American forests-A meta-analysis. Forest Ecology and Management,2011,261(2):221-232.
    147. Vieira D L M, Scariot A. Principles of natural regeneration of tropical dry forests for restoration. Restoration Ecology,2006,14:11-20.
    148. Wallace H L. Distribution of birch in Scottish spruce plantations. In:Humphries, J., Holl, K., Broome, Alice (Eds.), Birch in Spruce Plantations Management for Biodiversity. Technical Paper 26. Forestry Commission, Edinburgh, pp.1998,3-12.
    149. Wang G L, Liu F. The influence of gap creation on the regeneration of Pinus tabuliformis planted forest and its role in the near-natural cultivation strategy for planted forest management. Forest Ecology and Management.2011.262,413-423.
    150. Wang G L, Liu F. The influence of gap creation on the regeneration of Pinus tabuliformisplanted forest and its role in the near-natural cultivation strategy for planted forest management. Forest Ecology and Management,2011,262(3):413-423.
    151. Wang Z F, Peng S L, Liu S Z et al. Spatial pattern of Cryptocaria chinensislife stages in a lower subtropical forest, China. Botanical Bulletin of Academia Sinica,2003,44:159-166.
    152. Watt A S.1947. Pattern and process in the plan community. Journal of Ecology,1947,35: 1-22.
    153. Whitmore T C. Canopy gaps and the two major groups of forest trees. Ecology,1989,70 (3): 536-538.
    154. Wolf A. Fifty year record of change in tree spatial patterns within a mixed deciduous forest. Forest Ecology and Management,2005,215:212-213.
    155. Wu CY. Vegetation of China,2nd edn. Science Press, Beijing.1995.
    156. Yamagawa H, Ito S, Nakao T.2008. Early establishment of broadleaved trees after logging of Cryptomeria japonica and Chamaecyparis obtuse plantations with different understory treatments. Journal of Forest Research,2008,13:372-379.
    157. Zerbe S. Restoration of natural broad-ieaved woodland in Central Europe on sites with coniferous forest plantations. Forest Ecology and Management,2002,167:27-42.
    158. Zhang L, Luo T X, Liu X S, et al. Altitudinal variations in seedling and sapling density and age structure of timberline tree species in the Sergyemla Mountains, southeast Tibet. Acta Ecologica Sinica,2010,30(2):76-80.
    159. Zhu J J, Matsuzaki T, Lee F Q, et al. Effect of gap size created by thinning on seedling emergency, survival and establishment in a coastal pine forest. Forest Ecology and Management,2003,182(1):339-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700