用户名: 密码: 验证码:
北京山区坡面土壤侵蚀响应特征及模型模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坡面是地表过程发生发展的基础单元,是流域最基本的组成单元,同时也是土壤侵蚀的主要发生地和沟道泥沙的主要来源区。本文基于北京山区坡面径流场以及首都圈森林生态站的定位观测资料,采用径流小区定位观测和野外及室内人工模拟降雨试验的方法,系统分析了降雨雨型、地形、植被覆盖和水土保持措施等多要素影响下的坡面土壤侵蚀响应机制。从侵蚀性降雨事件入手,基于改进的前期降雨指数模型(API)、改进的径流曲线模型(SCS-CN-MS)和改进的坡面土壤侵蚀模型(RUSLE-MM),构建了次降雨条件下坡面降雨-径流-侵蚀模型。应用构建的模型开展坡面土壤侵蚀定量化研究与模拟,揭示北京山区坡面降雨径流侵蚀过程及其机制。本研究结果为北京山区坡面水土流失规律提供理论基础,为北京山区坡面土壤侵蚀模型预报提供理论依据。
     主要研究结论如下:
     (1)研究区内的降雨事件可以划分为3种降雨雨型。降雨雨型Ⅰ为降雨历时短,降雨量小,降雨强度高、高频率的一类降雨事件;降雨雨型Ⅲ为降雨历时长,降雨量大,降雨强度低、低频率的一类降雨事件;而降雨雨型Ⅱ是介于降雨雨型Ⅰ和降雨雨型Ⅲ之间的一类降雨事件。通过分析不同降雨雨型的季节分布特征以及不同降雨雨型下的土壤侵蚀特征可知,在研究区内以降雨雨型Ⅰ占主导地位,即在短历时、高雨强、高频率的降雨雨型下,坡面土壤侵蚀剧烈。
     (2)不同坡度径流小区的径流量和侵蚀量的变化规律(多年平均、年际变化)存在一定的差异,但总体上表现出随着坡度的增而增大的趋势。不同坡长径流小区的径流量和侵蚀量的变化规律(多年平均、年际变化)存在一定的差异,坡面径流量表现出随着坡度的增加而减小的趋势,而土壤侵蚀量则随着坡长的增加呈现出先增加然后减小的趋势。在不同坡度、坡长条件下,坡面径流量和侵蚀量与降雨量和最大30min雨强I30的关系密切,表现为降雨量P和最大30min雨强I30越大,坡面土壤侵蚀越强烈。
     (3)植被覆盖对于控制坡面土壤侵蚀具有明显的作用。首先,植被覆盖能够显著的延缓坡面产流时间;其次,植被覆盖可以有效地调控坡面入渗过程;第三,植被覆盖可以有效调控坡面产流、产沙过程,随着植被覆盖的增加,坡面产流、产沙强度减小。
     (4)不同土地利用方式及水土保持措施的坡面土壤侵蚀特征分析表明:1)5种土地利用方式的土壤侵蚀量差异明显,与裸地相比较,耕地、人工草地、封禁荒草地和林地的减沙率达63.88%-99.63%;2)梯田比坡耕地措施小区的土壤侵蚀量减少了95.62%;3)采用水平条和鱼鳞坑措施林地小区的减沙率分别为83.56%和96.53%;4)与人工草地相比较,封禁荒草地的侵蚀产沙量减少了98.25%。
     (5)改进前期降雨指数模型(API)。分析了不同季节和不同土壤深度的土壤水分消退系数K的变化规律,并根据北京山区侵蚀性降雨特征对土壤水分消退系数K值进行优化取值(K=0.95)。应用次降雨事件的前期降雨指数Pa来表征土壤水分状况,定量分析了受前期土壤水分条件影响下的坡面降雨-径流过程。研究结果表明:应用前期降雨指数模型(API)能够较好的反映受前期土壤水分条件影响下的坡面降雨-径流过程。
     (6)改进径流曲线模型(SCS-CN-MS)。利用反算法对典型降雨事件下不同土地利用的初损系数λ进行计算,并确定不同土地利用的初损系数λi。在模型中引入前期土壤含水量M,并应用前期降雨指数模型(API)计算前5天降雨量,以确定前期土壤含水量M。应用4种径流曲线模型对不同土地利用类型的坡面径流量进行模拟研究。研究结果表明,改进后的径流曲线模型(SCS-CN-MS)在北京山区具有较理想的适用性。
     (7)改进坡面土壤侵蚀模型(RUSLE-MM)。直接考虑地表径流对土壤侵蚀的影响,在RUSLE模型中引入降雨径流侵蚀力指数(QREI30);考虑不同土地利用/覆被对土壤侵蚀的影响,构建不同土地利用类型的模型结构表达式。基于改进的径流曲线模型(SCS-CN-MS)和改进的坡面土壤侵蚀模型(RUSLE-MM),对次降雨条件下,北京山区不同土地利用类型坡面径流小区的土壤侵蚀量进行模拟研究。研究结果表明RUSLE-MM模型在北京山区具有较好的适用性。
Slope is the basis unit of the surface process development, also one of fundamental units of river basin, as well as the source areas of soil erosion and channelsediment. We conducted the study by runoff plots location observation and the artificial rainfall simulation test in field and indoor, our object is:to analyzethe response of slope soil erosion to the effects of multi-factors including rainfall pattern, topography, vegetation cover, soil and water conservation measures and so on; to build the runoff-erosion model in slope scale under the condition of rainfall runoff through improving the antecedent precipitation index model, runoff curve model and slope soil erosion model, then conducted the quantified study and modeling of slope soil erosion process by these models, and indicated the process and mechanism of slope rainfall erosion. The study provide theoretical basis for slope soil erosion and related model in Beijing mountain areas.
     The main conclusions are as follows:
     (1)The rainfall events in study areas were divided into three different rainfall patterns. The first rainfall pattern is short-term, small-amount, high-intensity and high-frequence rainfall event; third rainfall pattern is long-term, large-amount, low-intensity and low-frequence rainfall event; and the second pattern is between these two rainfall patterns. We analyzed the seasonal distributions of different rainfall patterns, and the characteristics of soil erosion under these patterns, the results indicated that the first rainfall pattern play a dominant role in slope soil erosion.
     (2)Some differences existed in the change discipline of runoff and erosion in runoff plots with different gradient, which showed the increased trends with increased gradients. The variations of runoff and erosion were different in runoff plots with different slope length, runoff decreased with the increase of slope gradient, while soil erosion showed increase firstly and then reduction. Slope runoff and erosion were closely correlated with rainfall amount and maximum30min rainfall intensity in different slope gradients and lengths, which showed positive relationships.
     (3)The analysis of soil erosion characteristics under different land use pattern and soil and water conservation measures indicated that:the differences of soil erosion were significant in five land use patterns, the sediment reduction rate of farmland, artificial grassland, banning wild grassland and forest reached63.88%-99.63%contrasting with bare land;2.soil erosion of terrace were95.2%smaller than slope cropland, which demonstrated remarkable effect of soil and water conservation;3. soil erosion of horizontal bar and scale-hole measures were83.56%and96.53%smaller respectively, indicated significant effects of decreasing erosion.4. soil erosion of banning wild grassland were98.25%smaller than artificial grassland, that could effectively control soil erosion. So the engineering measures of soil and water conservation were very usefully through increasing aboveground vegetation cover, reducing human interference and the proper configuration of terraces.
     (4)The variation of soil water fading coefficient were analyzed in different seasons and soil depths based on the study of soil moisture dynamics, and optimized depending on the characteristics of erosive rainfall. The rainfall index model were improved by soil water fading coefficient. The processes of rainfall-runoff, which was affected by antecedent soil moisture, were analyzed quantitatively using the antecedent rainfall index of rainfall events,which is the representation of soil water condition. The results indicated that:the antecedent rainfall index model could perfectly reflect the processes of slope rainfall-runoff under the effect of antecedent soil water, suggested antecedent rainfall index model has good applicability in Beijing mountain areas.
     (5)Modeling slope runoff by improved runoff curve model. Firstly, the key model parameter was optimized, the optimal values of early damage coefficient (λi) on different land use types were determined using anti-inference method; then the model structure was improved by introducing the antecedent soil moisture(M), and the revised antecedent rainfall index model was used to calculate the effective rainfall in early stage (P5). Lastly, the modeling results of slope runoff, by the model of improved runoff curve, indicated that there was the validity of model simulation due to the very closed value between slope runoff simulation and measured runoff.
     (6)Improved the model of Revised Universal Soil Loss equation (RUSLE). Rainfall-runoff erosivity index was added in the model structure, determined by the parameter of slope runoff simulation calculated by the model of improved runoff curve. The results of soil erosion, which was determined by developed slope erosion model, indicated that the validity of model simulationwas very obvious, the soil erosion were very closed between simulation and actual measurement.
引文
[1]包含,侯立柱,刘江涛,等.室内模拟降雨条件下土壤水分入渗及再分布试验[J].农业工程学报,2011,27(07):70-75.
    [2]毕小刚.北京山区坡面土壤流失方程研究[D].北京林业大学博士学位论文,2007.
    [3]蔡强国,刘纪根.关于我国土壤侵蚀模型研究进展[J].地理科学进展,2003,22(3):242-250.
    [4]蔡强国,陆兆熊,王贵平.黄土丘陵沟壑区典型小流域侵蚀产沙过程模型[J].地理学报,1996,51(02):108-117.
    [5]蔡强国,吴淑安.紫色土陡坡地不同土地利用对水土流失过程的影响[J].水土保持通报,1998,18(2):1-8.
    [6]蔡强国.坡长在坡面侵蚀产沙过程中的作用[J].泥沙研究,1989(4):84-91.
    [7]蔡新广.石匣小流域水土保持措施蓄水保土效益试验研究[J].资源科学,2004,26(7):144-150.
    [8]曹文洪.土壤侵蚀的坡度界限研究[J].水土保持通报,1993,13(4):1-5.
    [9]查轩,黄少燕.植被破坏对黄土高原加速侵蚀及土壤退化过程的影响[J].山地学报,2001,19(02):109-104.
    [10]陈安强,马文贵,高福军,等.土石山区径流小区坡长对径流量和侵蚀量影响的研究[J].水土保持研究,2007,14(4):190-194.
    [11]陈崇希.岩溶管道-裂隙-孔隙三重空隙介质地下水流模型及模拟方法研究[J].地球科学,1995,20(04):361-366.
    [12]陈法扬,郝明龙.浅议城市水土保持规划[J].水土保持通报,1996,16(01):166-169.
    [13]陈洪松,邵明安,张兴昌,王克林.野外模拟降雨条件下坡面降雨入渗产流试验研究[J].水土保持学报,2005,19(02):5-8.
    [14]陈军锋.不同地表条件下季节性冻融土壤入渗特性的试验研究[D].太原理工大学硕士学位论文,2006.
    [15]陈龙飞,刘普灵,王栓全,刘栋.玉米生长对不同耕作方式下的径流及产沙的影响[J].水土保持学报,2013,27(01):12-16.
    [16]陈奇伯,张洪江,解明曙.森林枯落物及其苔藓层阻延径流速度研究[J].北京林业大学学报,1996,18(01):2-6.
    [17]陈伟.黑龙江省西部丘陵漫岗区坡耕地降雨径流与土壤侵蚀特征[D].东北农业大学硕士学位论文,2012.
    [18]陈晓安,蔡强国,张利超,等.黄土丘陵沟壑区坡面土壤侵蚀的临界坡度[J].山地学报,2010,28(4):415-421.
    [19]陈晓清,崔鹏,冯自立,等.滑坡转化泥石流起动的人工降雨试验研究[J].岩石力学与工程学报,2006,25(01):106-116.
    [20]程江,杨凯,刘兰岚,等.上海中心城区土地利用变化对区域降雨径流的影响研究[J].自然资源学报,2010,25(6):914-925.
    [21]程艳辉.红壤区坡面径流调控关键技术与模式的适用性研究[D].华中农业大学学位论文,2010.
    [22]邓晓红,毕坤.贵州省喀斯特地貌分布面积及分布特征分析[J].贵州地质,200421(03):191-197.
    [23]丁文峰.黄土区坡面径流侵蚀动力过程试验研究[D].西北农林科技大学学位论文,2001.
    [24]丁向华,姜照勇,罗良伟,等.基于生态环境保护视角的土地整理生态效益评价-以成都市三河镇土地整理项目为例[J].资源科学,2011,33(11):48-54.
    [25]段建南,李保国,石元春,等.应用于土壤变化的坡面侵蚀过程模拟[J].土壤侵蚀与水土保持学报,1998,4(01):47-53.
    [26]方海燕,蔡强国,李秋艳.黄土丘陵沟壑区坡面产流能力及影响因素研究[J].地理研究,2009,28(3):583-591.
    [27]冯浩,吴淑芳,吴普特,等.草地坡面径流调控放水试验研究[J].水土保持学报,2005,19(06):23-25.
    [28]符素华,王红叶,王向亮,等.北京地区径流曲线数模型中的径流曲线数[J].地理研究,2013,32(5):797-807.
    [29]符素华,王向亮,王红叶,等SCS-CN径流模型中CN值确定方法比较研究[J].干旱区地理,2012,315(3):415-421.
    [30]付兴涛.坡面径流侵蚀产沙及动力学过程的坡长效应研究[D].浙江大学博士学位论文,2012.
    [31]付兴涛.坡面径流侵蚀产沙及动力学过程的坡长效应研究[D].浙江:浙江大学,2012.
    [32]傅伯杰,邱扬,王军,等.黄土丘陵小流域土地利用变化对水土流失的影响[J].地理学报,2002,57(6):717-722.
    [33]甘卓亭,叶佳,周旗,等.模拟降雨下草地植被调控坡面土壤侵蚀过程[J].生态学报,2010,30(9):2387-2396.
    [34]高维森,王佑民.土壤抗蚀抗冲性研究综述[J].水土保持通报,1992,12(05):59-63.
    [35]高维森.土壤抗蚀性指标及其适用性初步研究[J].水土保持学报,1991,5(02):60-65.
    [36]郭培才,张振中,杨开宝.黄土区土壤抗蚀性预报及评价方法研究[J].水土保持学报,1992,6(03):48-51.
    [37]韩光.四川盆周西南部退耕还林区不同植被模式土壤入渗及蓄水特性[D].四川农业大学,2007.
    [38]韩玉国,李叙勇,段淑怀,等.水土保持措施对径流泥沙及养分流失的影响[J].中国水士保持,2010(12):34-36.
    [39]和继军,蔡强国,刘松波.次降雨条件下坡度对坡面产流产沙的影响[J].应用生态学报,2012,23(5):1263-1268.
    [40]和继军,蔡强国,路炳军.密云水库上游石匣小流域水土流失综合治理措施研究[J].自然资源学报,2008,23(3):375-382.
    [41]胡建忠,范小玲,王愿昌,等.黄土高原沙棘人工林地土壤抗蚀性指标探讨[J].水土保持通报,1998,18(02):28-33.
    [42]胡淑萍,余新晓,岳永杰.北京百花山森林枯落物层和土壤层水文效应研究[J].水土保持学报,2008,22(01):146-150.
    [43]黄进勇,严力蛟,王兆骞.红壤小流域不同土地利用方式下的水土流失特征[J].浙江大学学报(农业与生命科学版),2002,28(1):78-82.
    [44]黄炎和,卢程隆.通用土壤流失方程在我国的应用研究进展[J].福建农学院学报,1993,22(01):73-77.
    [45]黄奕龙,陈利顶,傅伯杰.黄土丘陵小流域地形和土地利用对土壤水分时空雨型的影响[J].第四纪研究.2003,23(5):334-342.
    [46]季志恒,樊福来.土壤水消退的时空变化规律分析[J].水文,2003,23(1):24-27.
    [47]江忠善,王志强,刘志.黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].土壤侵蚀与水土保持学报,1996,2(01):1-9.
    [48]姜娜,邵明安.黄土高原小流域不同坡地利用方式的水土流失特征[J].农业工程学报,2011,27(6):36-41.
    [49]蒋定生.黄土区不同利用类型土壤抗冲刷能力的研究[J].土壤通报,1979,4(02):20-23.
    [50]解明曙,张洪江,王玉杰.坡面水土保持措施影响流域产汇流特性值计算与分析[J].北京林业大学学报,1994,16(04):8-18.
    [51]靳长兴.论坡面侵蚀的临界坡度[J].地理学报,1995,50(3):234-2393.
    [52]琚彤军,刘普灵,徐学选,等.不同次降雨条件对黄土区主要地类水沙动态过程的影响及其机理研究[J].泥沙研究,2007(04):65-71.
    [53]鞠伟.坡面径流调控水沙效应研究[D].西北农林科技大学学位论文,2007.
    [54]孔维健,周本智,傅懋毅,等.不同土地利用类型水土保持特征研究[J].南京林业大学学报(自然科学版),2009,33(4):57-61.
    [55]雷瑞德,党坤良,张硕新,等.秦岭南坡中山地带华北落叶松人工林对土壤的影响[J].林业科学,1997,33(05):463-470.
    [56]雷廷武,刘汗,潘英华,等.坡地土壤降雨入渗性能的径流-入流-产流测量方法与模型[J].中国科学(D辑:地球科学),2006,35(12):1180-1186.
    [57]李德生,刘文彬,许慕农.石灰岩山地植被水土保持效益的研究[J].水土保持学报,1993,7(02):57-62.
    [58]李贵玉.黄土丘陵区不同土地利用类型下土壤入渗性能对比研究[D].西北农林科技大学,2007.
    [59]李鹏.黄土区草地植被水土保持作用机理试验研究[D].西北农林科技大学,2003.
    [60]李琪.黄土地区土壤含水量消退系数的变化规律与产流计算[J].人民黄河,1989(3):18-23.
    [61]李素清,李斌,张金屯.不同降雨量下的黄土高原土壤侵蚀特征分析[J].农业环境科学学报,2005,24(01):94-97.
    [62]李阳兵,白晓永,邱兴春,等.喀斯特石漠化与土地利用相关性研究[J].资源科学,2006,28(02):67-73.
    [63]李勇,翟家瑞.黄河下游宽河段河床边界条件变化特征分析[J].人民黄河,2000,22(11):1-2.
    [64]李子君,于兴修.冀北土石山区坡面尺度径流特征及其影响因素[J].农业工程学报,2012,28(17):109-116.
    [65]李子君,于兴修.冀北土石山区坡面尺度径流特征及其影响因素[J].农业工程学报,2012,28(17):109-116.
    [66]刘宝元,毕小刚,符素华等.北京土壤流失方程[M].北京:科学出版社,2010.
    [67]刘刚才,李兰,周忠浩,等.紫色土丘陵区坡耕地退耕对水土流失的影响及其效益评价[J].中国水土保持科学,2006,3(04):32-36.
    [68]刘卉芳,曹文洪,张晓明,等.黄土区小流域水沙对降雨及土地利用变化响应研究[J].干旱地区农业研究,2010,28(02):237-242.
    [69]刘建伟.桂西北喀斯特峰丛洼地石质土壤入渗试验研究[D].西南大学硕士学位论文,2008.
    [70]刘青泉,陈力,李家春.坡度对坡面土壤侵蚀的影响分析[J].应用数学和力学,2001,22(5):449-457.
    [71]刘世荣,孙鹏森,王金锡,等.长江上游森林植被水文功能研究[J].自然资源学报,2001,16(05):451-456.
    [72]刘松波,庄春兰,孟琳琳.坡度对坡面侵蚀产沙相应的研究[J].中国水土保持,2009,5:44-47.
    [73]刘振波,史学正,于东升,等.模拟降雨下土壤前期含水量对土壤可蚀性的影响[J].生态环境,2008,17(01):397-402.
    [74]路炳军,段淑怀,袁爱萍,等.官厅水库上游地区植被覆盖对面源污染影响的定量研究[J].资源科学,2006,28(5):196-200.
    [75]罗德,余新晓,董磊.密云山区林冠层对天然降雨能量影响的初步研究[J].水土保持学报,2008,22(03):60-63.
    [76]罗海波.喀斯特石漠化过程中土壤质量变化研究[D].西南大学博士学位,2006.
    [77]吕刚.紫色土土壤入渗过程预报模型研究[D].西南大学硕士学位论文,2006.
    [78]吕喜玺,史德明.土壤侵蚀模型研究进展[J].土壤学进展,1994,22(02):9-14.
    [79]马孝义,王君勤,李志军.基于土壤消退指数的田间土壤水分预报方法的研究[J].水土保持研究,2002,9(2):94-96.
    [80]苗百岭.植被退化对典型草原地表水分生态过程的影响[D].内蒙古大学硕士学位论文,2006.
    [81]穆兴民.黄土高原土壤水分与水土保持措施相互作用[J].农业工程学报,2000,16(2):41-45.
    [82]倪春迪.岷江上游径流变化及影响因子的研究[D].东北林业大学硕士学位论文,2008.
    [83]蒲胜海,何新林,何春燕,等.新疆棉花膜下滴灌基于消退指数的土壤水分预报方法研究[J].节水灌溉,2008(1):5-11.
    [84]任文海.花岗岩红壤坡面工程措施的水土保持效应研究[D].华中农业大学硕士学位论文,2012.
    [85]尚松浩,雷志栋,杨诗秀.冬小麦田间墒情预报的经验模型[J].农业工程学报,2000,16(5):31-33.
    [86]时忠杰,王彦辉,徐丽宏,等.六盘山主要森林类型枯落物的水文功能[J].北京林业大学学报,2009,31(01):91-99.
    [87]史贵才,葛修润,姜清辉,等.水布垭水利枢纽古树包滑坡三维稳定性分析[J].长江科学院院报,2005,22(05):58-61.
    [88]史景汉.黄丘一区坡面水土流失规律研究[J].中国水土保持,1991(07):30-35.
    [89]史宇.北京山区主要优势树种森林生态系统生态水文过程分析[D].北京林业大学博士学位论文,2011.
    [90]舒若杰.黄土高原小流域沟道水沙运移模拟试验研究[D].西北农林科技大学硕士学位论文,2007.
    [91]苏玉杰,周景春,孔妲,等.耕层土壤含水量消长规律分析[J].水文,2007,27(3):50-56.
    [92]索安宁,李金朝,王天明,等.黄土高原流域土地利用变化的水土流失效应[J].水利学报,2008,39(7):767-772.
    [93]覃勇荣,刘旭辉,蓝崇钰.桂西北岩溶地区古树寄居植物的调查研-以广西河池地区为例[J].中国农学通报,2008,24(06):151-158.
    [94]唐寅.紫色丘陵区坡耕地土壤侵蚀特征及植被覆盖与管理因子研究[D].西南大学硕士学位论文,2012.
    [95]田栋,高建恩,吴普特,等.林草措施调控坡面降雨径流输沙效应的初步研究[J].灌溉排水学报,2007,26(03):19-22.
    [96]田凯,李小青,申震洲,等.不同床沙下的坡面流水力学特性试验研究[J].水土保持学 报,2010,24(02):70-73.
    [97]田育新,李锡泉,陶接来,等.人工降雨条件下不同坡度红壤坡面迳流泥沙变化特征研究[J].湖南林业科技,2006,33(01):1-3.
    [98]童富果,田斌,刘德富.改进的斜坡降雨入渗与坡面径流耦合算法研究[J].岩土力学,2008,29(04):1035-1040.
    [99]王德炉.喀斯特石漠化的形成过程及防治研究[D].南京林业大学博士学位论文,2003.
    [100]王浩,雷晓辉,秦大庸,等.基于人类活动的流域产流模型构建[J].资源科学,2003,25(6):15-18.
    [101]王贺年,余新晓,李轶涛.北京山区林地土壤水分动态变化[J].山地学报,2011,(06):701-706.
    [102]王健,吴发启,孟秦倩.农业耕作措施蓄水保土效益试验研究[J].水土保持通报,2004,24(5):39-41.
    [103]王礼先,张志强.森林植被变化的水文生态效应研究进展[J].世界林业研究,199829(06):15-24.
    [104]王孟楼,张仁.陕北岔巴沟流域次暴雨产沙模型的研究[J].水土保持学报,1990,4(02):11-18.
    [105]王万忠,焦菊英.中国的土壤侵蚀因子定量评价研究[J].水土保持通报,1996,16(05):1-20.
    [106]王万忠.黄土地区降雨特性与土壤流失关系的研究Ⅲ—关于侵蚀性降雨的标准问题[J].水土保持通报,1984(2):58-63.
    [107]王玉杰,王云琦,夏一平.重庆缙云山典型林分的林地土壤抗蚀抗冲性能[J].中国水土保持科学,2006,4(1):20-27.
    [108]王云琦,王玉杰.缙云山典型林分森林土壤持水与入渗特性[J].北京林业大学学报,2006,28(3):102-108.
    [109]王彦辉.在不同植被类型条件下陇东地区雨季土壤水分的消退规律[J].水土保持学报,1989,3(2):81-89.
    [110]王英,黄明斌.径流曲线法模型参数在黄土地区的优化研究[J].水土保持通报,2008,28(1):54-58.
    [111]王佑民,郭培才,高维森.黄土高原土壤抗蚀性研究[J].水土保持学报,1994,8(04):11-16.
    [112]王占礼,靳雪艳,马春艳,等.黄土坡面降雨产流产沙过程及其响应关系研究[J].水土保持学报,2008,22(02):24-28.
    [113]卫伟,陈利顶,傅伯杰,等.黄土丘陵沟壑区极端降雨事件及其对径流泥沙的影响[J].干旱区地理,2007,30(6):896-901.
    [114]卫伟.典型黄土丘陵区降雨和下垫面综合作用下的水土流失效应[D].中国科学院研究生院博士学位论文,2007.
    [115]魏玉杰,李华.花岗片麻岩地区坡耕地改造途径及其效益分析[J].水土保持通报,1992,12(06):26-32.
    [116]吴发启,范文波.土壤结皮对降雨入渗和产流产沙的影响[J].中国水土保持科学,2005,3(02):97-101.
    [117]吴克华.喀斯特地区不同等级石漠化综合治理的生态效应研究[D].贵州师范大学学位论文,2006.
    [118]吴普特.黄土坡地放水冲刷试验产流过程研究—Ⅱ.产流过程分析[J].水土保持研究,1997,4(05):74-84.
    [119]吴普特.黄土区土壤抗冲性研究进展及亟待解决的若干问题[J].水土保持研究,1997,4(05):59-66.
    [120]吴钦孝,赵鸿雁,刘向东,等.森林枯枝落叶层涵养水源保持水土的作用评价[J].土壤侵蚀与水土保持学报,1998,4(02):24-29.
    [121]吴钦孝,赵鸿雁.植被保持水土的基本规律和总结[J].水土保持学报,2001,15(04):13-15.
    [122]吴淑安,蔡强国.土壤表土中植物根系影响其抗蚀性的模拟降雨试验研究-以张家口试验区为例[J].干旱区资源与环境,1999,13(03):35-43.
    [123]吴淑芳,吴普特,冯浩,等.标准坡面人工草地减流减沙效应及其坡面流水力学机理研究[J].北京林业大学学报,2007,29(03):99-104.
    [124]吴淑芳,吴普特,宋维秀,等.黄土坡面径流剥离土壤的水动力过程研究[J].土壤学报,2010,47(02):223-228.
    [125]吴素业.安徽大别山区降雨侵蚀力简化算法与时空分布规律[J].中国水土保持,1994(04):12-13.
    [126]吴彦,刘庆,何海,林波.亚高山针叶林人工恢复过程中物种多样性变化[J].应用生态学报,2004,15(08):1301-1306.
    [127]吴彦,刘世全,王金锡.植物根系对土壤抗侵蚀能力的影响[J].应用与环境生物学报,1997,3(02):119-124.
    [128]吴长文,朱代洪.由赣南水土保持想到的[J].福建水土保持,1995(03):15-16.
    [129]席彩云,余新晓,徐娟,等.北京密云山区典型林地土壤入渗特性[J].北京林业大学学报,2009,31(05):42-47.
    [130]席海洋,冯起,程玉菲,等.额济纳绿洲土壤入渗特征与土壤状况的关系研究[J].冰川冻土,2008,30(06):976-982.
    [131]夏岑岭.皖南地区降雨侵蚀力研究[J].合肥工业大学学报(自然科学版),1998,21(06):40-43.
    [132]谢颂华,曾建玲.南方红壤坡地不同耕作措施的水土保持效应[J].农业工程学报,2010,26(9):81-86.
    [133]谢训园,雷晓云,李彦,等.膜下滴灌棉田土壤水分消退规律分析与墒情预报[J].灌溉排水学报,2011,30(2):72-75.
    [134]徐海燕,赵文武,刘国彬,等.黄土丘陵沟壑区坡面尺度土地利用雨型变化对径流的影响[J].水土保持通报,2008,28(6):49-52.
    [135]徐学选,琚彤军,郑世清,等.黄土丘陵区次降雨下的山坡道路侵蚀特征分析[J].农业环境科学学报,2007,26(增刊):574-578.
    [136]闫丽娟,余新晓,雷廷武,等.坡面流输沙能力与土壤可蚀性参数对细沟土壤侵蚀过程影响的有限元计算模型研究[J].土壤学报,2009,46(2):192-200.
    [137]杨超.小流域产流产沙过程的模型试验研究[D].中国农业大学硕士学位论文,2005.
    [138]杨开宝,郭培才.陕北丘陵沟壑区降雨侵蚀力指标研究[J].水土保持通报,1994,14(05):31-5.
    [139]杨晓俊.降雨产流影响因素分析[J].地下水,2007,29(05):50-53.
    [140]杨亚川,莫永京,王芝芳,等.土壤-草本植被根系复合体抗水蚀强度与抗剪强度的试验研究[J].中国农业大学学报,1996,1(02):31-38.
    [141]杨艳生.侵蚀土壤的水分状况和空隙分布[J].土壤通报,1988(02):67-70.
    [142]杨永辉,赵世伟,雷廷武,等.耕作对土壤入渗性能的影响[J].生态学报,2006,26(05):24-30.
    [143]杨永辉,赵世伟,雷廷武,等.宁南黄土丘陵区不同植被下土壤入渗性能[J].应用生态学报,2008,19(05):1040-1045.
    [144]杨智明,李建龙,杜广明,等.宁夏滩羊放牧系统草地利用率及草畜平衡性研究[J].草业学报, 2010,19(01):35-41.
    [145]叶芝菡,刘宝元,章文波,等.北京市降雨侵蚀力及其空间分布[J].中国水土保持科学,2003,1(01):16-20.
    [146]于文华,闫训海.坡长对水土流失影响的研究现状及展望[J]_中国水土保持,2012,7:46-47.
    [147]余新晓,耿玉清,牛丽丽,等.采样尺度对北京山区典型流域森林土壤养分空间变异的影响——以密云潮关西沟流域为例[J].林业科学,2010,46(10):162-166.
    [148]余新晓,吴岚,饶良懿,等.水土保持生态服务功能价值估算[J].中国水土保持科学,2008,6(01):83-86.
    [149]余新晓,张晓明,武思宏,等.黄土区林草植被与降水对坡面径流和侵蚀产沙的影响[J].山地学报,2006,24(01):19-26.
    [150]袁东海,王兆骞,郭新波,等.红壤小流域不同土地利用方式水土流失和有机碳流失特征研究[J].水土保持学报,2002,16(2):24-28.
    [151]袁希平,雷廷武.水土保持措施及其减水减沙效益分析[J].农业工程学报,2004,20(2):296-300.
    [152]岳红光,曲艳.用人工降雨法进行土壤侵蚀的研究[J].吉林林学院学报,1998,14(04):24-27.
    [153]张光辉.土壤侵蚀模型研究现状与展望[J].水科学进展,2002,13(3):389-396.
    [154]张洪江,北原曜,远藤泰造.几种林木枯落物对糙率系数n值的影响[J].水土保持学报,1994,8(04):4-10.
    [155]张金池,李海东,林杰,等.基于小流域尺度的土壤可蚀性K值空间变异[J].生态学报,2008,28(05):2199-2206.
    [156]张科利,秋吉康弘,张兴奇.坡面径流冲刷及泥沙输移特征的试验研究[J].地理研究,1998,17(02):52-59.
    [157]张科利,蔡永明,刘宝,等.土壤可蚀性动态变化规律研究[J].地理学报,2001,56(6):673-681.
    [158]张科利,彭文英,杨红丽.中国土壤可蚀性值及其估算[J].土壤学报,2007,44(1):7-13.
    [159]张宽地,王光谦,王占礼,等.人工加糙床面薄层滚波流水力学特性试验[J].农业工程学报,2011,27(04):28-34.
    [160]张丽萍,王小云,张赫斯.沙盖黄土丘陵坡地土壤理化特性随地形变化规律研究[J].地理科学,2011,31(02):178-183.
    [161]张宪奎,许靖华,邓育江,等.黑龙江省土壤流失方程的研究[J].水土保持通报,1992,12(4):1-9,18.
    [162]张晓明,余新晓,武思宏,等.黄土区森林植被对坡面径流和侵蚀产沙的影响[J].应用生态学报,2005,16(09):1613-1617.
    [163]张耀宗,张勃,吕永清.祁连山区流域径流变化及影响因子研究——以讨赖河为例[J].干旱区资源与环境,2008,22(07):109-114.
    [164]张颖,牛健植,谢宝元,等.森林植被对坡面土壤水蚀作用的动力学机理[J].生态学报,2008,28(10):5084-5094.
    [165]张钰娴,穆兴民,王飞.径流曲线数模型(SCS-CN)参数λ在黄土丘陵区的率定[J].干旱地区农业研究,2008,26(5):124-128.
    [166]张振明,余新晓,牛健植,等.不同林分枯落物层的水文生态功能[J].水土保持学报,2005,19(03):139-143.
    [167]张治伟,朱章雄,王燕,等.岩溶坡地不同利用类型土壤入渗性能及其影响因素[J].农业工程学报,2010,26(06):71-76.
    [168]赵串串,董旭,辛文荣,等.青海湟水河流域不同退耕还林模式水土保持效应[J].水土保持学报,2009,23(5):26-29.
    [169]赵护兵,刘国彬,曹清玉,等.黄土高原丘陵区不同土地利用方式水土流失及养分保蓄效应研究[J].水土保持学报,2006,20(1):20-24.
    [170]赵健,梁敏.紫色土水土流失特点及调控范式[J].中国水利,2010(02):41-43.
    [171]赵健,魏天兴,陈致富,等.陕西吴起县退耕还林不同植被水土保持效应分析[J].水土保持学报,2010,24(3):31-34.
    [172]赵艳云,程积民,万惠娥等.林地枯落物层水文特征研究进展[J].中国水土保持科学,2007,5(02):130-134.
    [173]赵阳,余新晓,吴海龙,等.华北土石山区典型森林枯落物层和土壤层水文效应[J].水土保持学报,2011,25(06):148-152.
    [174]周淑梅,雷廷武.黄土丘陵沟壑区典型小流域SCS-CN方法初损率取值研究[J].中国农业科学,2011,44(20):4240-4247.
    [175]周跃.植被与侵蚀控制:坡面生态工程基本原理探索[J].应用生态学报,2000,11(02):297-300.
    [176]朱显漠,任美锷.中国黄土高原的形成过程与整治对策[J].中国历史地理论丛,1991(04):1-14.
    [177]Aksoy H,Unal NE,Cokgor S, et al.A rainfall simulator for laboratory-scale assessment of rainfall-runoff-sediment transport processes over a two-dimensional flume[J].Catena, 2012,98:63-72.
    [178]Anctila F., Michelb C., Perrinb C., et al. A soil moisture index as an auxiliary ANN input for stream flow forecasting[J]. Journal of Hydrology,2004,286:155-167.
    [179]Anderson P, Relish P, Ulnas B. The effects of calcium on morphology and histamine content in isolated intact mast cell granules [J]. Agents and Actions,1978,8(4):12-18.
    [180]Bagarello V., Di Piazza G.V., Ferro V., et al. Predicting unit plot soil loss in Sicily, south Italy[J].Hydrol. Process.,2008,22:586-595.
    [181]Bagarello V., Di Stefano C., Ferro V., et al.Predicting soil loss on moderate slopes using an empirical model for sediment concentration [J]. Journal of Hydrology,2010,400:267-273.
    [182]Bagarello V., Ferro V., and Giordano G.. Testing alternative erosivity indices to predict event soil loss from bare plots in Southern Italy[J].Hydrol. Process.,2010,24:789-797.
    [183]Bagarelloa V., Ferro a V., Giordanoa G., et al.Predicting event soil loss from bare plots at two Italian sites [J]. Catena,2013,109:96-102.
    [184]Baltas EA, Dervos NA, Mimikou MA. Determination of the SCS initial abstraction ratio in an experimental watershed in Greece [J].Hydrology and Earth System Sciences,2007,11: 1825-1829.
    [185]Butler DM,Ranells NN,Franklin DH,Poore MH, et al. Runoff water quality from manured riparian grasslands with contrasting drainage and simulated grazing pressure[J]. Agriculture, Ecosystems & Environment,2008,126(3-4):250-260.
    [186]Carmi G, Berliner P. The effect of soil crust on the generation of runoff on small plots in an arid environment[J]. Catena,2008,74(1):37-42.
    [187]Casini F,Serri V,Springman SM.Hydromechanical behaviour of a silty sand from a steep slope triggered by artificial rainfall:from unsaturated to saturated conditions[J].Can Geotech J. 2013,50(1):28-40.
    [188]Chahinian N, Moussa R, Andrieux P, et al.Accounting for temporal variation in soil hydrological properties when simulating surface runoff on tilled plots[J]. Journal of Hydrology,2006,326(1-4):135-152.
    [189]Chahinian N,Moussa R,Andrieux P,Voltz M.Accounting for temporal variation in soil hydrological properties when simulating surface runoff on tilled plots[J]. Journal of Hydrology, 2006,326(1-4):135-152.
    [190]Chen Y-H, Wang M-K, Wang G, et al. Nitrogen runoff under simulated rainfall from a sewage-amended lateritic red soil in Fujian, China[J].Soil and Tillage Research, 2012,123:35-42.
    [191]Coblentz WK, Muck RE. Effects of natural and simulated rainfall on indicators of ensilability and nutritive value for wilting alfalfa forages sampled before preservation as silage[J]. Dairy Sci, 2012,95(11):6635-53.
    [192]Cullum RF, Wilson GV, McGregor KC, Johnson JR. Runoff and soil loss from ultra-narrow row cotton plots with and without stiff-grass hedges[J].Soil and Tillage Research.2007,93(1):56-63.
    [193]Evrard O, Cerdan O, van Wesemael B, et al. Reliability of an expert-based runoff and erosion model:Application of STREAM to different environments[J]. Catena,2009,78(2):129-141.
    [194]Gao, G.Y., Fu, B.J., Lu, Y.H., et al. Coupling the modified SCS-CN and RUSLE models to simulate hydrological effects of restoring vegetation in the Loess Plateau of China [J]. Hydrology and Earth System Sciences,2012,16:2347-2364.
    [195]Garcia-Estringana P, Alonso-Blazquez N, Marques MJ, et al. Use of Mediterranean legume shrubs to control soil erosion and runoff in central Spain. A large-plot assessment under natural rainfall conducted during the stages of shrub establishment and subsequent colonisation[J]. Catena,2013,102:3-12.
    [196]Girmay G, Singh BR, Nyssen J. Runoff and sediment-associated nutrient losses under different land uses in Tigray, Northern Ethiopia[J].Journal of Hydrology.2009,376(1-2):70-80.
    [197]Hawkins RH, Jiang R, Woodward DE, et al. Runoff curve number method:examination of the initial abstraction ratio, in proceedings of the second federal interagency hydrologic modeling conference[J]. ASCE Publications:Las Vegas, Nevada. DOI:10.1061/40685(2003)308,2002.
    [198]Hengen.Normalized antecedent precipitation index[J].Journal of Hydrologic Engineering, ASCE,2001,6(5):377-381.
    [199]Hussein MH, Kariem TH, Othman AK. Predicting soil erodibility in northern Iraq using natural runoff plot data[J]. Soil and Tillage Research,2007,94(1):220-228.
    [200]Iserloh T, Ries JB, Arnaez J, et al. European small portable rainfall simulators:A comparison of rainfall characteristics[J]. Catena,2013,110:100-112.
    [201]Kinnell, P. I. A. and Risse, L. M. USLE-M:Empirical modeling rainfall erosion through runoff and sediment concentration [J].Soil Sci. Soc. Am. J.,1998,62:1667-1672.
    [202]Kinnell, P. I. A. Event soil loss, runoff and the Universal Soil Loss Equation family of models:A review [J]. Hydrol.,2010,385:384-397.
    [203]Kinnell, P. I. A. Runoff dependent erosivity and slope length factors suitable for modeling annual erosion using the Universal Soil Loss Equation [J].Hydrol. Process.,2007,21: 2681-2689.
    [204]Kinnell, P. I. A. Why the universal soil loss equation and the revised version of it do not predict event erosion well [J].Hydrol. Process.2005,19:851-854.
    [205]Kinnell, P.I.A.Runoff ratio as a factor in the empirical modeling of soil erosion by individual rainstorms [J].Australian Journal of Soil Research,1997,35:1-13.
    [206]Komatsu H, Shinohara Y, Kume T. Changes in peak flow with decreased forestry practices: analysis using watershed runoff data[J]. Journal of environmental management.2011,92(6):1528-1536.
    [207]Liu Baoyuan, Nearing M A, Risse L M. Slope gradient effects on soil loss for steep slopes [J]. Transactions of the ASAE,1994,37(6):1835-1840.
    [208]Locke MA, Zablotowicz RM, Reddy KN, Steinriede RW. Tillage management to mitigate herbicide loss in runoff under simulated rainfall conditions[J].Chemosphere,2008 (8):1422-1428.
    [209]Luo H, Zhao T, Dong M, et al. Field studies on the effects of three geotextiles on runoff and erosion of road slope in Beijing, China[J]. Catena,2013,109:150-156.
    [210]Maalim FK, Melesse AM, Belmont P, et al. Modeling the impact of land use changes on runoff and sediment yield in the Le Sueur watershed, Minnesota using GeoWEPP[J]. Catena, 2013,107:35-45.
    [211]Maetens W, Poesen J, Vanmaercke M. How effective are soil conservation techniques in reducing plot runoff and soil loss in Europe and the Mediterranean? [J]. Earth-Science Reviews, 2012,115(1-2):21-36.
    [212]Mishra SK, Sahu RK, Eldho TI, Jain MK. An improved Ia-S relation incorporating antecedent moisture in SCS-CN methodology [J].Water Resources Management,2006,20:643-660.
    [213]Mishra SK, Singh VP. Long-term hydrological simulation based on the Soil Conservation Service curve number [J]. Hydrological Processes,2004,18:1291-1313.
    [214]Mishra, S. K. and Singh, V. P. SCS-CN-based hydrologic simulation package, in:Mathematical Models in Small Watershed Hydrology and Applications[M]. Water Resources Publications, Littleton, Colorado,2002:391-464.
    [215]Mishra, S. K., Tyagi, J. V., Singh, V. P., and Sing, R.SCS-CN modeling of sediment yield[J]. Hydrol.,2006,324:301-322.
    [216]Mohammad AG, Adam MA. The impact of vegetative cover type on runoff and soil erosion under different land uses[J]. Catena,2010,81(2):97-103.
    [217]Pan C, Shangguan Z. Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions[J].Journal of Hydrology,2006,331(1-2):178-85.
    [218]Peele R, Palmer RR. Standards and quality control:Problems and pitfalls [J]. Administration in Mental Health,1975,3(2):146-153.
    [219]Peter KD, d'Oleire-Oltmanns S, Ries JB,et al. Soil erosion in gully catchments affected by land-levelling measures in the Souss Basin, Morocco, analysed by rainfall simulation and UAV remote sensing data[J]. Catena,2014,113:24-40.
    [220]Ponce VM, Hawkins RH. Runoff curve number:has it reached maturity? [J]. Journal of Hydrologic Engineering,1996,1:11-19.
    [221]Renard K G, foster G R, Weesies GA, et al. RUSLE a guide to conservation planning with the revised universal soil loss equation[M]. USDA Agricultural Handbook,1997:703
    [222]Ries JB, Marzen M, Iserloh T, et al. Soil erosion in Mediterranean landscapes-Experimental investigation on crusted surfaces by means of the Portable Wind and Rainfall Simulator[J]. Journal of Arid Environments,2014,100-101:42-51.
    [223]Rimal BK, Lal R. Soil and carbon losses from five different land management areas under simulated rainfall [J]. Soil and Tillage Research,2009,106(1):62-70.
    [224]Risse, L. M., Nearing, M. A., Nicks, A. D., et al. Error assessment in the Universal Soil Loss Equation[J].Soil Sci. Soc Am. J.,1993,57:825-833.
    [225]Sadeghi SHR, Seghaleh MB, Rangavar AS. Plot sizes dependency of runoff and sediment yield estimates from a small watershed[J]. Catena,2013,102:55-61.
    [226]Sasal MC, Castiglioni MG, Wilson MG. Effect of crop sequences on soil properties and runoff on natural-rainfall erosion plots under no tillage[J].Soil and Tillage Research, 2010,108(1-2):24-9.
    [227]Schiettecatte W, Ke J, Yao Y, Cornelis WM, et al. Influence of simulated rainfall on physical properties of a conventionally tilled loess soil[J]. Catena,2005,64(2-3):209-221.
    [228]Shi Z H, Chen L D, Fang N F, et al. Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges area, China[J]. Catena,2009,77(1):1-7.
    [229]Shi Z, Wen A, Zhang X, Yan D. Comparison of the soil losses from (7)Be measurements and the monitoring data by erosion pins and runoff plots in the Three Gorges Reservoir region, China[J]. Appl Radiat Isot,2011,69(10):1343-1348.
    [230]Soil Conservation Service Engineering Division. Urban hydrology for small watersheds[M]. U.S. Department of Agriculture, Technical Release 55.1986.
    [231]Soil Conservation Service. Section 4:Hydrology in national engineering handbook[M]. SCS. 1972.
    [232]Tiwari, A. K., Rosse, L. M., Nearing, M. A. Evaluation of WEPP and its comparison with USLE and RUSLE [J].Trans.ASAE,2000,43:1129-1135.
    [233]Ulrich U, Dietrich A, Fohrer N. Herbicide transport via surface runoff during intermittent artificial rainfall:A laboratory plot scale study[J]. Catena,2013,101:38-49.
    [234]Wang A-P, Li F-H, Yang S-M. Effect of Polyacrylamide Application on Runoff, Erosion, and Soil Nutrient Loss Under Simulated Rainfall[J]. Pedosphere,2011,21(5):628-38.
    [235]Wischmeier L, Wesner M, Kratzig E. Domain switching in strontium-barium niobate crystals investigated by photorefractive self-focusing[J]. Applied Physics B,2005,80(4):511-515.
    [236]Wischmeier W H, Smith D D. Predicting rainfall erosion losses. USDA Agricultural Handbook[J],1978:537
    [237]Won CH, Choi YH, Shin MH, et al. Effects of rice straw mats on runoff and sediment discharge in a laboratory rainfall simulation[J]. Geoderma,2012,189-190:164-169.
    [238]Woodward DE, Hawkins RH, Jiang R, et al. Runoff Curve Number Method:Examination of the Initial Abstraction Ratio In Proceedings of the World Water and Environmental Resources Congress and Related Symposis[M]. ASCE Publications:Philadelphia, PA.2002.
    [239]Yongping Yuan, Wenming Nie, Steven C, et al. Initial abstraction and curve numbers for semiarid watersheds in Southeastern Arizona [J]. Hydrol. Process,2014,28:774-783.
    [240]Zhang H, Liu X, Cai E, et al. Integration of dynamic rainfall data with environmental factors to forecast debris flow using an improved GMDH model[J].Computers & Geosciences. 2013,56:23-31.
    [241]Zingg A W. Degree and length of land slope as it affects soil loss in runoff [J]. Agric Eng,1940,21:59-64.
    [242]Zokaib S, Naser G. Impacts of land uses on runoff and soil erosion A case study in Hilkot watershed Pakistan[J]. International Journal of Sediment Research,2011,26(3):343-352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700