用户名: 密码: 验证码:
煤基近零排放系统建模分析及系统内煤加氢气化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
依靠电力运行的载运工具,动力大多来自燃煤电站,对于以气为动力源的载运工具,若能利用煤制合成气,也能够充分适应我国“富煤、贫油、少气”的能源结构特点。因此,研究开发新型高效洁净煤利用与转化技术对我国而言意义重大。本文以一种煤基近零排放发电系统(ZEC:Zero Emission Coal)为研究对象,首先分析了系统的整体运行特性,然后对系统内的煤加氢气化模块进行了深入分析研究。
     首先,根据ZEC系统的思想,本文建立了ZEC系统整体模型,并对系统的主要运行单元进行了验证。分析了氢气循环率风,钙碳摩尔比Rctc以及燃料电池的燃料利用率Uf等主要参数对系统能量效率Een、(?)效率Eex、总能量效率Eten和总(?)效率Etex以及CO2捕集效率Rcs的影响,提出所建系统的最优运行参数为Rh=0.75,Rctc=1.5以及Uf=0.8。在该运行参数下,系统的Een为36.2%,Etom为46.8%, Eex为35.7%,Etex为46.2%,Rc,为87.4%。随后,计算分析了系统中各个单元的能量和(?)的平衡关系,对比了系统各单元能量和(?)损失的大小,发现汽轮机中的能量损失最大,而燃料电池中的(?)损失最大,由此指出为了进一步提升系统的运行效率需要降低燃料电池内高品质能量的过大损失。
     在对ZEC系统整体性能进行了全面研究后,本文着重对其中的煤加氢气化模块从零维热力学平衡模型、零维化学反应动力学模型、三维数值模拟以及试验研究等方面进行了深入探析。首先,考虑到热力学平衡模型良好的通用性以及采用热力学平衡模型对煤加氢气化的研究仍不充分,本文建立了煤加氢气化热力学平衡模型,验证了模型的可靠性,并利用该模型对煤的加氢气化特性进行了预测。若对气化温度进行控制,则当压力pt为7MPa,反应温度T为1000K时,氢煤质量比Rh/c为0.25左右可以使气化产物中甲烷具有较高的摩尔分数。若不控制气化温度,则当pt为7MPa时,Rh/c为约0.5时,煤中的碳才能够完全转化。
     其次,鉴于煤加氢气化过程的动力学计算模型尚不完善,本文建立了煤加氢气化动力学模型,验证了模型的可靠性,并利用该模型对煤加氢气化特性进行了预测分析。当pt为13MPa,反应时间t为10s,其他运行参数保持和基准运行参数一致时,煤粉整体转化率CCR可达90%,合成气中CH4的摩尔分数MMF可达32%,H2摩尔分数HMF约占60%。当其他运行参数保持和基准运行参数一致时,如果T不超过1273K,则增加T可以从整体上促进煤加氢气化反应的进行。如果T高于1273K,增加T会对煤的加氢气化反应起到抑制作用。
     由于鲜见国内外对煤的加氢气化炉三维数值模拟结果的报道,本文完善了煤的加氢气化动力学模型,提出了针对气固异相反应的“带有压力修正的联合随机孔隙-未反应碳缩核模型(CRPSC-PC:Combined Random Pore and Shrinking Core Model with Pressure Correction)",在此基础上针对气流床煤加氢气化炉建立了带有化学反应的气固两相流三维数学模型,并借助商业软件Fluent对该模型进行求解,在所用的模拟方法得到验证后,利用该模型对某气化炉的加氢气化特性进行了预测分析。经过综合分析发现,该气化炉的最佳运行工况组合为pt=7MPa,Rh/c,=0.4,氧氢质量比Ro/h=1.5。在这一运行条件组合下,Rchar为96.78%,MMF为17.42%,冷气效率CGE为76.4%。
     最后,考虑到煤加氢热解和气化的动力学基础数据尚不完善,本文对一种褐煤、一种烟煤进行了加压热重分析,研究了不同压力下褐煤、烟煤的失重曲线、失重速率曲线,获得了反应动力学特性的典型参数,确定了反映褐煤、烟煤加氢热解和加氢气化的动力学机理函数并计算了不同压力下褐煤、烟煤的动力学参数,分析了不同压力下褐煤及烟煤加氢热解和加氢气化过程的动力学补偿效应。
For the traveling transportation vehicles drived by electricity, most of the power is generated in the coal-fired power station. For gas driveling vehicles, it would be very suitable for the Chinese situation of "rich coal, meager oil and little gas" if part of the gas could be produced by coal gasification. It is, therefore, very meaningful to study the novel, clean and efficient coal utilization technologies. The present work aims to study the integrated operation property of a zero emission coal (ZEC) system and the coal hydro-gasification (CHG) characteristics in the system.
     First, a detailed ZEC system is setup based on the original ZEC concept and the effects of operating parameters including H2recycling ratio (Rh), calcium to carbon ratio (Rctc) and fuel utilization factor (Uf) on the energy efficiency (Een), exergy efficiency (Eex), total energy efficiency (Een), total exergy efficiency (Eex) and carbon dioxide (CO2) sequestration ratio (Rcs) are analyzed for this system. Rh of0.75, Uf of0.8and Rctc of1.5are found the optimum operation parameters. With these parameters, the ZEC system can achieve Een of36.2%, Eten of46.8%, Eex of35.7%, Etex of46.2%, and Rcs of87.4%. The energy and exergy analyses of the system are then implemented and the maximum energy loss is found occuring in the steam turbine (ST) while the maximum exergy loss occuring in the solid oxide fuel cell (SOFC). Thus, to further improve the system efficiency, the exergy efficiency of SOFC should be improved.
     After the performance of the ZEC system is evaluated in detail, the CHG component of the system is then focused and studied deeply from the views of chemical equilibrium, chemical kinetics, numerical simulation and experiments. In view of the universality of the chemical equilibrium method and the lack of study on CHG with this method, a chemical equilibrium model (CEM) for CHG is firstly proposed to study the effects of different reaction conditions on the CHG characteristics. The results from the model are then validated against literature available experimental data and the model is proved reliable. When pt is7MPa and T is1,000K, the carbon will be totally converted when Rh/c is about0.25and the maximum methane mole fraction (MMF) will be obtained. If T is not controlled, carbon will be all converted at7MPa when Rh/c is about0.5.
     Then, in view of the lack of kinetic models reported for CHG, a hydrogasification kinetic model is established and validated against experimental data available in literatures. The model is then used to predict the effects of different reaction conditions on the CHG properties. When pt is13MPa, the reaction time t is10s and other parameters are kept consistent with those of the baseline case, the coal conversion ratio (CCR) is nearly0.9, CH4mole fraction is about0.32and H2mole fraction is about0.6. Increasing T can promote the hydrogasification process when it is not higher than1273K. When T is higher than1273K, however, increasing T will restrain the gasification process.
     After that, the CHG kinetic model is studied further and a Combined Random Pore and Shrinking Core Model with Pressure Correction (CRPSC-PC) is developed for the heterogeneous reactions. Then, considering the muti-dimensional n umerical simulations about entrained flow coal hydrogasifier are still rarely reported, a three-dimensional mathematical model about the gas-solid turbulent flow with chemical reaction is set up and solved with the assistant of Fluent. The simulation methods are validated and are then used to analyze the hydrogasification properties of an entrained flow bed gasifier. After comprehensive analyses, the synthetically optimal combination of the operating condition is found to he pt=7MPa, Rh/c=0.3, and Ro/h=1.5. With this combination, the char conversion ratio (Rchar) can be96.78%, MMF can be17.42%, and the cold gas efficiency (CGE) can reach76.4%.
     Finally, in view of the lack of experimental data about the coal hydropyrolysis (CHP) or CHG kinetics, the hydropyrolysis and hydrogasification kinetic characteristics of a lignite coal and a bituminous coal are studied in a pressurized thermo-gravimetric analyzer (P-TGA). The thermo-gravimetric (TG) and derivative thermo-gravimetric (DTG) curves at different reaction pressures are illustrated and compared. The kinetic mechanism function is determined and the kinetic parameters are calculated. In addition, the kinetic compensation effects of the hydropyrolysis and hydrogasification processes of the lignite coal and bituminous coal are analyzed and the corresponding isokinetic points are calculated.
引文
[1]International Energy Outlook 2010 [R]. Washington, DC:U.S.Energy Information Administration.2011 Sep. Contract No.:DOE/EIA-0484,2011; URL: http://me.queensu.ca/Courses/430/InternationalEnergyOutlook-summaryonly.pdf.
    [2]张无敌,董锦艳,宋洪川.生物质能利用[J].太阳能,2000,(1):6-7.
    [3]霍雅勤.中国能源现状及可持续利用对策[J].中国能源,1999,(3):12-14.
    [4]中华人民共和国国家统计局.2012年统计年鉴[M].北京:中国统计出版社,2012.
    [5]杨立忠,杨钧锡,别义勋.新能源技术[M].北京:中国科学技术出版社,1994.
    [6]甘正旺,许振良.洁净煤技术及其发展前景[J].辽宁工程技术大学学报(增刊),2005;24:253-255.
    [7]赵嘉博,刘小军.洁净煤技术的研究现状及进展[J].露天采矿技术,2011,(1):66-69.
    [8]徐虎.洁净煤技术的展望.洁净煤技术[J],2007;13(1):89-92.
    [9]胡社荣,李岚飞.中国洁净煤技术和若干问题的思考[J].自然杂志,1998,20(4):237-238.
    [10]王爱华,蔡九菊,王连勇,田红.洁净煤技术进展与展望[J].节能,2004,(5):6-9.
    [1 1]岑可法,池涌.洁净煤技术的研究和进展[J].动力工程,1997,17(5):15-16.
    [12]师琼.洁净煤技术的发展简史-以洁净煤技术在山西晋城煤业集团的发展为例[D].山西大学,2007.
    [13]朱书全,戚家伟,崔广文.我国洁净煤技术发展现状及其发展意义[J].选煤技术,2003,(6):47-51.
    [14]王俊宏,常丽萍.我国洁净煤节能技术研究进展[J].化工进展(增刊),2006,25:595-598.
    [15]韩雪冬,谭井坤,姜殿臣,李钟模.煤质变化对气化炉运行的影响及防范措施[J].贵州化工,2002,27(4):32-34.
    [16]唐庆杰,王育华,吴文荣,朱轶飞.洁净煤技术,中国能源发展的必然选择[J].中国矿业,2007,16(11):24-26.
    [17]许世森,张东亮,任永强.大规模煤气化技术[M].北京:化学工业出版社,2006.
    [18]宋志春,鲍卫仁,常丽萍,李凡.气流床粉煤气化性能模拟分析[J].洁净煤技术,2010,(3):39-43.
    [19]武利军,周静,刘璐,李爽凯.煤气化技术进展[J].洁净煤技术,2002,8:31-34.
    [20]项友谦,张利平.固定床煤气化过程的数学模型与模拟计算[J].煤气与热力,1999,(5):8-11.
    [21]王辅臣,于广锁,龚欣,刘海峰,王亦飞,周志杰,梁钦峰.大型煤气化技术的研究与发展[J].化工进展,2009,28(2):173-180.
    [22]赵勇,王巍,郝天翼,张建胜,吕俊复.煤气化技术研究进展[J].电力技术,2010,19(6):1-5.
    [23]陈仲波.煤气化的工艺技术对比与选择[J].化学工程与装备,2011,(4):107-109.
    [24]屈利娟.流化床煤气化技术的研究进展[J].煤炭转化,2007,30(2):81-85.
    [25]高恒,刘宏建.煤气化技术现状、发展及产业化应用[J].煤化工,2009,(1):37-38.
    [26]臧庆安,张洪涛.GSP气化炉技术工业化应用[J].神华科技,2012,10(5):70-73.
    [27]崔意华,袁善录.GSP加压气流床气化技术工艺分析[J].煤炭转化,2008,31(1):93-96.
    [28]危师让,吴龙,郜时旺,许世森.采用二氧化碳气化的两段式加压气化工艺[P].中国,发 明专利:200910023096.2.2009-11-25.
    [29]门长贵,郑化安,刘国平,张勇,贺根良,葛启明,袁善录,任小苟.一种多元料浆加压气化工艺[P].中国,发明专利:200410073361.5.2005-07-13.
    [30]于海龙,刘建忠,张桂芳,岑可法.水煤浆气化炉的形式和新型气化炉的开发[P].煤炭转化,2007,30(1):21-25.
    [31]田原宇,乔英云,梁鹏,盖希坤,刘芳.一种新型水煤浆气化炉[P].中国,实用新型专利:200720305599.5.2008-12-31.
    [32]田原宇,巩志坚,乔英云,刘芳,盖希坤,梁鹏.带有扩张段的直冷式水煤浆气化喷嘴[P].中国,实用新型专利:200710187415.4.2009-05-27.
    [33]李志坚.新形势化学工业潜力分析会特别报导(三)—煤气化及化肥行业工艺技术发展动态[J].化学工业,2009,27(7):1-5.
    [34]赵东旭.我国IGCC发电技术应用现状及政策建议[J].电力技术经济,2007,19(6):40-43.
    [35]段立强,林汝谋,金红光,邓世敏,蔡睿贤.降低IGCC系统中回收CO2能耗的新思路[J].工程热物理学报,2003,24(4):541-545.
    [36]胥蕊娜,陈文颖,吴宗鑫.电厂中CO2补集技术的成本及效率[J].清华大学学报(自然科学版),2009,49(9):103-106.
    [37]Ruby J, Johnson A, Ziock H, Lackner K. Zero Emission Coal Technologies—A Prudent Man Approach to North American Energy Security[C], Proceedings of the 27th International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, Florida, USA, March 4-7,2002,767-778.
    [38]Ziock HJ, Lackner KS. Overview of ZECA (Zero Emission Coal Alliance) Technology[R]. Los Alamos Report, LA-UR-00-6002,2002, URL:http://www.zeca.org/docs.html.
    [39]Lin SY, Harada M, Suzuki Y, Hatano H. Process analysis for hydrogen production by reaction integrated novel gasification (HyPr-RlNG)[J]. Energy Conversion and Management,2005, 46(6):869-880.
    [40]王勤辉,沈洵,骆仲泱,岑可法.新型近零排放煤气化燃烧利用系统[J].动力工程,2003,23:2711-2715.
    [41]肖云汉.新型发电技术[J].华北电力大学学报,2003,30:17-20.
    [42]许清波.恩德粉煤气化炉灰渣再利用分析[J].中氮肥,2005,(3):31-32.
    [43]Lin SY, Kiga T, Nakayama K, Suzukib Y. Coal power generation with in-situ CO2 capture-HyPr-RING method—Effect of ash separation on plant efficiency[J]. Energy Procedia,2011, 4:378-384.
    [44]Lin SY, Suzuki Y, Hatano H, Harada M. Developing an innovative method, HyPr-RING, to produce hydrogen from hydrocarbons[J]. Energy Conversion and Management,2002, 43(9-12):1238-1290.
    [45]Rizep RG, Lyon RK, Zamansky VM. Fuel-Flexible AGC technology for H2, power, and sequestration-ready CO2[C]. In:The proceedings of the 26th international technical conference on coal utilization & fuel systems, Ed. B.A. Skestad. Clearwater, USA,2001:359-368.
    [46]Ziock HJ, Lackner KS, Harrison DP. Zero emission coal power, a new concept[R]. Los Alamos, New Mexico:Los Alamos National Laboratory. (LA-UR-01-2214).
    [47]Ziock HJ, Anthony EJ, Brosha EL, Garzon FH, Guthrie GD, Johnson AA, et al. Technical progress in the development of zero emission coal technologies[R]. Los Alamos, New Mexico: Los Alamos National Laboratory. (LA-UR-02-5969).
    [48]Gao L, Paterson N, Dugwell D, Kandiyoti R. Zero-Emission Carbon concept (ZECA): equipment commissioning and extents of the reaction with hydrogen and steam[J]. Energy and Fuels,2008,22:463-470.
    [49]Romano MC, Lozza GG. Long-term coal gasification-based power plants with near-zero emissions. Part A:Zecomix cycle[J]. International Journal of Greenhouse Gas Control,2010, 4:459-468.
    [50]肖云汉.煤制氢零排放系统[J].工程热物理学报,2001,22:13-15.
    [51]关键.新型近零排放煤气化燃烧集成利用系统的机理研究[D].浙江:浙江大学,2007.
    [52]Perdikaris N, Panopoulos KD, Fryda L, Kakaras E. Design and optimization of carbon-free power generation based on coal hydrogasification integrated with SOFC[J]. Fuel,2009,88: 1365-1375.
    [53]Ziock HJ, Guthrie GD, Lackner KS, Ruby J, Nawaz M. Zero emission coal, a new approach and why it is needed[R]. Los Alamos, New Mexico:Los Alamos National Laboratory; 2001. (LA-UR-01-5865). URL:http://library.lanl.gov/cgi-bin/getfile?00796497.pdf.
    [54]Slowinski G. Some technical issues of zero-emission coal technology [J]. International Journal of Hydrogen Energy,2006,31:1091-1102.
    [55]Mess D, Sarofim AF, Longwell JP. Product layer diffusion during the reaction of calcium oxide with carbon dioxide[J]. Energy and Fuels,1999,13:999-1005.
    [56]Li YJ, Zhao CS, Chen HC, Ren QQ, Duan LB. CO2 capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle[J]. Energy,2011,36:1590-1598.
    [57]Harrison DP, Han C, Lee G. A calcium oxide sorbent process for bulk separation of carbon dioxide[C]. In:Proceedings of advanced coal-fired power systems'95 review meeting, Morgantown, West Virginia, June 27-29,1995. DOE/MC/26366-96/C0537.
    [58]Shimizu T, Hirama T, Hosoda H, Kitano K, Inagaki M, Tejima K. A twin fluid-bed reactor for removal of CO2 from combustion processes[J]. Chemical Engineering Research& Design, 1999,77:62-68.
    [59]http://www.fossil.energy.gov/news/techlines/2001/tl_arc_sequestration.html.
    [60]Steinberg M. Process for conversion of coal to substitute natural gas (SNG)[R]. New York: HCE LLC; 2005 Aug. Contract No.:HCEI-8-05-001r2. URL: http://www.hceco.com/HCEI805001. pdf.
    [61]于涌年.美国煤的加氢气化[J].煤炭科学技术,1978,(7):59-61.
    [62]Scharf HJ,王梦时.褐煤加氢气化半工业试验厂[J].煤炭加工与综合利用,1985,(1):68-73.
    [63]袁申富,曲旋,张荣,毕继诚.煤加氢气化技术研究进展[J].科技创新与生产力,2012,(8):24-26.
    [64]IGT Process Research Division. HYGAS:1964 to 1972 pipeline gas from coal-hydrogasification (IGT hydrogasification process) [R]. Chicago:Energy Research and Development Administration,1976:110-190.
    [65]Epstein M. An analysis of coal hydrogasi6cation processes [R]. Sanfrancisco:the United States Department of Energy,1978:12-100.
    [66]Friedman J. Development of a single-stage, entrained-flow, short-residence-time hydrogasifier [R]. Virginia:National Technical Information Service, Springfield, Final R eport FE-2518-24, 1979.
    [67]Falk AY. Advancement of flash hydrogasification:task Ⅲ-performance[R]. Calfornia:US Department of Energy,1986.
    [68]李保庆.BG-OG煤加氢气化-城市煤气化新工艺[J].煤气与热力,1995,15(3):10-15.
    [69]Fuyuki N. Coal hydrogasificaiton process for the production of SNG and chemicals[C]. Pittsburgh:17th Annual International Pittsburgh Coal Conference Proceedings,2002:2-10.
    [70]Zhang A, Kaiho M, Yasuda H, Zabat M, Nakano K, Yamada O. Fundamental studies on hydrogasification of Taiheiyou coal[J]. Energy,2005,30:2243-2250.
    [71]Xu WC, Matsuoka K, Akiho H, Kumagai M, Tomita A. High pressure hydropyrolysis of coals by using a continuous free-fall reactor[J]. Fuel,2003,82:677-685.
    [72]Xu WC, Kumagai M. Sulfur transformation during rapid hydropyrolysis of coal under high pressure by using a continuous free fall pyrolyzer[J]. Fuel,2003,82:245-254.
    [73]Tang LH, Zhu ZB, Gu HX, Zhang CF. The effect of coal rank on flash hydropyrolysis of Chinese coal[J]. Fuel Processing Technology,1999,60:195-202.
    [74]李保庆.煤加氢热解研究Ⅰ.宁夏灵武煤加氢热解的研究[J].燃料化学学报,1995,(1):57-61.
    [75]李保庆.我国煤加氢热解研究Ⅱ.先锋褐煤加氢及催化加氢热解的热重研究[J].燃料化学学报,1995,(2):168-191.
    [76]李保庆.我国煤加氢热解研究Ⅲ.神府煤加氢,催化加氢及H2-CH4气氛下热解的研究[J].燃料化学学报,1995,(2):192-197.
    [77]杨允明,沙兴中,任德庆.煤的加氢气化研究[J].煤炭转化,1992,(1):60-67.
    [78]朱玲.TGA中煤加氢气化特性研究[D].北京交通大学,2010.
    [79]陈振兴.煤加氢气化反应的试验研究[D].北京交通大学,2011.
    [80]赵立强.加压固定床反应器中煤加氢气化的特性研究[D].北京交通大学,2011.
    [81]Baum MM, Street PJ. Predicting the combustion behaviour of coal particles[J]. Combustion Science and Technology,1971,3:231-243.
    [82]Badzioch S, Hawksley PGW. Kinetics of thermal decomposition of pulverized coal particles[J]. Industrial & Engineering Chemistry Process Design and Development,1970,9: 521-530.
    [83]Kobayashi H, Howard JB, Sarofim AF. Coal devolatilization at high temperature[C]. In 16th Symp. (Int'l.) on Combustion. The Combustion Institute,1976.
    [84]Grant DM, Pugmire RJ, Fletcher TH, Kerstein AR. Chemical percolation model of coal devolatilization using percolation lattice statistics[J]. Energy and Fuels,1989,3:175-186.
    [85]Fletcher TH, Kerstein AR, Pugmire RJ, Grant DM. Chemical percolation model for devolatilization:2. Temperature and heating rate effects on product yields[J]. Energy and Fuels,1990,4:54-60.
    [86]Fletcher TH, Kerstein AR. Chemical percolation model for devolatilization:3. Direct use of 13C NMR data to predict effects of coal type[J]. Energy and Fuels,1992,6:414-431.
    [87]Johnson JL. Kinetics of initial coal hydrogasification stages[J]. American Chemical Society, Division of Polymer Chemistry,1977,22:17-37.
    [88]Johnson JL. Gasification of Montana lignite in hydrogen and in helium during initial reaction stages[J]. American Chemical Society, Division of Polymer Chemistry,1975,20:61-87.
    [89]Hippo EJ, Johnson JL. The modelling of initial stage hydrogasification of various ranked coals[J]. American Chemical Society, Division of Polymer Chemistry,1978,23:62-67.
    [90]Smith IW. The combustion rates of coal chars:a review[C]. In:19th Intsympos on combustion. The Combustion Institute,1982,1045-1065.
    [91]张运河,梁玉国,张庆.低碳经济背景下地中国能源结构优化[J].价值工程,2011,30(11):1-2.
    [92]Franco A, Diaz AR. The future challenges for "clean coal technologies":Joining efficiency increase and pollutant emission control[J]. Energy,2009,34(3):348-354.
    [93]乔春珍,肖云汉,徐祥,赵丽凤,田文栋.两种不同再生方式下含碳能源直接制氢的比较[J].中国电机工程学报,2006,26(18):95-100.
    [94]Solutions for the 21st Century, Zero Emissions Technologies for Fossil Fuels [R]. OECD/IEA Technology Status Report, May,2002.
    [95]He BS, Li MY, Wang X, Zhu L, Wang LL, Xue JW, Chen ZX. Chemical kinetics-based analysis for utilities of ZEC power generation system[J]. International Journal of Hydrogen Energy,2008,33(17):4673-4680.
    [96]刘保林.近零排放煤利用关键技术与系统集成研究[D].北京交通大学,2007.
    [97]Salvador C, Lu D, Anthony EJ, Abanades JC. Enhancement of CaO for CO2 capture in an FBC environment[J]. Chemical Engineering Journal,2003,96(1-3):187-195.
    [98]Yan LB, He BS, Ma LL, Pei XH, Wang CJ, Li XS. Integrated characteristics and performance of zero emission coal system[J]. International Journal of Hydrogen Energy,2012,37(12): 9669-9676.
    [99]张红梅.催化重整全流程动态模拟及重整反应器模拟方法探讨[D].北京化工大学,2004.
    [100]Aspen Plus User Models. Aspen Technology, Inc,2006.
    [101]Perry RH, Green DW. Perry's chemical engineer's handbook[M]. The McGraw-Hill Companies, Inc.,1999.
    [102]徐越,吴一宁,危师让.基于ASPEN PLUS平台的干煤粉加压气流床气化性能模拟[J].西安交通大学学报,2003,27(7):25-27.
    [103]刘永,蒋云峰,邓蜀平,熊志建,王敏龙.基于Aspen Plus软件的煤气化过程模拟评述[J].河南化工,2010,38(10):1361-1365.
    [104]Watkinson AP, Lucas JP, Lim CJ. A prediction of performance of commercial coal gasifiers[J]. Fuel,1991,70(4):519-527.
    [105]程健,许世森.固体氧化物燃料电池本体模拟研究[J].热力发电,2004,(12):13-16.
    [106]史翊翔,蔡宁生.固体氧化物燃料电池阴极数学模型与性能分析[J].中国电机工程学报,2006,26(4):82-87.
    [107]李奇,陈维荣,戴朝华,贾俊波,韩明.基于搜寻者优化算法的质子交换膜燃料电池模型优化[J],中国电机工程学报.2008,28(17):119-124.
    [108]王礼进,张会生,翁史烈.内重整高温固体氧化物燃料电池建模与仿真[J].中国电机工程学报,2007,27(35):78-83.
    [109]陈启梅,翁一武,翁史烈,朱新坚.燃料电池-燃气轮机混合发电系统性能研究[J].中国电机工程学报,2006,26(4):31-35.
    [110]Doherty W, Reynolds A, Kennedy D. Computer simulation of a biomass gasification-solid oxide fuel cell power system using Aspen Plus[J]. Energy,2010,35(12):4545-4555.
    [111]Zhang W, Croiset E, Douglas PL, Fowler MW, Entchev E. Simulation of a tubular solid oxide fuel cell stack using AspenPlusTM unit operation models[J]. Energy Conversion and Management,2005,46 (2):181-196.
    [112]EG&G Technical Services. Fuel cell Handbook (Fifth Edition)[M]. US Department of Energy, 2000.
    [113]Campanari S. Thermodynamic model and parametric analysis of a tubular SOFC module[J]. Journal of Power Sources,2001,92 (1-2):26-34.
    [114]Chan SH, Khor KA, Xia ZT. A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness[J]. Journal of Power Sources,2001,93 (1-2):130-140.
    [115]Riensche E, Meusinger J, Stimming U, Unverzagt G. Optimization of a 200 kW SOFC cogeneration power plant. Part Ⅱ:variation of the flowsheet[J]. Journal of Power Sources, 1998,71(1-2):306-314.
    [116]Verda V, Quaglia MC. Solid oxide fuel cell systems for distributed power generation and cogeneration[J]. International Journal of Hydrogen Energy,2008,33(8):2087-2096.
    [117]Call M, Santarelli M, Leone P. Design of experiments for fitting regression models on the tubular SOFC CHP100kWe:screening test, response surface analysis and optimization[J]. International Journal of Hydrogen Energy,2007,32(3):343-358.
    [118]沈维道,童钧耕.工程热力学(第四版)[M].北京:高等教育出版社,2007.
    [119]古雯雯.基于Aspen Plus的太阳能与火电机组集成与性能分析[D].华北电力大学,2009.
    [120]Chacartegui R, Sanchez D, Munoz de Escalona JM, Munoz A, Sanchez T. Gas and steam combined cycles for low calorific syngas fuels utilization[J]. Applied Energy,2013,101: 81-92.
    [121]Majoumerd MM, De S, Assadi M, Breuhaus P. An EU initiative for future generation of IGCC power plants using hydrogen-rich syngas:Simulation results for the baseline configuration[J]. Applied Energy,2012,99:280-290.
    [122]Database on the Thermal Conversion Characteristic of Typical Chinese Coal. URL: http://www.coal.csdb.cn/Lists/CoalBasic/visit.aspx
    [123]严林博,何伯述,裴晓辉,宋卫宁,陈琪,宋泾舸.煤基近零排放系统中固体氧化物燃料电池本体的模拟研究[J].中国电机工程学报,2012,32(29):94-103.
    [124]Dincer I, Rosen MA. Exergy:energy, environment and sustainable development[M]. Oxford: elsevier books customer service,2007.
    [125]Cengel YA, Boles MA. Thermodynamics:An Engineering Approach (seventh edition)[M]. NewYork:McGraw-Hill,2011.
    [126]Cohce MK, Dincer I, Rosen MA. Energy and exergy analyses of a biomass-based hydrogen production system[J]. Bioresource Technology,2011,102:8466-8474.
    [127]Bakshi BR, Gutowski TG, Sekulic DP. Thermodynamics and the Destruction of Resources[M]. Cambridge University Press,2011.
    [128]El-Emam RS, Dincer I, Naterer GF. Energy and exergy analyses of an integrated SOFC and coal gasification system[J]. International Journal of Hydrogen Energy,2012,37:1689-1697.
    [129]Wang S, Wang SD. Exergy analysis and optimization of methanol generating hydrogen system for PEMFC[J]. International Journal of Hydrogen Energy,2006,31:1747-1755.
    [130]邱立新,雷仲敏,周田君.洁净煤技术的评价方法研究[J].洁净煤技术,2006,11(1):5-8.
    [131]王爱丽.关于物理化学吉布斯函数的几个问题[J].广东化工,2008,35(9):168-169.
    [132]钱恒.总熵判据和吉布斯函数判据.安庆师范学院学报(自然科学版)[J],2004,10(2):92-95.
    [133]郭子成,任杰,杨建一.等温、等容化学反应平衡时平衡关系的讨论[J].河北科技大学学报,2009,30(1):25-29.
    [134]王新平,王旭珍,王新葵,李醒龙,蒋晨然,任延煜.关于熵判据、亥姆霍兹函数判据和吉布斯函数判据的讨论[J].大学化学,2012,27(3):66-70.
    [135]王正烈,周亚平.物理化学(第4版上册)[M].北京:高等教育出版社,2001.
    [136]Getting Started Modeling Processes with Solids (Version 10.2)[M]. USA:Aspen Technology, Inc.2000.
    [137]Aspen Technology. Aspen Plus Physical Property Methods and Models[M]. USA:Aspen Technology,2000.
    [138]沈玲玲,姜秀民,王辉,黄庠永.IGCC示范工程煤气化炉的数值模拟[J].煤炭转化,2009,32(1):14-19.
    [139]王丽俐,何伯述,魏国强·煤加氢气化的化学热力学模型预测[J].洁净煤技术,2007,13(6):45-48.
    [140]Melgar A, Perez JF, Laget H, Horillo A. Thermo-chemical equilibrium modeling of a gasifying process[J]. Energy Conversion and Management,2007,48(1):59-67.
    [141]Dean JA. Lange's handbook of chemistry,15th edition[M]. New York:McGraw Hill,1998.
    [142]Robert HP, Don WG. Perry's Chemical Engineers'Handbook (Seventh Edition)[M]. New York:McGraw Hill,1999.
    [143]Zainal ZA., Ali R., Lean CH., Seetharamu KN. Prediction of performance of a downdraft gasifier using equilibrium model[J]. Energy conversion and management,2001,42(12): 1499-1515.
    [144]Misirhoglu Z, Canel M, Sinag A. Hydro-gasification of chars under high pressures[J]. Energy Conversion and Managemen,2007,48(1):52-58.
    [145]Lee SH, Lee JG, Kim JH, Choi YC. Hydro-gasification characteristics of bituminous coals in an entrained-flow hydro-gasifier[J]. Fuel,2006,85(5-6):803-806.
    [146]Jenkins HDB. Chemical Thermodynamics at a Glance[M]. Oxford:Blackwell Publishing Ltd., 2008.
    [147]张斌,李政,江宁,麻林巍,郑洪韬.基于Aspen Plus建立喷流床煤气化炉模型[J].化工学报,2003,54(8):1179-1182.
    [148]赵学庄.化学反应动力学原理(上册)[M].北京:高等教育出版社,1984.
    [149]杨宏秀,傅希贤,宋宽秀.大学化学[M].天津:天津大学出版社,2001.
    [150]韩德刚,高盘良.化学动力学基础[M].北京:北京大学出版社,2002.
    [151]李鸣扬.煤加氢气化化学反应动力学模型及汞的形态演化机理研究与数值模拟[D].北京交通大学,2009.
    [152]王正烈,周亚平.物理化学(下册)[M].北京:高等教育出版社,2001.
    [153]David M. Mathematical models of the thermal decomposition of coal[J]. Fuel,1983,62: 534-539.
    [154]Biagini E, Masoni L, Pannocchia G, Tognotti L. Development of gasifier models for hydrogen production optimization[R]. AIDIC Conference Series; September 2009,45-54; URL:http:// www.aidic.it/icheap9/webpapers/439Biagini.pdf.
    [155]Kobayashi H, Howard JB, Sarofim AF. Coal devolatilization at high temperatures[C],16th Symposium (International) on Combustion,1976; 411-425.
    [156]Higuera FJ. Numerical simulation of the devolatilization of a moving coal particle[J]. Combustion and Flame,2009,156:1023-1034.
    [157]Xu WC, Matsuoka K, Akiho H, Kumagai M, Tomita A. High pressure hydropysolysis of coals by using a continuous free-fall reactor[J]. Fuel,2003,82:677-685.
    [158]Chem JS, Hayhurst AN. Fluidised bed studies of:(i) Reaction-fronts inside a coal particle during its pyrolysis or devolatilisation, (ii) the combustion of carbon in various coal chars[J]. Combustion and Flame,2012,159:367-375.
    [159]Hippo EJ, Johnson JL. Modeling of initial stage hydrogasification of various ranked coals[R]. Chicago:Institute of Gas Technology (US); 1978 Jan. Report No.:CONF7809025. URL:http: //www.osti.gov/bridge/purl.cover.jsp?purl=/6074682-KtEPFx/6074682.pdf.
    [160]Kumar M, Zhang C, Monaghan RFD, Singer SL, Ghoniem AF. CFD simulation of entrained flow gasification with improved devolatilization and char consumption submodels[C].2009 Nov.13-19; Florida:Lake Buena Vista. IMECE2009:ASME 2009 International Mechanical Engineering Congress and Exposition; 383-395.
    [161]Wen CY, Chaung TZ. Entrainment coal gasification modelling[J]. Industrial & Engineering Chemistry Process Design and Development,1979,18:684-694.
    [162]Liu XJ, Zhang WR, Park TJ. Modelling coal gasification in an entrained flow gasifier[J]. Combustion Theory and Modelling,2001,5:595-608.
    [163]吴学成,王勤辉,骆仲泱,方梦祥,岑可法.气化参数影响气流床煤气化的模型研究(Ⅰ)—模型建立及验证[J].浙江大学学报(工学版),2004,38:1363-1365.
    [164]FLUENT6.3-User's guide. Fluent Inc.,2006.
    [165]吴玉新,张建胜,岳光溪,吕俊复.Texaco气化炉混合过程及化学反应过程中的控制因素分析[J].燃烧科学与技术,2009,15:287-292.
    [166]Goyal A. Mathematical modelling of Entrained-flow coal gasification reactors [D]. Illinois Institute of Technology, Chicago, IL,1980.
    [167]李政,王天骄,韩志明,郑洪韬,倪维斗.Texaco煤气化炉数学模型的研究-建模部分[J].动力工程,2001,21:1161-1165.
    [168]Brown BW, Smoot LD, Smith PJ, Hedman PO. Measurement and prediction of entrained-flow gasification processes[J]. AIChE Journal,1988,34:435-446.
    [169]Borgwart RH. Calcination kinetics and surface area of dispersed limestone particles[J]. AICHE Journal,1985,31:103-111.
    [170]Bhatia, SK, Perlmutter, DD. A random pore model for fluid-solid reactions:1. Isothermal, Kinetic Control[J]. AIChE Journal,1980,26:379-386.
    [171]Missen RW, Mims CA, Saville BA. Chemical reaction engineering and kinetics[M]. New York:John Wiley & Sons, Inc,1999.
    [172]高鹃,吴晋沪,王洋.射流流化床煤气化炉中气固流动和传热、传质的CFD模拟研究[J]. 燃料化学学报,2008,36(3):360-364.
    [173]Magnussen BF. On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow[C]. American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting,19th, St Louis, Mo; January 1981,12-15; URL: http://folk. ntnu.no/ivarse/edc/EDC1981.pdf.
    [174]Carvalho MG, Farias T, Fontes P. Predicting radiative heat transfer in absorbing, emitting, and scattering media using the discrete transfer method[C]. In:Fiveland WA et al., editors. Fundamentals of radiation heat transfer. ASME HTD; 1991,17-26.
    [175]Shah NG. A new method of computation of radiant heat transfer in combustion chambers [D]. London:Imperial College of Science and Technology; 1979.
    [176]Cheng P. Two-dimensional radiating gas flow by a moment method[J]. AIAA Journal,1964, 2:1662-1664.
    [177]Siegel R, Howell JR. Thermal radiation heat transfer[M]. Washington,DC:Hemisphere Publishing Corporation.1992.
    [178]Chui EH, Raithby GD. Computation of radiant heat transfer on a non-orthogonal mesh using the finite-volume method[J]. Numer Heat Transfer, Part B 1993,23:269-288.
    [179]Smith TF, Shen ZF, Friedman JN. Evaluation of Coefficients for the Weighted Sum of Gray Gases Model[J]. Journal of Heat Transfer,1982,104:602-608.
    [180]Liu GS, Rezaei HR, Lucas JA, Harris DJ, Wall TF. Modelling of a pressurized entrained flow coal gasifier:the effect of reaction kinetics and char structure[J]. Fuel,2000,79:1767-1779.
    [181]Hla SS, Harris D, Roberts D. Gasification conversion model-PEFR[R]. Cooperative Research Centre for Coal in Sustainable Development:Research Report 80; January2008. URL: http://www.ccsd.biz/publications/files/RR/ACF5066.pdf.
    [182]Liu G, Benyon P, Benfell KE, Bryant GW, Tate AG, Boyd RK, Harris DJ, Wall TF. The porous structure of bituminous coal chars and its influence on combustion and gasification under chemically controlled conditions[J]. Fuel,2000,179:617-626.
    [183]Wen CY, Chaung TZ. Entrainment coal gasification modeling[J]. Industrial & Engineering Chemistry Process Design and Development,1979,18:684-694.
    [184]Messenbock PC, Paterson NP, Dugwell DR, Kandiyoti R. Factors governing reactivity in low temperature coal gasification. Part 1. An attempt to correlate results from a suite of coals with experiments on maceral concentrates[J]. Fuel,2000,79:109-121.
    [185]杨海平,陈汉平,鞠付栋,王静,张世红.典型煤种加压热解与气化实验研究[J].中国电机工程学报,2007,27(26):18-22.
    [186]Cetin E, Gupta R, Moghtaderi B. Effect of pyrolysis pressure and heating rate on radiata pine char structure and apparent gasification reactivity[J]. Fuel,2005,84:1328-1334.
    [187]Gadiou R, Bouzidi Y, Prado G. The devolatilisation of millimetre sized coal particles at high heating rate:the influence of pressure on the structure and reactivity of the char[J]. Fuel,2002, 81:2121-2130.
    [188]Wang T, Silaen A. Effects of Turbulence and Devolatilization Models on Gasification Simulation[C]. International Pittsburgh Coal Conference, Pittsburgh; 2008.
    [189]Chen CX, Horio M, Kojima T. Numerical simulation of entrained flow coal gasifiers. Part I: modeling of coal gasification in an entrained flow gasifier[J]. Chemical Engineering Science, 2000,55:3861-3874.
    [190]Chen CX, Horio M, Kojima T. Use of numerical modeling in the design and scale-up of entrained flow coal gasifers[J]. Fuel,2001,80:1513-1523.
    [191]Chen CX, Takahiro M, Kajima H, Horio M, Kojima T. On the scaling-up of a two-stage air blown entrained flow coal gasifier[J]. Canadian Journal of Chemical Engineering 1999,77: 745-750.
    [192]Shih TH, Liou WW, Shabbir A, Yang Z, Zhu J. A new k-s eddy viscosity model for high Reynolds number turbulent flows-model development and validation[J]. Computers & Fluids, 1995,24:227-238.
    [193]Pope SB. Computationally efficient implementation of combustion chemistry using in-situ adaptive tabulation[J]. Combustion Theory and Modelling,1997,1:41-63.
    [194]周志杰,范晓雷,张薇,王辅臣,于遵宏.非等温热重分析研究煤焦气化动力学[J].煤炭学报,2006,31(2):219-222.
    [195]吴诗勇,李莉,顾菁,吴幼青,高晋生.高碳转化率下热解神府煤焦-C02高温气化反应[J].燃料化学学报,2006,34(4):399403.
    [196]肖军,沈来宏,邓霞,王泽明,仲晓黎.生物质催化热解气化热重分析研究[J].太阳能学报,2009,30(9):1252-1257.
    [197]Sulimma A, Leonhardt P, Heek KH van, Juntgen H. Thermogravimetric study on catalytic hydropyrolysis of coal[J]. Fuel,1986,65(10):1457-1461.
    [198]Zhou LM, Jia YY, Nguyen TH, Adesina AA, Liu ZR. Hydropyrolysis characteristics and kinetics of potassium-impregnated pine wood[J]. Fuel Processing Technology,2013,116: 149-157.
    [199]李文,王娜,李保庆.煤催化多段加氢热解过程的产物分析[J].中国矿业大学学报,2002,31(3):246-250.
    [200]Li BQ, Danheux CB, Cypres R. Catalytic hydropyrolysis by impregnated sulphided Mo catalyst[J]. Fuel,1991,70(2):254-258.
    [201]孙庆雷,李文,陈皓侃,李保庆.神木煤显微组分热解和加氢热解的焦油组成[J].燃料化学学报,2005,33(4):412-415.
    [202]Xu WC, Kumagai M. Nitrogen evolution during rapid hydropyrolysis of coal [J]. Fuel,2002, 81(8):2325-2334.
    [203]陆立明.热分析应用基础[M].上海:东华大学出版社,2010.
    [204]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001.
    [205]Sbirrazzuoli N. Determination of pre-exponential factors and of the mathematical functions X(α) or G(a) that describe the reaction mechanism in a model-free way[J]. Thermochimica Acta,2013,564:59-69.
    [206]Labojko G, Kotyczka-Moranska M, Plis A, Sciazko M. Kinetic study of polish hard coal and its char gasification using carbon dioxide[J]. Thermochimica Acta,2012,549:158-165.
    [207]张超群,魏砾宏,任庚坡,姜秀民.超细与常规煤粉的热解特性及其热解机理的研究[J].哈尔滨工业大学学报,2006,38(11):1948-1951.
    [208]Satava V. Mechanism and kinetics from non-isothermal TG traces[J]. Thermochimica Acta, 1971,2:423-428.
    [209]Bagchi TP, Sen PK. Combined differential and integral method for analysis of non-isothermal kinetic data[J]. Thermochimica Acta,1981,51(2-3):175-189.
    [210]潘云祥,管翔颖,冯增媛,李秀玉,阎政.双外推法研究FeC2O4-2H2O脱水过程的动力学机理.物理化学学报,1998.14(12):1088-1093.
    [21 1]李靖华,张桂恩.固体热分解反应动力学的研究(Ⅰ)-水合草酸钾脱水过程的动力学.河南师范大学学报(自然科学版)[J],1991,(3):40-45.
    [212]Sharp JH, Wentworth SA. Kinetic analysis of thermogravimetric data[J]. Analytical Chemistry, 1969,41(14):2060-2062.
    [213]蒲学森.近零排放煤气化燃烧集成系统动力学研究[D].浙江大学,2006.
    [214]王贤华,鞠付栋,杨海平,徐健,张世红,陈汉平.神府煤加压热解特性及热解动力学分析[J].中国电机工程学报,2011,31(11):40-44.
    [215]Liu NA, Wang BH, Fan WC. Kinetic compensation effect in biomass thermal decomposition[J]. Fire Safety Science,2002,11(2):63-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700