用户名: 密码: 验证码:
电励磁直驱风力发电机并网控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:直驱型风力发电机组因其具有可靠性高、传动效率高、故障穿越能力强、发电机与电网无直接耦合等优点,成为了风电领域重要的发展趋势。近年来,永磁直驱型风电机组成本受永磁材料的价格、储量等因素影响较大,从而使电励磁直驱型风电机组成为直驱型风电机组的又一个发展方向。本文围绕电励磁直驱型风力发电机并网控制技术展开理论研究,对并网逆变器和电励磁同步发电机(electrically excited synchronous generator, EESG)的控制策略进行了研究,取得了以下成果。
     1.围绕并网逆变器的建模和电流控制性能进行了研究。在并网逆变器静止坐标系和同步旋转坐标系下的动态数学模型的基础上,研究了并网逆变器在同步旋转坐标系下的解耦PI控制和静止坐标系下的PR控制两种典型电流控制策略的特点。利用复矢量分析法对采用不同电流调节器时系统的解耦性能、跟随性能、抗扰性能进行了对比分析。对静止坐标系下基于PR电流调节器时系统的功率解耦性能进行了理论分析,得到了系统的功率耦合关系,并提出了通过改进传统PR调节器实现功率解耦的方法。最后,通过并网逆变器的仿真和实验结果验证了静止坐标系下采用改进型PR电流调节器可以实现系统有功功率和无功功率的解耦控制,改善系统的动态性能。
     2.对不平衡电网条件下并网逆变器的控制策略进行了研究。利用对称分量法建立了直驱风力发电机系统中并网逆变器在不平衡电网电压条件下的数学模型。针对不平衡电网电压条件下实现并网逆变器与电网同步的问题,提出了一种基于降阶谐振调节器的锁频环(frequency-locked loop based on reduced order resonant controller, ROR-FLL)技术实现电网频率检测及不平衡电压的正、负序分离等,通过仿真和实验验证了ROR-FLL实现正负序分离、谐波及频率检测的可行性。采用提出的ROR-FLL,引入了通用正负序电流指令计算方法,得到了并网逆变器静止坐标系下基于PR电流调节器的不平衡控制策略。最后,提出了一种新型的电流调节器——比例积分降阶谐振(proportion integral plus reduced order resonant, PI-ROR)调节器,并将其应用到不平衡控制系统中进行不平衡电流的控制,得到了一种正向同步旋转坐标系下基于PI-ROR电流调节器的不平衡控制策略,通过仿真和实验验证了系统的稳态和动态性能。
     3.围绕EESG的建模和磁链观测技术展开研究。建立EESG在静止坐标系、dq同步旋转坐标系和MT轴系下的动态数学模型的基础上,研究了EESG的不同磁链定向方法,给出了气隙磁链定向控制的原理,并设计了矢量控制系统。对EESG矢量控制系统中的磁链观测技术进行了研究,针对基于电压模型磁链观测器中纯积分环节的初始值、直流偏置、积分饱和等问题,提出了一种改进型二阶广义积分器(improved second-order generalized integrator, ISOGI)代替纯积分器,得到了一种基于ISOGI的电压模型磁链观测技术,并对其实现方法及性能进行了分析。最后,通过Matlab仿真和电励磁直驱型风力发电系统实验平台验证了基于ISOGI磁链观测器是可行性,且此方案在风力发电系统要求的频率范围具有较好的稳态及动态性能。
     4.对电励磁直驱型风力发电机在短时超速情况下的弱磁控制进行了研究。首先,介绍了EESG弱磁控制的原理,规划出了EESG在恒转矩区和高速弱磁区的电流轨迹。其次,对基于动态定子磁链电流补偿的EESG定、转子综合弱磁控制方法的性能进行了分析,并通过仿真和实验进行了验证。接着,针对传统弱磁控制方法存在动态响应慢的问题,提出了两种改进的弱磁控制方案:基于“虚拟阻抗”的定、转子综合弱磁控制方案和基于变M轴电压单电流调节器的定、转子综合弱磁控制方案。最后,通过仿真和实验验证了所提弱磁控制方案能够加快弱磁控制的动态响应,可以应用于电励磁直驱型风力发电系统的短时超速工况下,保证风力发电系统在更宽的速度范围内可靠运行。
Direct-driven wind generation system is considered to be an important development tendency in wind generation technology area due to its superiorities of high reliability, high efficiency, good grid fault ride-through ability, etc. Recently, the price and reserves of permanent magnet materials has great influence on the cost of permanent magnet direct-driven wind generation system, and electricity excitation direct-driven wind generation system becomes another development direction. This dissertation gives theoretical study on grid-connected control technology for direct-driven wind generation system. The control strategies of grid-connected inverter (GCI) and electrically excited synchronous generator (EESG) are both discussed comprehensively. Simulations and experiments demonstrate the correctness of the research results. Following are the major research works of this dissertation.
     Firstly, modeling and current control of GCI have been discussed. The GCI dynamic modeling is established and expressed in the stationary reference frame and synchronous rotating reference frame. Two typical vector control strategies of GCI are realized, which is decoupled PI current control implemented in the synchronous reference frame, and PR current control in the stationary reference frame. Using complex vectors, the vector control system based on different current regulators are analyzed from three aspects of decouple control, tracking performance and disturbance rejection performance. The power decouple control in stationary frame is analyzed comprehensively, and a new method is provided for achieving the power decoupling. Simulation and experimental results verify that the improved PR current regulator can realize the power decoupling control and increase the dynamic performance.
     Secondly, the control strategy of GCI under unbalanced grid voltage has been emphasized. Dynamic modeling of GCI applied on unbalanced voltage conditions is established using symmetrical component method. To synchronize at the fault condition, a novel frequency-locked loop technology based on the reduced order resonant controller (ROR-FLL) is presented. The ROR-FLL can accurately and rapidly extract the positive-negative sequences and frequency from unbalanced voltage, and the simulation and experimental results show its feasibility and excellent transient performance. An unbalanced control strategy in stationary reference frame is presented using ROR-FLL and generalized reference current generation method. A novel controller, proportion integral plus reduced order resonant (PI-ROR) controller, is proposed, which can be used in the unbalanced control system to control the unbalanced current. The novel unbalanced control method based on PI-ROR controller can realize the unbalance control targets with excellent transient performances.
     Thirdly, modeling and flux observer of EESG have been discussed. The dynamic modeling of EESG is created and expressed in the stationary reference frame, dq synchronous rotating reference frame, and MT synchronous rotating reference frame, respectively. The different flux oriented methods are discussed, and the working principle and system design method of air-gap flux oriented vector control are analyzed. The flux observer in EESG vector control system is emphasized based on voltage model of EESG. Then, an improved second-order generalized integrator (ISOGI) which could eliminate the DC bias and integral windup is proposed to replace pure integrator, and a new flux observer based on ISOGI is achieved. Simulation and experimental results show the feasibility of ISOGI flux observer, and this method has excellent steady and transient performance in the frequency range of electrically excited direct-drive wind power system.
     Fourthly, the flux weakening control strategy of EESG under short-time overspeed in the wind power system has been discussed. The working principle of flux weakening control is analyzed, and the current trajectory of EESG is programmed in constant torque and the flux weakening operation region. Then, the performance of stator and rotor side compositive flux weakening control method of EESG based on dynamic stator flux current compensation is discussed and verified by simulation and experimental results. In order to achieve better flux weakening dynamic response, two improved stator and rotor side compositive flux weakening control methods based on virtual impedance and single current regulator has been proposed. Simulation and experimental results validate the feasibility of these control methods, and the wind power system can operate in wide speed range.
引文
[1]李方正.新能源[M].北京:化学工业出版社,2008.
    [2]周双喜,鲁宗相.风力发电与电力系统[M].北京:中国电力出版社,2011.
    [3]李军军,吴政球,谭勋琼,等.风力发电及其技术发展综述[J].电力建设,2011,32(8):64-72.
    [4]肖创英.欧美风电发展的经验与启示[M].北京:中国电力出版社,2010.
    [5]施鹏飞.全球风力发电现况及发展趋势[J].电网与清洁能源,2008,24(7):3-5.
    [6]GWEC. Global Wind Report-Annual market update 2012[R].2013.
    [7]CREIA.中国风电发展报告2012[M].2012.
    [8]张新燕,王维庆,何山.风电并网运行于维护[M].北京:机械工业出版社,2011.
    [9]CWEA.2012年中国风电装机容量统计[R].2013.
    [10]程启明,程尹曼,王映斐,等.风力发电系统技术的发展综述[J].自动化仪表,2012,33(1):1-8.
    [11]Burton T, Sharpe D, Jenkins N, et al. Wind energy handbook[M]. England:John Wiley & Sons,2001.
    [12]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2002.
    [13]芮晓明,柳亦兵,马志勇.风力发电机组设计[M].北京:机械工业出版社,2010.
    [14]杨淑英.双馈型风力发电变流器及其控制[学位论文].合肥工业大学电力电子与电力传动,2007.
    [15]姚兴佳,宋俊.风力发电机组原理与应用[M].北京:机械工业出版社,2011.
    [16]Li H, Chen Z. Overview of different wind generator systems and their comparisons[J]. Renewable Power Generation, IET,2008,2(2):123-138.
    [17]李辉,薛玉石,韩力.并网风力发电机系统的发展综述[J].微特电机,2009,37(5):55-61.
    [18]胡家兵.双馈异步风力发电机系统电网故障穿越(不间断)运行研究——基础理论与关键技术[学位论文].浙江大学电气工程学院浙江大学电机与电器,2009.
    [19]陈瑶.直驱型风力发电系统全功率并网变流技术的研究[学位论文].北京交通大学电力系统及其自动化,2008.
    [20]Shao S, Abdi E, Barati F, et al. Stater-Flux-Oriented Vector Control for Brushless Doubly Fed Induction Generator[J]. Industrial Electronics, IEEE Transactions on, 2009,56(10):4220-4228.
    [21]Pxotsenko K, Xu D. Modeling and Control of Brushless Doubly-Fed Induction Generators in Wind Energy Applications[J]. Power Electronics, IEEE Transactions on, 2008,23(3):1191-1197.
    [22]Torrey D A. Switched reluctance generators and their control[J]. Industrial Electronics, IEEE Transactions on,2002,49(1):3-14.
    [23]胡海燕,潘再平.开关磁阻风力发电系统综述[J].机电工程,2004,21(10):48-52.
    [24]夏长亮,张茂华,王迎发,等.永磁无刷直流电机直接转矩控制[J].中国电机工程学报,2008,28(6):104-109.
    [25]桓毅,汪至中.风力发电机及其控制系统的对比分析[J].中小型电机, 2002,29(4):41-45.
    [26]李勇,胡育文,黄文新,等.变速运行的定子双绕组感应电机发电系统控制技术研究[J].中国电机工程学报,2008,28(20):124-130.
    [27]杜新梅,刘坚栋,李泓.新型风力发电系统[J].高电压技术,2005,31(1):63-65.
    [28]陈建华,吴文传,张伯明,等.消纳大规模风电的热电联产机组滚动调度策略[J].电力系统自动化,2012,36(24):21-27,48.
    [29]张运洲,白建华,辛颂旭.我国风电开发及消纳相关重大问题研究[J].能源技术经济,2010,22(1):1-6.
    [30]袁小明.大规模风电并网问题基本框架[J].电力科学与技术学报,2012,27(1):16-18.
    [31]袁小明,程时杰,文劲宇.储能技术在解决大规模风电并网问题中的应用前景分析[J].电力系统自动化,2013,37(1):14-18.
    [32]朱凌志,陈宁,韩华玲.风电消纳关键问题及应对措施分析[J].电力系统自动化,2011,35(22):29-34.
    [33]迟永宁,李群英,李琰,等.大规模风电并网引起的电力系统运行与稳定问题及对策[J].电力设备,2008,09(11):16-19.
    [34]国家质量监督检验检疫总局.GBT 19963-2011风电场接入电力系统技术规定[S].2011.
    [35]李建林,许洪华,等.风力发电中的电力电子变流技术[M].北京:机械工业出版社,2008.
    [36]杨得润,包广清.直驱风电系统的一种多电平拓扑及其并网研究[J].大电机技术,2012(4):25-29.
    [37]胡书举,李建林,许洪华.永磁直驱风电系统变流器拓扑分析[J].电力自动化设备,2008,28(4):77-81.
    [38]李建林,胡春生.变速恒频直驱型风电系统变流器拓扑结构研究[J].电网与清洁能源,2009,25(12):62-69.
    [39]邓秋玲.电网故障下直驱永磁同步风电系统的持续运行与变流控制[学位论文].湖南大学电气工程,2012.
    [40]张兴,张崇巍.PWM整流器及其控制[M].北京:机械工业出版社,2012.
    [41]Kazmierkowski M P, Malesani L. Current control techniques for three-phase voltage-source PWM converters:a survey[J]. Industrial Electronics, IEEE Transactions on, 1998,45(5):691-703.
    [42]施火泉,徐守雷.三相电压型PWM逆变器电流控制技术的现状和发展[J].微特电机,2005,33(1):34-37.
    [43]Rowan T M, Kerkman R J. A New Synchronous Current Regulator and an Analysis of Current-Regulated PWM Inverters[J]. Industry Applications, IEEE Transactions on, 1986,IA-22(4):678-690.
    [44]Zargari N R, Joos G. Performance investigation of a current-controlled voltage-regulated PWM rectifier in rotating and stationary frames[J]. Industrial Electronics, IEEE Transactions on,1995,42(4):396-401.
    [45]Rim C T, Choi N S, Cho G C, et al. A complete DC and AC analysis of three-phase controlled-current PWM rectifier using circuit D-Q transformation[J]. Power Electronics, IEEE Transactions on,1994,9(4):390-396.
    [46]Teodorescu R, Blaabjerg F, Liserre M, et al. Proportional-resonant controllers and filters for grid-connected voltage-source converters[J]. Electric Power Applications, IEE Proceedings-,2006,153(5):750-762.
    [47]Zmood D N, Holmes D G, Bode G H. Frequency-domain analysis of three-phase linear current regulators[J]. Industry Applications, IEEE Transactions on,2001,37(2):601-610.
    [48]Zmood D N, Holmes D G. Stationary frame current regulation of PWM inverters with zero steady-state error[J]. Power Electronics, IEEE Transactions on,2003,18(3):814-822.
    [49]Draou A, Sato Y, Kataoka T. A new state feedback based transient control of PWM AC to DC voltage type converters[J]. Power Electronics, IEEE Transactions on, 1995,10(6):716-724.
    [50]邓卫华,张波,丘东元,等.三相电压型PWM整流器状态反馈精确线性化解耦控制研究[J].中国电机工程学报,2005,25(7):97-103.
    [51]魏德冰,石新春,李枝玖,等.并网逆变器的预测偏差电流无差拍控制策略[J].电力电子技术,2011,45(1):57-58,67.
    [52]刘春海,梁晖.风力发电并网逆变器预测电流控制方法研究[J].电力电子技术,2010,44(10):6-8.
    [53]Wu R, Dewan S B, Slemon G R. Analysis of a PWM AC to DC voltage source converter under the predicted current control with a fixed switching frequency[J]. Industry Applications, IEEE Transactions on,1991,27(4):756-764.
    [54]杨勇,阮毅,叶斌英,等.三相并网逆变器无差拍电流预测控制方法[J].中国电机工程学报,2009(33):40-46.
    [55]刘飞,邹云屏,李辉.基于重复控制的电压源型逆变器输出电流波形控制方法[J].中国电机工程学报,2005,25(19):58-63.
    [56]刘飞,查晓明,周彦,等.基于极点配置与重复控制相结合的三相光伏发电系统的并网策略[J].电工技术学报,2008,23(12):130-136.
    [57]孔雪娟,王荆江,彭力,等.基于内模原理的三相电压源型逆变电源的波形控制技术[J].中国电机工程学报,2003,23(7):67-70.
    [58]张兴,季建强,张崇巍,等.基于内模控制的三相电压型PWM整流器不平衡控制策略研究[J].中国电机工程学报,2005,25(13):51-56.
    [59]刘松斌,王明彦.单周期控制PWM整流器的研究[J].电气传动,2008,38(6):31-33.
    [60]雷涛,张晓斌,林辉,等.单周期控制的三相PWM整流器的动态特性研究[J].电力自动化设备,2007,27(8):21-25.
    [61]韦徵,陈新,樊轶,等.单周期控制的三相三电平VIENNA整流器输出中点电位分析及控制方法研究[J].中国电机工程学报,2013,33(15):29-37,插4.
    [62]McMurray W. Modulation of the Chopping Frequency in DC Choppers and PWM Inverters Having Current-Hysteresis Controllers[J]. Industry Applications, IEEE Transactions on,1984,IA-20(4):763-768.
    [63]Malesani L, Tenti P. A novel hysteresis control method for current-controlled voltage-source PWM inverters with constant modulation frequency [J]. Industry Applications, IEEE Transactions on,1990,26(1):88-92.
    [64]Nagy I. Novel adaptive tolerance band based PWM for field-oriented control of induction machines[J]. Industrial Electronics, IEEE Transactions on,1994,41(4):406-417.
    [65]Saetieo S, Torrey D A. Fuzzy logic control of a space-vector PWM current regulator for three-phase power converters[J]. Power Electronics, IEEE Transactions on, 1998,13(3):419-426.
    [66]Cecati C, Dell'Aquila A, Liserre M, et al. A fuzzy-logic-based controller for active rectifier[J]. Industry Applications, IEEE Transactions on,2003,39(1):105-112.
    [67]Cichowlas M, Kamierkowski M P. Comparison of current control techniques for PWM rectifiers:Industrial Electronics,2002. ISIE 2002. Proceedings of the 2002 IEEE International Symposium on,2002[C].2002.1259-1263.
    [68]Joos G, Pinheiro H, Khorasani K. DSP implementation of neural network-based controller for voltage PWM rectifier neural:TENCON'96. Proceedings.,1996 IEEE TENCON. Digital Signal Processing Applications, Perth, WA,1996[C]. Nov 1996.883-888.
    [69]Fan S, Wang X, Zhou Y. Neural network based predictive control for active power filter: Industrial Electronics Society,2004. IECON 2004.30th Annual Conference of IEEE, 2004[C]. Nov.2004.822-826.
    [70]Dai K, Liu P, Kang Y, et al. Decoupling current control for voltage source converter in synchronous roating frame:Power Electronics and Drive Systems,2001. Proceedings., 2001 4th IEEE International Conference on,2001 [C]. Oct.2001.39-43.
    [71]Dai K, Liu P, Xiong J, et al. Comparative study on current control for three-phase SVPWM voltage-source converter in synchronous rotating frame using complex vector method:Power Electronics Specialist Conference,2003. PESC'03.2003 IEEE 34th Annual,2003[C]. June 2003.695-700.
    [72]马琳,金新民,唐芬,等.小功率单相并网逆变器并网电流的比例谐振控制[J].北京交通大学学报,2010,34(2):128-132.
    [73]陈炜,陈成,宋战锋,等.双馈风力发电系统双PWM变换器比例谐振控制[J].中国电机工程学报,2009(15):1-7.
    [74]Yuan X, Merk W, Stemmler H, et al. Stationary-frame generalized integrators for current control of active power filters with zero steady-state error for current harmonics of concern under unbalanced and distorted operating conditions[J]. Industry Applications, IEEE Transactions on,2002,38(2):523-532.
    [75]Kaura V, Blasko V. Operation of a phase locked loop system under distorted utility conditions[J]. Industry Applications, IEEE Transactions on,1997,33(1):58-63.
    [76]Se-Kyo C. A phase tracking system for three phase utility interface inverters[J]. Power Electronics, IEEE Transactions on,2000,15(3):431-438.
    [77]Blaabjerg F, Teodorescu R, Liserre M, et al. Overview of Control and Grid Synchronization for Distributed Power Generation Systems[J]. Industrial Electronics, IEEE Transactions on,2006,53(5):1398-1409.
    [78]Rodriguez P, Pou J, Bergas J, et al. Decoupled Double Synchronous Reference Frame PLL for Power Converters Control[J]. Power Electronics, IEEE Transactions on, 2007,22(2):584-592.
    [79]周鹏,贺益康,胡家兵.电网不平衡状态下风电机组运行控制中电压同步信号的检测[J].电工技术学报,2008(05):108-113.
    [80]李珊瑚,杜雄,王莉萍,等.解耦多同步参考坐标系电网电压同步信号检测方法[J].电工技术学报,2011(12):183-189.
    [81]王颢雄,马伟明,肖飞,等.双dq变换软件锁相环的数学模型研究[J].电工技术学报,2011(07):237-241.
    [82]Karimi-Ghartemani M, Iravani M R. A nonlinear adaptive filter for online signal analysis in power systems:applications[J]. Power Delivery, IEEE Transactions on, 2002,17(2):617-622.
    [83]Karimi-Ghartemani M, Iravani M R. A method for synchronization of power electronic converters in polluted and variable-frequency environments[J]. Power Systems, IEEE Transactions on,2004,19(3):1263-1270.
    [84]Rodriguez P, Teodorescu R, Candela I, et al. New Positive-sequence Voltage Detector for Grid Synchronization of Power Converters under Faulty Grid Conditions:Power Electronics Specialists Conference,2006. PESC'06.37th IEEE,2006[C]. June 2006.1-7.
    [85]薛尚青,蔡金锭.基于二阶广义积分器的基波正负序分量检测方法[J].电力自动化设备,2011(11):69-73.
    [86]Ciobotaru M, Teodorescu R, Blaabjerg F. A New Single-Phase PLL Structure Based on Second Order Generalized Integrator:Power Electronics Specialists Conference,2006. PESC'06.37th IEEE,2006[C]. June 2006.1-6.
    [87]Rodriguez P, Luna A, Ciobotaru M, et al. Advanced Grid Synchronization System for Power Converters under Unbalanced and Distorted Operating Conditions:IEEE Industrial Electronics, IECON 2006-32nd Annual Conference on, Paris,2006[C]. Nov.2006. 5173-5178.
    [88]Rodriguez P, Luna A, Candela I, et al. Grid synchronization of power converters using multiple second order generalized integrators:Industrial Electronics,2008. IECON 2008. 34th Annual Conference of IEEE, Orlando, FL,2008[C]. Nov.2008.755-760.
    [89]Rodri X, Guez P, Luna A, et al. Multiresonant Frequency-Locked Loop for Grid Synchronization of Power Converters Under Distorted Grid Conditions[J]. Industrial Electronics, IEEE Transactions on,2011,58(1):127-138.
    [90]Guo X, Wu W, Chen Z. Multiple-Complex Coefficient-Filter-Based Phase-Locked Loop and Synchronization Technique for Three-Phase Grid-Interfaced Converters in Distributed Utility Networks[J]. Industrial Electronics, IEEE Transactions on,2011,58(4):1194-1204.
    [91]王宝诚,伞国成,郭小强,等.分布式发电系统电网同步锁相技术[J].中国电机工程学报,2013(01):50-55.
    [92]Tvloran L, Ziogas P D, Joos G. Design aspects of synchronous PWM rectifier-inverter systems under unbalanced input voltage conditions[J]. Industry Applications, IEEE Transactions on,1992,28(6):1286-1293.
    [93]Rioual P, Pouliquen H, Louis J. Regulation of a PWM rectifier in the unbalanced network state using a generalized model [J]. Power Electronics, IEEE Transactions on, 1996,11(3):495-502.
    [94]Khan S I, Yatim A H M, Idris N R N. Analysis and design of an unbalanced input three phase controlled rectifier:Power Electronics and Drive Systems,1997. Proceedings.,1997 International Conference on,1997[C]. May 1997.787-791.
    [95]Hong-Seok S, Kwanghee N. Dual current control scheme for PWM converter under unbalanced input voltage conditions[J]. Industrial Electronics, IEEE Transactions on, 1999,46(5):953-959.
    [96]Yongsug S, Tijeras V, Lipo T A. A nonlinear control of the instantaneous power in dq synchronous frame for PWM AC/DC converter under generalized unbalanced operating conditions:Industry Applications Conference,2002.37th IAS Annual Meeting. Conference Record of the, Pittsburgh, PA, USA,2002[C]. Oct.2002.1189-1196.
    [97]Yin B, Oruganti R, Panda S K, et al. An Output-Power-Control Strategy for a Three-Phase PWM Rectifier Under Unbalanced Supply Conditions[J]. Industrial Electronics, IEEE Transactions on,2008,55(5):2140-2151.
    [98]Yuan X, Merk W, Stemmler H, et al. Stationary-frame generalized integrators for current control of active power filters with zero steady-state error for current harmonics of concern under unbalanced and distorted operating conditions[J]. Industry Applications, IEEE Transactions on,2002,38(2):523-532.
    [99]Hu J, He Y. Modeling and Control of Grid-Connected Voltage-Sourced Converters Under Generalized Unbalanced Operation Conditions[J]. Energy Conversion, IEEE Transactions on,2008,23(3):903-913.
    [100]章玮,王宏胜,任远,等.不对称电网电压条件下三相并网型逆变器的控制[J].电工技术学报,2010(12):103-110.
    [101]Yongsug S, Lipo T A. Control scheme in hybrid synchronous stationary frame for PWM AC/DC converter under generalized unbalanced operating conditions[J]. Industry Applications, IEEE Transactions on,2006,42(3):825-835.
    [102]Etxeberria-Otadui I, Viscarret U, Caballero M, et al. New Optimized PWM VSC Control Structures and Strategies Under Unbalanced Voltage Transients[J]. Industrial Electronics, IEEE Transactions on,2007,54(5):2902-2914.
    [103]Hu J, He Y, Xu L, et al. Improved Control of DFIG Systems During Network Unbalance Using PI-R Current Regulators[J]. Industrial Electronics, IEEE Transactions on, 2009,56(2):439-451.
    [104]Busada C A, Gomez Jorge S, Leon A E, et al. Current Controller Based on Reduced Order Generalized Integrators for Distributed Generation Systems[J]. Industrial Electronics, IEEE Transactions on,2012,59(7):2898-2909.
    [105]Ohmori Y, Fujita H, Mitsuhashit. A spatial vector controlled inverter for induction motor drive without speed sensor:Proceedings of the First International Power Electronics and Motion Control Conference, Beijing,China,1994[C].
    [106]Karanayil B, Rahman M F, Grantham C. An implementation of a programmable cascaded low-pass filter for a rotor flux synthesizer for an induction motor drive[J]. Power Electronics, IEEE Transactions on,2004,19(2):257-263.
    [107]de Carvalho F V, Pereira Pinto J O, Da Silva L E B, et al. A DSP based torque meter for induction motors:Industrial Electronics Society,2003. IECON'03. The 29th Annual Conference of the IEEE,2003[C]. Nov.2003.414-418.
    [108]Bose B K, Patel N R. A programmable cascaded low-pass filter-based flux synthesis for a stator flux-oriented vector-controlled induction motor drive[J]. Industrial Electronics, IEEE Transactions on,1997,44(1):140-143.
    [109]Hu J, Wu B. New integration algorithms for estimating motor flux over a wide speed range[J]. Power Electronics, IEEE Transactions on,1998,13(5):969-977.
    [110]贾洪平,贺益康.一种适合DTC应用的非线性正交反馈补偿磁链观测器[J].中国电机工程学报,2006,26(1):101-105.
    [111]唐芬,金新民,姜久春,等.兆瓦级直驱型永磁风力发电机无位置传感器控制[J].电工技术学报,2011(04):19-25.
    [112]Idris N R N, Yatim A H M. An improved stator flux estimation in steady-state operation for direct torque control of induction machines[J]. Industry Applications, IEEE Transactions on,2002,38(1):110-116.
    [113]何志明,廖勇,向大为.定子磁链观测器低通滤波器的改进[J].中国电机工程学报, 2008,28(18):61-65.
    [114]唐芬,金新民,周啸,等.基于低通滤波补偿积分器的直驱型永磁风力发电机无位置传感器控制[J].北京交通大学学报,2011(05):94-100.
    [115]戴鹏,付凤超,符晓,等.电励磁同步电机两种综合磁链模型观测器[J].电气传动,2011,41(10):12-14,20.
    [116]吴轩钦,谭国俊,宋金梅,等.基于混合磁链观测器电励磁同步电机矢量控制[J].电机与控制学报,2010,14(3):62-67.
    [117]黄雷,赵光宙,年珩.基于扩展反电势估算的内插式永磁同步电动机无传感器控制[J].中国电机工程学报,2007,27(9):59-63.
    [118]Lascu C, Boldea I, Blaabjerg F. A Class of Speed-Sensorless Sliding-Mode Observers for High-Performance Induction Motor Drives[J]. Industrial Electronics, IEEE Transactions on,2009,56(9):3394-3403.
    [119]Bolognani S, Tubiana L, Zigliotto M. Extended Kalman filter tuning in sensorless PMSM drives[J]. Industry Applications, IEEE Transactions on,2003,39(6):1741-1747.
    [120]张猛,肖曦,李永东.基于扩展卡尔曼滤波器的永磁同步电机转速和磁链观测器[J].中国电机工程学报,2007,27(36):36-40.
    [121]汪令祥,张兴,张崇巍,等.基于位置观测的直驱系统无速度传感器技术[J].电力系统自动化,2008,32(12):78-82.
    [122]Hasegawa M, Matsui K. Position sensorless control for interior permanent magnet synchronous motor using adaptive flux observer with inductance identification[J]. Electric Power Applications, IET,2009,3(3):209-217.
    [123]Shinnaka S. New sensorless vector control using minimum-order flux state observer in a stationary reference frame for permanent-magnet synchronous motors[J]. Industrial Electronics, IEEE Transactions on,2006,53(2):388-398.
    [124]Yamamoto H, Kurosawa R, Nakamura R. Novel vector controller for synchronous motor via inverse dynamics modeling:Industry Applications Society Annual Meeting,1993., Conference Record of the 1993 IEEE, Toronto, Ont.,1993[C]. Oct 1993.544-550.
    [125]李志民,张遇杰.同步电机调速系统[M].北京:机械工业出版社,1996.
    [126]马小亮.大功率交-交变频调速及矢量控制技术[M].北京:机械工业出版社,2004.
    [127]周扬忠.电励磁同步电动机直接转矩控制理论研究及实践[学位论文].南京航空航天大学,2007.223.
    [128]Pyrhonen O, Niemela M, Pyrhonen J, et al. Excitation control of DTC controlled salient pole synchronous motor in field weakening range:Advanced Motion Control,1998. AMC '98-Coimbra.,1998 5th International Workshop on, Coimbra,1998[C]. Jul 1998.294-298.
    [129]周扬忠,胡育文,黄文新.基于直接转矩控制电励磁同步电机转子励磁电流控制策略[J].南京航空航天大学学报,2007,39(4):429-434.
    [130]Morimoto S, Sanada M, Takeda Y. Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator[J]. Industry Applications, IEEE Transactions on,1994,30(4):920-926.
    [131]Fu Z X. Pseudo constant power times speed operation in the field weakening region of IPM synchronous machines:Industry Applications Conference,2003.38th IAS Annual Meeting. Conference Record of the,2003[C]. Oct.2003.373-379.
    [132]Ching-Tsai P, Shinn-Ming S. A linear maximum torque per ampere control for IPMSM drives over full-speed range[J]. Energy Conversion, IEEE Transactions on, 2005,20(2):359-366.
    [133]Bon-Ho B, Patel N, Schulz S, et al. New field weakening technique for high saliency interior permanent magnet motor:Industry Applications Conference,2003.38th IAS Annual Meeting. Conference Record of the,2003[C]. Oct.2003.898-905.
    [134]Ottosson J, Alakula M. A compact field weakening controller implementation:Power Electronics, Electrical Drives, Automation and Motion,2006. SPEEDAM 2006. International Symposium on, Taormina,2006[C]. May 2006.696-700.
    [135]Lenke R U, De Doncker R W, Mu-Shin K, et al. Field Weakening Control of Interior Permanent Magnet Machine using Improved Current Interpolation Technique:Power Electronics Specialists Conference,2006. PESC'06.37th IEEE, Jeju,2006[C]. June 2006. 1-5.
    [136]Young-Doo Y, Wook-Jin L, Seung-Ki S. New flux weakening control for high saliency interior permanent magnet synchronous machine without any tables:Power Electronics and Applications,2007 European Conference on, Aalborg,2007[C]. Sept.2007.1-7.
    [137]丁强.永磁同步电机矢量控制系统弱磁控制策略研究[学位论文].中南大学控制科学与工程,2010.
    [138]盛义发,喻寿益,桂卫华,等.轨道车辆用永磁同步电机系统弱磁控制策略[J].中国电机工程学报,201 0(9):74-79.
    [139]Jang-Mok K, Seung-Ki S. Speed control of interior permanent magnet synchronous motor drive for the flux weakening operation[J]. Industry Applications, IEEE Transactions on, 1997,33(1):43-48.
    [140]Paicu M C, Tutelea L, Andreescu G, et al. Wide speed range sensorless control of PM-RSM via "active flux model":Energy Conversion Congress and Exposition,2009. ECCE 2009. IEEE, San Jose, CA,2009[C]. Sept.2009.3822-3829.
    [141]朱磊,温旭辉,赵峰,等.永磁同步电机弱磁失控机制及其应对策略研究[J].中国电机工程学报,2011,31(18):67-72.
    [142]Chi S, Xu L, Zhang Z. Efficiency-Optimized Flux-Weakening Control of PMSM Incorporating Speed Regulation:Power Electronics Specialists Conference,2007. PESC 2007. IEEE, Orlando, FL,2007[C]. June 2007.1627-1633.
    [143]Xu L, Zhang Y, Guven M K. A new method to optimize q-axis voltage for deep flux weakening control of IPM machines based on single current regulator:Electrical Machines and Systems,2008. ICEMS 2008. International Conference on, Wuhan,2008[C]. Oct. 2008.2750-2754.
    [144]Yuan Z, Longya X, Gu X, et al. Experimental Verification of Deep Field Weakening Operation of a 50-kW IPM Machine by Using Single Current Regulator[J]. Industry Applications, IEEE Transactions on,2011,47(1):128-133.
    [145]胡太元.永磁同步电机变交轴电压单电流调节器弱磁控制方法研究[学位论文].北京交通大学电气工程,2012.
    [146]Zhu L, Xue S, Wen X, et al. A new deep field-weakening strategy of IPM machines based on single current regulator and voltage angle control:Energy Conversion Congress and Exposition (ECCE),2010 IEEE, Atlanta, GA,2010[C]. Sept.2010.1144-1149.
    [147]Zhu L, Wen X, Zhao F, et al. Deep field-weakening control of PMSMs for both motion and generation operation:Electrical Machines and Systems (ICEMS),2011 International Conference on, Beijing,2011[C]. Aug.2011.1-5.
    [148]Zhang Y, Lin F, Zhang Z, et al. Direct voltage vector control for field weakening operation of PM machines:Power and Energy Conference at Illinois (PECI),2010, Urbana-Champaign, IL,2010[C]. Feb.2010.20-24.
    [149]Holtz J. The representation of AC machine dynamics by complex signal flow graphs[J]. Industrial Electronics, IEEE Transactions on,1995,42(3):263-271.
    [150]Del Blanco F B, Degner M W, Lorenz R D. Dynamic analysis of current regulators for AC motors using complex vectors[J]. Industry Applications, IEEE Transactions on, 1999,35(6):1424-1432.
    [151]Hyunbae K, Lorenz R D. Synchronous frame PI current regulators in a virtually translated system:Industry Applications Conference,2004.39th IAS Annual Meeting. Conference Record of the 2004 IEEE,2004[C]. Oct.2004.856-863.
    [152]陈瑶.直驱型风力发电系统全功率并网变流技术的研究[学位论文].北京交通大学,2008.152.
    [153]Yongsug S, Lipo T A. Modeling and analysis of instantaneous active and reactive power for PWM AC/DC converter under generalized unbalanced network[J]. Power Delivery, IEEE Transactions on,2006,21(3):1530-1540.
    [154]赵清林,郭小强,邬伟扬.单相逆变器并网控制技术研究[J].中国电机工程学报,2007,27(16):60-64.
    [155]Hu J, He Y. Modeling and Control of Grid-Connected Voltage-Sourced Converters Under Generalized Unbalanced Operation Conditions[J]. Energy Conversion, IEEE Transactions on,2008,23(3):903-913.
    [156]Asiminoaei L, Teodorescu R, Blaabjerg F, et al. A digital controlled PV-inverter with grid impedance estimation for ENS detection[J]. Power Electronics, IEEE Transactions on, 2005,20(6):1480-1490.
    [157]Ciobotaru M, Teodorescu R, Blaabjerg F. On-line grid impedance estimation based on harmonic injection for grid-connected PV inverter:Industrial Electronics,2007. ISIE 2007. IEEE International Symposium on, Vigo, Spain,2007[C]. June 2007.2437-2442.
    [158]蔡文,刘邦银,段善旭,等.三相不对称条件下的电网阻抗检测方法rJ].中国电机工程学报,2012(18):37-42.
    [159]胡寿松.自动控制原理[M].北京:科学出版社,2001.
    [160]Martin K W. Complex signal processing is not complex[J]. Circuits and Systems I: Regular Papers, IEEE Transactions on,2004,51(9):1823-1836.
    [161]郭小强,邬伟扬,赵清林,等.三相并网逆变器比例复数积分电流控制技术[J].中国电机工程学报,2009(15):8-14.
    [162]赵新,金新民,周飞,等.基于降阶谐振调节器的并网逆变器锁频环技术[J].中国电机工程学报,2013.
    [163]Al-Alaoui M A. Novel Approach to Analog-to-Digital Transforms[J]. Circuits and Systems I:Regular Papers, IEEE Transactions on,2007,54(2):338-350.
    [164]Yepes A G, Freijedo F D, Doval-Gandoy J, et al. Effects of Discretization Methods on the Performance of Resonant Controllers[J]. Power Electronics, IEEE Transactions on, 2010,25(7):1692-1712.
    [165]张禄.双馈异步风力发电系统穿越电网故障运行研究[学位论文].北京交通大学,2012.
    [166]Wang F, Duarte J L, Hendrix M A M. Pliant Active and Reactive Power Control for Grid-Interactive Converters Under Unbalanced Voltage Dips[J]. Power Electronics, IEEE Transactions on,2011,26(5):1511-1521.
    [167]李崇坚.交流同步电机调速系统[M].北京:科学出版社,2006.
    [168]谭国俊,吴轩钦,李浩,等.Back-to-Back双三电平电励磁同步电机矢量控制系统[J].电工技术学报,2011(03):36-3.
    [169]马小亮.大功率交-交变频调速及矢量控制技术[M].第3版.北京:机械工业出版社,2004.
    [170]He J, Li Y. Analysis, Design, and Implementation of Virtual Impedance for Power Electronics Interfaced Distributed Generation[J]. Industry Applications, IEEE Transactions on,2011,47(6):2525-2538.
    [171]许津铭,谢少军,肖华锋.LCL滤波器有源阻尼控制机制研究[J].中国电机工程学报,2012,32(9):27-33.
    [172]He J, Li Y, Bosnjak D, et al. Investigation and Active Damping of Multiple Resonances in a Parallel-Inverter-Based Microgrid[J]. Power Electronics, IEEE Transactions on, 2013,28(1):234-246.
    [173]于玮,徐德鸿.基于虚拟阻抗的不间断电源并联系统均流控制[J].中国电机工程学报,2009(24):32-39.
    [174]张宇,余蜜,刘方锐,等.模块化UPS采用虚拟阻抗的瞬时均流控制方法[J].中国电机工程学报,2012(21):8-14.
    [175]宋海华,谢震,张兴,等.基于有源阻尼的DFIG低电压穿越控制研究[J].电力电子技术,2011,45(8):42-4.
    [176]谢震,张兴,杨淑英,等.基于虚拟阻抗的双馈风力发电机高电压穿越控制策略[J].中国电机工程学报,2012,32(27):16-23.
    [177]Mohamed Y A R I, El-Saadany E F. Adaptive Decentralized Droop Controller to Preserve Power Sharing Stability of Paralleled Inverters in Distributed Generation-Microgrids[J]. Power Electronics, IEEE Transactions on,2008,23(6):2806-2816.
    [178]Li Y, Kao C. An Accurate Power Control Strategy for Power-Electronics-Interfaced Distributed Generation Units Operating in a Low-Voltage Multibus Microgrid[J]. Power Electronics, IEEE Transactions on,2009,24(12):2977-2988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700