用户名: 密码: 验证码:
积垢的形成机理及其对轴流式压气机性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轴流式压气机是燃气轮机发电机组中重要的组成部分之一,由于机组功率的50%-60%由压气机消耗,因此压气机性能的高低直接影响发电机组的效率。在压气机的众多失效模式中,积垢造成的压气机性能退化达到70%-85%,因此研究压气机积垢的形成机理,分析积垢对轴流式压气机性能的影响,讨论压气机积垢的监测与控制策略,对于燃气轮机机组的安全、高效和健康运行具有非常重要的现实意义。本文取得的主要研究成果如下:
     (1)从微观角度对颗粒物在压气机内部的输送过程和沉积过程进行理论和数值仿真分析,建立了颗粒物输送机理与叶片不同位置之间的对应关系,所得到的结论是压力面积垢是由于较大颗粒物的惯性作用的结果,而吸力面积垢的主要原因是因为小颗粒物的湍流扩散造成的。然后,分别研究了颗粒物大小、颗粒物浓度、入口温度、初始速度、旋转速度、表面粗糙度和湿度等因素对积垢形成的影响。
     (2)对单级轴流式压气机积垢行为建模方法进行分析,对过去采用表面粗糙度以及厚度等参数的设定表征积垢行为存在的缺陷进行讨论,提出利用压气机叶片型面参数的变化,将逆向工程中的测量技术与传统的CFD分析方法相结合,获取积垢叶片的准确几何模型,真实反映叶片积垢的实际状态,提高性能仿真的精度。
     (3)提出了多级轴流式压气机性能预测的新方法,改变原有方法只能针对某一指定时刻积垢状态进行分析的缺点,将积垢的多级轴流式压气机划分为两部分,分别选择合理的计算方法。对于积垢部分的性能计算,采用级堆叠方法、相似理论和线性退化模型相结合,充分考虑级间积垢分布的差异及其它影响因素。对于无积垢级的性能计算,采用平均微元级计算其性能。
     (4)提出了压气机积垢状态监测的优化方案,改变过去仅仅依靠某一性能参数进行监测所存在的缺陷。在运行的初期,主要基于热力学性能参数的变化进行判断,当性能参数下降到一定程度的时候,再结合对叶片型面参数的监测,对压气机积垢的状态进行准确评估。
     (5)对压气机清洗时间间隔进行分析,获得优化数学模型,为压气机积垢的控制提供支持。
Axial flow compressor is one of the important parts of gas turbine units. Because50%-60%power of unit is consumed by the axial flow compressor, the compressor performance directly affects the efficiency of the whole unit. In many failure modes in the compressor,70%-85%compressor performance degradation is caused by fouling. Therefore, it is very important to study the fouling mechanism. The effect of fouling on the performance of an axial compressor and the monitoring and control strategies of compressor fouling can not be ignored. It has very important practical significance for the safe, efficient and healthy operation of gas turbine. The main achievements in this paper are as follows:
     (1) Theoretical analysis and numerical simulation of particle transport mechanism and deposition process in compressor are implemented from the microscopic point of view. And then, the relation between the particle deposition mechanism and blade position is established. The fouling in pressure side is due to the inetia effect of larger particles, and the fouling in suction side is due to the turbulent diffusion caused by small particles. Then, the influence of particle size, particle volume concentration, temperature, the initial speed of entrance, rotation speed, surface roughness and humidity on deposit formation were studied.
     (2) The modelling methods of fouling behavior for a single stage axial flow compressor are analyzed. And then, the shortcoming in the last modelling methods is discussed. In this paper, a new method is presented by using the combining measuring technology applied in reverse engineering with a traditional CFD analysis method to obtain accurate geometrical model of fouled blade. The real state of fouled blade can be effectively characterized by this method. Therefore, it can accurately simulate the effect of fouling on compressor performance.
     (3) A new performance prediction method of multistage axial flow compressor is put forward which overcome the disadvantages of tradional method. The fouled multistage axial flow compressor is divided into two parts for which a reasonable computing method is respectively chosed. For the fouled stages, the performance is calculated by combining stage stacking method, similarity theory with linear progression model. On the other hand, the performance of non-fouled stages is computed by averaged infinitesimal stage method.
     (4) The optimizational scheme of compressor fouling monitoring is put forward which deal with the problems existed in monitoring method relyed on single parameter. In the intial operation, the judgement is based on the performance parameters. When they reduced to a certain extent of the performance, the blade profile parameters are monitored so as to accurately evaluate the fouling severity.
     (5) The compressor cleaning interval is analyzed in order to obtain the optimized mathematical model.
引文
[1]BP.BP Statistical Review of World Energy[R].UK:BP,2013.
    [2]国务院.《能源发展“十二五”规划》[R].北京:国务院,2013.
    [3]Cyrus B.Meher-Homji, Mustapha Chaker, Andrew F.Bromley. The Fouling of Axial Flow Compressors-Causes, Effects, Susceptibility and Sensitivity[C]. Proceedings of ASME Turbo Expo:Power for Land, Sea and Air,2009, Florida USA:1-19.
    [4]Diakunchak I.S. Performance Deterioration in Industrial Gas Trubines[J]. ASME Journal of Engineering for Gas Turbines and Power,1992,114:161-168.
    [5]Marco Osvaldo VIGUERAS ZUNIGA. Analysis of Gas Turbine Compressor Fouling and Washing Online[D]. UK:Cranfield University,2007.
    [6]Mezheritsky A.D., Sudarev A.V. The Mechanism of Fouling and Cleaning Technique in Application to Flow Parts of the Power Generation Plant Compressors[C]. International Gas Turbine and Aeroengine Congress and Exposition. Brussels, Belg:ASME,1990:90-103.
    [7]Zavam T.L.P. Experience in the Operation of Air Filters in Gas Turbine Installations[J]. Brown Boveri Review,1985,72:165-172.
    [8]Upton A.WJ. Axial Compressor and Turbine Blade Fouling Some Causes, Effects and Cleaning Methods[C]. Gas Turbine Operations and Maintenance Symposium. National Research Council Canada, Canada,1974:1-10.
    [9]McDermott P. Gas Turbine Compressor Fouling[J]. Turbomachinery International, 1991,32(1):34-38.
    [10]Mikhaylov E.I., et al. The Complex Aerocleaning Devices of the Energetical Gas Turbine Installation[C]. Leningrad, Mashinostroenie,1978:1-8.
    [11]Schurovsky V.A., Levikin A.P. Fouling and Cleaning of Gas Turbine Axial Compressor Flow Path[J]. Series "Transport and Gas Conservation",1986, 11:20-32.
    [12]Tarabrin A.P., Schurovsky V.A., Bodrov A.I., Stalder J.-P. An Analysis of Axial Compressor Fouling and a Blade Cleaning Method[J]. ASME Journal of Turbomachinery,1998,120:256-261.
    [13]Song T. W., Sohn J. L., Kim T. S., Kim J. H. and Ro S. T.. An Analytical Approach to Predicting Particle Deposit by Fouling in the Axial Compressor of the Industrial Gas Turbine[J]. Proc. IMechE Part A:Power and Energy,2005,219: 203-212.
    [14]Borello D., Rispoli F., Venturini P.. An Integrated Particle-Tracking Impact/Adhesion Model for the Prediction of Fouling in a Subsonic Compressor[J]. ASME Journal of Engineering for Gas Turbines and Power,2012, 134:092002-1-7.
    [15]Borello D., Hanjalic K., Rispoli F. Computation of Tip-Leakage Flow in a Linear Compressor Cascade with a Second-Moment Turbulence Closure[J]. International Journal of Heat Fluid Flow,2007,28:587-601.
    [16]Borello D., Hanjalic K., Rispoli F. Prediction of Turbulence and Transition in Turbomachinery Flows Using an Innovative Second Moment Closure Modelling[J]. ASME Journal of Fluids Engineering,2005,127:1059-1070.
    [17]Borello D., Hanjalic K., Rispoli F. Large-Eddy Simulations of Tip Leakage and Secondary Flows in an Axial Compressor Cascade Using a Near-Wall Turbulence Model[J]. Porc. Inst. Mech. Eng., Part A,223:645-655.
    [18]Delibra G, Borello D., Hanjalic K., Rispoli F. Vortex Structures and Heat Transfer in a Wall-Bounded Pin Matrix:LES With a RANS Wal-Treatment[J]. International Journal of Heat Fluid Flow,2010,31(5):740-753.
    [19]Tarabrin A.P., Schurovsky V.A., Bodrov A.I., Stalder J.-P. Influence of Axial Compressor Fouling on Gas Turbine Unit Performance Based on Different Schemes and With Different Initial Parameters[C]. International Gas Turbine & Aeroengine Congress & Exhibition, Stockholm, Sweden,1998:1-6.
    [20]王冠超,李冬,刘晓东.基于数学模型的压气机叶片积垢研究[J].燃气涡轮试验与研究,2012,25(2):24-27.
    [21]Seddigh F., Saravanamuttoo H.I.H.. A Proposed Method for Assessing the Susceptibility of Axial Compressors to Fouling[J]. ASME Journal of Engineering for Gas Turbines and Power,1991, V113:595-601.
    [22]Meher-Homji C.B., Boyce M.P. Aerothermodynamic Gas Path Analysis for Health Diagnostics of Combustion Gas Turbines[C]. Proceedings of the Conference on Detection, Diagnosis and Prognosis,1983.
    [23]Meher-Homji C.B., Mani G. Online Condition Monitoring Systems for Offshore Turbomachinery-System Design and Operating Experience[C]. Proceedings of the 43rd Meeting of the Mechanical Failure Prevention Group, Symposium on Advanced Technology in Failure Prevention, National Bureau of Standards,1988.
    [24]Scott J.H. Axial Compressor Monitoring by Measuring Intake Air Depression[C] Third Symposium on Gas Turbine Operations and Maintenance, National Research Council of Canada Symposium,1979.
    [25]李钊.压气机性能参数对积垢的敏感性分析[J].航空计算技术,2011,(06):41-44.
    [26]Suder K.L., Chinma R.V., Strazisar A.J., Roberts W.B. The Effect of Adding Roughness and Thickness to a Transonic Axial Compressor Rotor[J]. ASME Journal of Turbomachinery,1995,117(4):491-505.
    [27]Gbadebo S.A., Hynes T.P., Cumpsty, N.A. Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors [J]. ASME Journal of Turbomachinery,2004,126(4):455-463.
    [28]Mirko Morini, Michele Pinelli, Pier Ruggero Spina, Mauro Venturini. Computational Fluid Dynamics Simulation of Fouling on Axial Compressor Stages[J]. Journal of Engineering for Gas Turbines and Power,2010, 132:072401-1-10.
    [29]Morini M., Pinelli M., Spina P.R., Venturini M. Numerical Analysis of the Effects of Non-Uniform Surface Roughness on Compressor Stage Performance[J]. ASME Journal of Engineering for Gas Turbines and Power,2011,133(10):072402.
    [30]Mirko Morini, Michele Pinelli, Pier Ruggero Spina, Mauro Venturini. CFD Simulation of Fouling on Axial Compressor Stages[C]. Proceedings of ASME Turbo Expo 2009:Power for Land, Sea and Air,2009, Orlando, Florida, USA,2009:1-12.
    [31]Dimitrios Fouflias, Aiad Gannan, Kenneth Ramsden, Pericles Pilidis, Paul Lambart. CFD Predictions of Cascade Pressure Losses Due to Compressor Fouling[C]. Proceedings of ASME Turbo Expo 2009:Power for Land, Sea and Air,2009, Orlando, Florida, USA,2009 pp:1-10.
    [32]Elsabet Syverud, Lars E.Bakken. The Impact of Surface Roughness on Axial Compressor Performance Deterioration[C]. Proceedings of ASME Turbo Expo 2006, Barcelona, Spain,2006:1-11.
    [33]Nicola Aldi, Mirko Morini, Michele Pinelli, Pier Ruggero Spina, Alessio Suman, Mauro Venturini. Performance Evaluation of Nonuniformly Fouled Axial Compressor Stages by Means of Computational Fluid Dynamics Analyses[J]. ASME Journal of Turbomachinery,2014,136:021012-1-11.
    [34]Bammert K., Woelk G.U. The Influence of the Blading Surface Roughness on the Aerodynamic Behavior and Characteristic of an Axial Compressor[J]. ASME Paper No.79-GT-102.
    [35]Syverud E., Brekke O., Bakken L.E. Axial Compressor Deterioration Caused by Saltwater Ingestion[J]. ASME Journal of Turbomachinery,2007,129:119-127.
    [36]Syverud E., Brekken L.E. The Impact of Surface Roughness on Axial Compressor Performance Deterioration[J]. ASME Paper No. GT-2006-9004.
    [37]Schaffler A. Experimental and Analytical Investigation of the Effects of Reynolds Number and Blade Surface Roughness on Multistage Axial Flow Compressors[J]. ASME Journal of Engineering for Gas Turbines and Power,1980,102:5-13.
    [38]Malt'sev Y.N., Shakov V.G. Influence of Roughness of Deposits in Compressor Cascade on Flow Lag Angle[J]. Soviet Aeronautics(English Translation of Izvestiya VUZ, Aviatsionnaya TekhnikaP,1989,32, pp:90-92
    [39]Taylor R.P. Surface Roughness Measurements on Gas Turbine Blades[J]. ASME Journal of Turbomachinery,1990,122:175-180.
    [40]Bons J.P., Taylor R.P., McClain ST., Rivir R.B. The Many Faces of Turbine Surface Roughness[J]. ASME Journal of Turbomachinery,2001,123:739-748.
    [41]Leipold R., Boese M., Fottner L. The Influence of Technical Surface Roughness Caused by Preision Forging on the Flow Around a Highly Loaded Compressor Cascade[J]. ASME Journal of Turbomachinery,2000,122:416-425.
    [42]Scgreuverm H.-A., Steinert W., Kusters B. Effects of Reynolds Number and Free-stream Turbulence on Boundary Layer Transition in a Compressor Cascade[J]. ASME Journal of Turbomachinery,2002,124:1-9.
    [43]Seung Chul Back, Garth V.Hobson, Seung Jin Song, Knox T.Millsaps. Effect of Surface Roughness Location and Reynolds Number on Compressor Cascade Performance[C]. Proceedings of ASME Turbo Expo 2010:Power for Land, Sea and Air, Glasgow, UK,2010:1-8.
    [44]Sandercock D.M., Kovach K., Lieblein S. Experimental Investigation of a Five Stage Axial Flwo Compressor with Transonic Rotors in All Stages[R].1954, NACA RM E54F24.
    [45]Lakshminarasimha A.N., Saravanamuttoo H.I.H. Prediction of Fouled Compressor Performance Using Stage Stacking Techniques[C]. ASME Symposium on Turbomachinery Performance Deterioration,1986.
    [46]Saravanamuttoo H.I.H., Lakshminarasimha A.N. A Preliminary Assessment of Compressor Fouling[J]. ASME Paper No.85-GT-153.
    [47]Aker G.F, Saravanamuttoo H.I.H. Predicting Gas Turbine Performance Degradation Due to Compressor Fouling Using Computer Simulation Techniques[J]. ASME Journal of Engineering for Gas Turbines and Power,1989, 111:343-350.
    [48]Tae Won Song, Jeong Lak Sohn, Sung Tack Ro. Predictions of the Performance Degradation of Industrial Gas Turbines Due to Compressor Fouling[C].161 International Symposium on Transport Phenomena, Prague,2005:1-4.
    [49]Massardo A.F. Simulation of Fouled Axial Multistage Compressors[C]. IMechE Conference on Turbomachinery, Paper C423/048,2002:243-252.
    [50]Morini M., Pinelli M., Spina P.R., Venturini M.. Influence of Blade Deterioration on Compressor and Turbine Performance[J]. ASME Journal of Engineering for Gas Turbines and Power,2010,132:032401-1-11.
    [51]Melino F., Peretto A., Spina P.R.. Development and Validation of a Model for Axial Compressor Fouling Simulation[C]. Proceedings of ASME Turbo Expo 2010,2010:1-12.
    [52]张龙新,陈绍文,孙士珺等.污垢沉积对某轴流压气机中间两级性能影响的数值研究[J].中国电机工程学报,2012,(35):130-136.
    [53]陈绍文,张辰,石慧等.轴流压气机级内污垢沉积影响的数值研究[J].推进技术,2012,(03):377-383.
    [54]李钊,李本威,王东艺等.压气机性能参数对积垢的敏感性分析[J].航空计算技术,2011,(06):41-44+48.
    [55]李本威,李冬,王姜华等.单级压气机性能衰退定量研究[J].航空动力学报,2010,(07):1588-1594.
    [56]石慧,陈绍文,张辰.基于动叶污垢沉积的数值模拟[J].航空动力学报,2012,27(5);1061-1067.
    [57]祝爱娟,牛军,梅丹等.新型超音速压气机内气固两相流场CFD模拟分析[J].制冷空调与电力机械,2010,(04):40-42.
    [58]李冬,李本威,杨欣毅等.压气机性能衰退和清洗恢复仿真研究[J].计算机仿真,2010,(09):341-345.
    [59]李冬,樊照远,张娟等.压气机叶片粗糙度对其性能衰退的影响研究[J].航空发动机,2009,(05):32-35.
    [60]李冬,浦鹏,谭巍等.高压压气机性能老化预测和影响分析[J].燃气涡轮试验与研究,2011,(04):1-5.
    [61]浦鹏,孙涛,李冬.压气机性能影响因素研究[A].中国航空学会动力专业分会、贵州黎阳航空发动机公司.中国航空学会第七届动力年会论文摘要集[C].中国航空学会动力专业分会、贵州黎阳航空发动机公司:,2010:33,
    [62]贺星,刘永葆,赵雄飞.基于进化神经网络的压气机结垢性能退化评估[J].航空发动机,2012,(02):41-45.
    [63]彭泽琰,刘刚,桂幸民.航空燃气轮机原理.北京:国防工业出版社,2008.
    [64]楚武利,刘前智,胡春波.航空叶片机原理.西安:西北工业大学出版社,2009.
    [65]Cyrus B. Meher-Homji, Alfred B. Focke, M.Byron Wooldridge. Fouling of Axial Flow Compressors-Causes, Effects, Detection, and Control[C]. Proceedings of the Eighteenth Turbomachinery Symposium,1989:55-75.
    [66]Rainer Kurz, Klaus Brun. Fouling Mechanisms in Axial Compressors[J].ASME Journal of Engineering for Gas Turbines and Power,2012,134:032401-1-9.
    [67]Zaba T.L.P. Experience in the Operation of Air Filters in Gas Turbine Installations[C]. Proceedings of 29th International Gas Turbine Conference Exhibition edition,1984:23-40.
    [68]Tabakoff W. Compressor Erosion and Performance Deterioration[C]. Proceedings of AIAA/ASME 4th Joint Fluid Mechanics, Plasma Dynamics, and Laser Conference,1986:15-21.
    [69]Mustafa Z. Analysis of Droplets in Compressor Gas Turbines[D], UK:Cranfield University,2006.
    [70]Kurz R., Brun K. Degradation in Gas Turbine Systems[J]. Journal of Engineering for Gas Turbines and Power,2001,123(1):70-77.
    [71]Zwebek A. Combined Cycle Performance Deterioration Analysis[D]. UK:Cranfield University,2002.
    [72]Mund F., Pilidis P. A Review of Gas Turbine Online Washing Systems[C]. Proceedings of ASME Turbo Expo2004,2004:1-9.
    [73]Syverud E., Bakken L. Online Water Wash Tests of GE J85-13[C]. Proceedings of ASME Turbo Expo2005,2005:1-10
    [74]Brumbaugh D. Inlet Air Filtration Adapts to Evolving gas Turbine Technology[J]. Power Engineering,2002,106(10):51-54.
    [75]Mathioudakis K., Stamatis A., Tsalavoutas A., Aretakis N. Performance Analysis of Industrial Gas Turbines for Engine Condition Monitoring[J]. Journal of Power and Energy,2001,215(2):173-184.
    [76]Vigueras Zuniga M.O. Intake Systems for Industrial Gas Turbines[C]. Cranfield Gas Turbine Symposium,2003:3-18.
    [77]Fielder J. Evaluation of Zero Compressor Wash Routine in RN Service[C]. Proceedings of ASME Turbo Expo 2003,2003:543-547.
    [78]Boyce M., Gonzalez F. A Study of on-line and off-line Turbine Washing to Optimize the Operation of a Gas Turbine[C]. Proceedings of ASME Turbo Expo2005,2005:1-10
    [79]刘洪涛.气固两相流中微细颗粒沉积与扩散特性的数值研究[D].重庆:重庆大学,2010.
    [80]Tabakoff W., Wakeman T.. Measured Particle Rebound Characteristics Useful for Erosion Prediction[J]. ASME Paper 82-GT-170,1982.
    [81]Chen F.Z, Lai A. An Eulerian Model for Particle Deposition Under Electrostatic and Turbulent Conditions[J]. Journal of Aerosol Science,2004,35(1):47-62.
    [82]Hinds W.C. Aerosol Technology:Properties, Behavior, and Measurement of Airborne Particles[M]. New York:Wiley,1984.
    [83]Moser R.D, Kim J, Mansour N N. Direct Numerical Simulation of Turbulent Channel flow up to Rer=590[J]. Physics of Fluids,1999,11(7):943-945.
    [84]Lonnie Reid, Royee D.Moore.Design and Overall Performance of Four Highly Loaded, High-Speed Inlet Stages for an Advanced High-Pressure-Ratio Core Compressor[R].Obio:Lewis Research Center,1978.
    [85]Bouris D., Kubo R., Hirata H., Nakata Y.. Numerical Comparative Study of Compressor Rotor and Stator Blade Deposition Rates[J]. ASME Journal of Engineering for Gas Turbines and Power,2002,124:608-616.
    [86]Fuchs N.A. The Mechanics of Aerosols[M]. Perfamon, Oxford, UK.1964.
    [87]He C.H., Ahmadi G. Particle Deposition with Thermophoresis in Laminar and Turbulent Duct Flows[J]. Aerosol Science and Technolog,1998,29:525-546.
    [88]Ghenaiet A., Tan S.C., Elder, R.L. Study of Eorsion Effects on an Axial Fan Global Range of Operation[J]. ASME Paper No. GT2004-54169.
    [89]Levine P., Angello L. Axial Compressor Performance Maintenance[J]. ASME Paper No. GT2005-68014.
    [90]Shabir A., Turner M.G A Wall Function for Calculating the Skin Friction with Surface Roughness[J]. ASME Paper No. GT2004-53908.
    [91]Zhang Q., Ligrani P.M. Aerodynamic Losses of a Cambered turbine Vane:Influences of Surface Roughness and Freestream Turbulence Intensity[J]. ASME Journal of Turbomachinery,2006,128:536-546.
    [92]Syverud E., Brekke O., Bakken L.E. Axial Compressor Deterioration[C]. ASME Proceedings of GT2005.
    [93]Zaba T., Lombardi P. Experience in the Operation of Air Filters in Gas Turbine Installations[J].ASME Paper No.84-GT-39,1984 ASME Gas Turbine Conference.
    [94]Howell A.R, Bonham R.P., Overall and Stage Characteristics of Axial Flow Compressors[J].Proceedings, IMechE,1950,163:235-248.
    [95]Sandercock D.M., Kovach K., and Lieblein S. Experimental Investigation of a Five Stage Axial Flow Compressor With Transonic Rotors in All Stages; Part I: Compressor Design[R]. NACA RM E54F24,1954.
    [96]Cherkez A.Ya., Engineering Calculation of Gas Turbine Engines by Small Deviations Method[D]. Moscow:Machinostroenie,1965.
    [97]马文通,苏明,余南华.变几何多级轴流式压气机特性估算[J].中国电机工程学报,2008,128(11):72-76
    [98]马文通,刘永文,苏明.多级轴流式压气机平均模型级特性获取方法[J].上海交通大学学报,2007,41(12):1954-1958
    [99]马文通,刘永文,苏明.基于平均微元级特性的压气机特性线外推方法[J].动力工程,2007,27(3):323-380.
    [100]陆佳艳,熊昌友,何小妹等.航空发动机叶片型面测量方法评述[J].计测技术,2009,29(3):1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700