用户名: 密码: 验证码:
并联有源滤波器控制技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着大量电力电子设备的应用,电能质量受到了较为严重的污染。并联有源滤波器(APF)是一种新型的电能质量综合补偿装置,与传统的无源补偿器相比,具有动态响应速度快、稳态补偿精度高、补偿方式灵活、不易与电网阻抗发生谐振等优势,能够综合治理谐波、无功、不平衡等电能质量问题,对改善电网品质、维持电力系统的稳定性具有重要的意义。APF在数字化实现及实际应用中仍然存在着一些问题,诸如常用的傅里叶数学工具的分析精度对电网频率敏感;控制策略在保证良好的控制效果同时很难兼顾快速性和鲁棒稳定性;开关噪声滤波器设计缺乏系统的理论;当电网中存在容性负荷时系统易发生振荡等。这些问题都需要进一步的研究加以解决。
     本文针对上述问题,研究了APF在同步锁相、谐波检测、控制策略、开关噪声滤波器设计、阻尼控制等方面的关键技术,以保证APF具有优异的补偿性能和鲁棒稳定性。具体的研究内容包括以下几个方面:
     APF实现网侧单位功率因数控制的关键是准确获取电网的同步相量。而硬件锁相环技术易受高频噪声干扰,产生虚假的过零信号。采用基于递归离散傅里叶(RDFT)算法的同步锁相技术,具有检测精度高、占用资源少的优点。针对电网频率发生偏移时RDFT的幅度和相位检测出现较大误差的问题,提出了一种直接修正RDFT算法。通过最近两周波的相角差逐点计算获得电网的真实频率信息,再利用当前时刻的频率偏移量及递推指针的数值对普通RDFT算法获得的检测结果进行修正,即可获得精确的电网相位与幅值信息。该算法计算量小,即便电网频率动态波动时仍然具有很高的精度。提出一种基于修正RDFT算法的单相谐波检测方法,能够大幅度减小频率偏移对谐波测量造成的误差。
     传统的基于瞬时无功功率算法的全补偿技术应用中存在着无法精确限幅及补偿带宽过宽等问题,为此给出了一种选择性谐波补偿策略,提高了APF补偿的灵活性,便于实际应用;同时提出了一种基于同步旋转坐标变换的三相选择性谐波检测算法,数据窗长度为1/6工频周期的滑窗平均值滤波器的应用使得APF对于典型的整流桥负载仅需3.3ms即可完成负载谐波的动态跟踪。电流瞬时值比较技术具有电流环自稳定特性,分析了反馈电流检测位置及系统延迟对APF控制效果的影响。针对传统的单采样率瞬时值比较技术控制效果受制于参考值计算速度的问题,提出了一种多采样率瞬时值比较技术,能够有效提高系统的开关频率和控制效果。针对电流瞬时值比较技术存在爬坡效应及开关纹波较大等问题,给出了一种多采样率空间矢量瞬时比较算法,去除了系统的三相耦合,提高了输出波形的质量。
     连接电抗值对APF的性能具有较大影响,本文给出了一种系统而又简便的连接电抗值设计方法。根据APF补偿容量和负荷预估,设计满足系统跟踪性的最优连接电抗值。为减小对电网的高频污染,APF需要加装开关噪声滤波器。本文分析了接入点不同负载类型时LCL滤波系统的特性,并根据阻抗分析的方法提出一套LCL滤波器的科学设计方法,使系统兼顾优异的开关噪声滤除性能和较高的阻尼比。针对LCL滤波器对APF输出电流幅度放大,相位产生滞后的问题,给出了一套前馈补偿算法,减小了LCL滤波器的负面作用。
     针对LCL滤波器无源阻尼电阻发热较大的问题,并根据电流瞬时值比较控制的特点,提出了LCL并联虚拟阻尼策略。该策略不需要复杂的微分运算,实现简单。分析了系统的离散域稳定性,给出了采样频率及虚拟阻尼系数的稳定域。当APF将开关噪声滤波器包含在负载电流中时系统将不稳定,而并联虚拟阻尼控制可以抑制系统的振荡,具有统一阻尼作用。更一般的,当APF负荷中包含容性负载时前馈控制策略存在稳定性问题。本文给出了APF系统自激振荡产生的机理及抑制方法,采取同时检测负载电流和电网电流的复合控制策略,能有效抑制系统的振荡,提高补偿精度。将APF与TSC组成混合补偿系统有利于结合二者的优势,分析了当TSC作为APF负载时混合补偿系统的稳定性。实验证明了系统能够有效消除TSC的分组级差,具有较快的响应速度和很高的稳态精度。
With the increasing prevalence of power electronics device applications, the power quality of the grid has been severely polluted. Comparing with traditional passive compensators, shunt active power filter (APF) is a novel power quality compensation device with fast dynamic response, high precision of steady state compensation, flexible compensation manners, and less probability having resonance with the grid impedance. APF is capable of comprehensively tackling power quality problems associated with harmonics, reactive power and unbalanced grid, which is crucial for improving power quality and maintaining the stability of power system. There are still some challenges for the digital implementation and industrial application of APF. For example, the analysis precision of commonly used Fourier mathematical tools is sensitive to grid frequency; if control strategy ensures good control performance, it is difficult to give consideration to rapidity and robust stability simultaneously; design of switching noise filter lacks specific theory; system is prone to oscillate in the situation of capacitive load, and so on.
     In order to resolve the above problems, this paper thoroughly researches on the key technologies of synchronous phase-locked loop (PLL), harmonic detection, control strategies, switching noise filter design and damping control to ensure an excellent compensation performance and a robust stability of APF system. Specific research issues run as follows:
     Obtaining accurate synchronized phasor of the grid is essential for APF to achieve grid-side unit power factor control. The hardware PLL technology is susceptible to high frequency noise, resulting in a false zero-crossing signal. This paper proposes a synchronized phasor measurement method based on recursive discrete Fourier (RDFT) algorithm, possessing higher precision while taking up fewer resources. However, large errors might be expected for the amplitude and phase detection of RDFT algorithm when the grid frequency shifts, so a direct correction algorithm of RDFT is also proposed. This algorithm obtains the real grid frequency through piecewise calculation of the phase angle difference for two consecutive periods, and then employs the current phase shift and recursive pointer value to correct the detection results gathered by the traditional RDFT algorithm, which will yield the accurate amplitude and phase information of the grid. The total amount of calculation for this algorithm is rather small, while it is still able to maintain a high precision with dynamic fluctuations of grid frequency. This research also established a single-phase harmonic detection method for correcting RDFT algorithm, which could significantly reduce the harmonic measurement errors due to shifts of frequency.
     The traditional application of every-order compensation based on instantaneous reactive power theory is not capable of accurately limiting the amplitude or restricting compensation bandwidth, this paper introduced a selective harmonic compensation strategy to improve the flexibility of APF compensation and further facilitate its industrial application. Moreover, a three-phase selective harmonic detection method based on synchronous rotating coordinate transformation is also put forward, and a sliding window averaging filter with data window length of1/6frequency cycle enables APF to complete the dynamic tracking of load harmonics in only3.3ms for the typical rectifier bridge. Instantaneous current value comparison is able to maintain self-stability of the current loop, and the impacts on the control performance of APF as positioning of feedback current and system delay are also analyzed. In addition, a multi-sampling rate instantaneous comparison technique is adopted to effectively enhance the switching frequency and control performance of the APF system. The instantaneous current comparison technique may experience obstacles as “climbing ripple effect” and large switching ripples, so a multi-sampling rate instantaneous space vector comparison algorithm is also proposed to realize three-phase decoupling and improve output waveforms.
     Inserting reactance loads exerts a large influence on the performance of APF, this paper presents a systematic and simple design connection reactance loads. According to the compensation capacity and load prediction of APF, the system is designed to meet the traceability with optimal reactance value. In order to reduce the high-frequency pollution to the grid, APF need to install an additional switching noise filter. This paper analyzes the characteristics of LCL filter system with different types of load, and proposes a set of scientific LCL filter design methods based on impedance analysis to grant the system with both excellent switching noise filtering and high damping ratio. However, LCL filter may also amplify output current and give rise to extensive phase lag problems; therefore, a corresponding feed-forward compensation algorithm is presented to reduce the above negative effects of LCL filter.
     Overheating is a major problem for passive damping resistors of LCL filter; this research focuses on a LCL parallel virtual damping strategy in accordance with the characteristics of instantaneous current value comparison, which does not require complex differential operations and is basically simple to implement. Sampling frequency and stable domain of virtual damping ratio is also presented by analyzing the system stability in discrete domain. As the APF system would become unstable with the incorporation of switching noise filter, the implementation of parallel virtual damping control could suppress system oscillations with uniform damping effect. Generally speaking, there are always concerns for stability issues of feed-forward control strategies when the load for APF contains high frequency paths. In this paper, the mechanism of self-excited oscillation and suppression method of APF system is proposed, and meanwhile the hybrid control strategy of simultaneously detecting the load current and grid current is also put forward to inhibit system oscillation and improving compensation accuracy. The APF and TSC hybrid compensation system is in favor of combining the advantages of both, and the stability of a hybrid compensation system which TSC performs as the load of APF is also analyzed. The experimental results have demonstrated that the system could effectively eliminate the TSC grouping differential, and the system possesses fast dynamic response and high precisions in steady-state performance.
引文
[1]谢小荣,姜齐荣.柔性交流输电系统的原理与应用[M].北京:清华大学出版社,2006:47-56.
    [2]姜齐荣,赵东元,陈建业.有源电力滤波器——结构·原理·控制[M].北京:科学出版社,2005:28-35.
    [3] George J. Wakileh.电力系统谐波——基本原理、分析方法和滤波器设计[M].徐政译.北京:机械工业出版社,2003:37-65.
    [4] Muhammad H. Rashid.电力电子技术手册.陈建业等译.北京:机械工业出版社,2004:688-696.
    [5]张立.现代电力电子技术基础[M].北京:高等教育出版社,2001:193-204.
    [6]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2000:66-73.
    [7]王兆安,杨君,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社,1998:40-51.
    [8] Fang Zhengpeng. Application issues of active power filters[J]. IEEE IndustryApplications Magazine,1998,4(5):21-30.
    [9] M. EI-Habrouk, M. K. Darwish, P.Mehta. Active power filter: a review[J].IEEE Proc. Electr. Power. Appl.,2000,147(5):403-413.
    [10] Wajiha Shireen, Li Tao, M.S. Arefeen. Implementation of a DSP based activepower filter for electric power distribution systems supplying nonlinearloads[C]. IEEE proceedings’2000:438-442.
    [11] H. Akagi, Y. Kanazawa, A. Nabae. Instantaneous Reactive PowerCompensators Comprising Switching Devices without Energy StorageComponents[J]. IEEE Trans. on Industry Applications,1984, IA-20(3):625-630.
    [12] H. Akagi, H. Fujita. A New Power Line Conditioner for HarmonicCompensation in Power Systems[J]. IEEE Trans. on Power Delivery,1995,10(3):1570-1575.
    [13] H. Fujita, H. Akagi. The Unified Power Quality Conditioner: the Integrationof Series Active Filters and Shunt Active Filters[C]. Proceedings of PESC’96:494-501.
    [14] Ning-Yi Dai, Man-Chung Wong, Fan Ng, et al. A FPGA-Based GeneralizedPulse Width Modulator for Three-Leg Center-Split and Four-Leg VoltageSource Inverters[J]. IEEE Trans. on Power Electronics,2008,23(3):1472-1483.
    [15] H. B. Zhang, S. J. Finny, A. M. Massoud, et al. Operation of a Three-levelNPC Active Power Filter with Unbalanced and Nonlinear Loads[C].7thInternational Conference on Power Electronics and Drive Systems,2007:62-67.
    [16] Liang Xiang, Yong Wang, Zhenning Zi, et al. Research on space vectormodulation control strategy based on60°coordinate for three-level activepower filter[C]. International Conference on Electrical Machines and Systems(ICEMS),2011:1-4.
    [17] O. Vodyakho, C. C. Mi, Three-Level Inverter-Based Shunt Active PowerFilter in Three-Phase Three-Wire and Four-Wire Systems[J]. IEEE Trans. onPower Electronics,2009,24(5):1350-1363.
    [18] H. Miranda, V. Cardenas, N. Visairo, et al. A dq0passivity-based approachfor3φ four-wire shunt active power filter based on NPC three-levelconverter[C]. IEEE34th Annual Conference of Industrial Electronics,2008:3171-3177.
    [19] O. Vodyakho, D. Hackstein, A. Steimel, et al. Novel Direct Current-Space-Vector Controlfor Shunt Active Power Filters Basedon the Three-LevelInverter[J]. IEEE Trans. on Power Electronics,2008,23(4):1668-1678.
    [20] Zhang Huibin, S. J. Finny, A. M. Massoud, et al. An SVM Algorithm toBalance the Capacitor Voltages of the Three-Level NPC Active PowerFilter[J]. IEEE Trans. on Power Electronics,2008,23(6):2694-2702.
    [21]何英杰,刘进军,唐健等.适用于二极管钳位型三电平有源滤波器的母线电压数字控制方法[J].中国电机工程学报,2008,28(36):55-61.
    [22]马伏军,罗安,涂春鸣等.一种三相二臂的三电平有源电能质量补偿器[J].中国电机工程学报,2012,32(15):55-62.
    [23]唐健,邹旭东,佘煦等.三相四线制三电平三桥臂有源滤波器中点平衡控制策略[J].中国电机工程学报,2009,29(24):40-48.
    [24]张兴,张崇巍. PWM整流器及其控制[M].北京:机械工业出版社,2012:400-449.
    [25] David Macii, Dario Petri, Alessandro Zorat. Accuracy analysis andenhancement of DFT-based synchrophasor estimators in off-nominalconditions[J]. IEEE Trans. Instrumentation and Measurement,2012,61(10):2653-2664.
    [26] Brendan Peter McGrath, Donald Grahame Holmes, James Jim H. Galloway.Power converter line synchronization using a discrete fourier transform (DFT)based on a variable sample rate[J]. IEEE Trans. Power Electronics,2005,20(4):877-884.
    [27] Krzysztof Duda. DFT interpolation algorithm for Kaiser–Bessel andDolph–Chebyshev windows[J]. IEEE Trans. Instrumentation andMeasurement,2011,60(3):784-790.
    [28] Wang Maohai, Sun Yuanzhang. A Practical Method to Improve Phasor andPower Measurement Accuracy of DFT Algorithm[J]. IEEE Trans. on PowerDelivery,2006,21(3):1054-1062.
    [29] Wang Maohai, Sun Yuanzhang. A Practical, Precise Method for FrequencyTracking and Phasor Estimation[J]. IEEE Trans. on Power Delivery,2004,19(4):1547-1552.
    [30]刘飞,查晓明,段善旭.三相并网逆变器LCL滤波器的参数设计与研究[J].电工技术学报,2010,25(3):110-116.
    [31] Tang Yi, Poh Chiang Loh, Wang Peng, et al. Generalized design of highperformance shunt active power filter with output LCL filter[J]. IEEE Trans. on Industrial Electronics,2012,59(3):1443-1452.
    [32]张宪平,李亚西,许洪华.新型拓扑滤波器的双馈风电网侧变流器阻尼策略[J].中国电机工程学报,2009,29(21):1-7.
    [33]鲍陈磊,阮新波,王学华等.基于PI调节器和电容电流反馈有源阻尼的LCL型并网逆变器闭环参数设计[J].中国电机工程学报,2012,32(25):133-142.
    [34]许津铭,谢少军,唐婷.基于极点配置的LCL滤波并网逆变器电流控制策略[J].电力系统自动化,2014,38(3):95-106.
    [35] Joerg Dannehl, Marco Liserre, Friedrich Wilhelm Fuchs. Filter-based activedamping of voltage source converters with LCL filter[J]. IEEE Trans. onIndustrial Electronics,2011,58(8):3623-3633.
    [36] H. Akagi, E. H. Watanabe, M. Aredes.瞬时功率理论及其在电力调节中的应用[M].徐政译.北京:机械工业出版社,2009:34-89.
    [37]杨君,王兆安.三相电路谐波电流两种检测方法的对比研究[J].电工技术学报,1995,(2):43-48.
    [38]游小杰,李永东,Victor Valouch,郝瑞祥.并联型有源电力滤波器在非理想电源电压下的控制[J].中国电机工程学报,2004,24(2):55-60.
    [39] E. H. Watanabe, R. M. Stephan and M. Aredes. New Concepts ofInstantaneous Active and Reactive Powers in Electrical Systems with GenericLoads[J]. IEEE Trans. on Power Delivery,1993,8(2):697-703.
    [40] Aredes Mauricio, Hafner Jurgen and Heumann Klemens. Three-Phase Four-Wire Shunt Active Filter Control Strategies[J]. IEEE Trans. on PowerElectronics,1997,12(2):311-318.
    [41] Chandra Ambrish, Singh Bhim, B. N. Singh and Al-Haddad Kamal, et al.Improved Control Algorithm of Shunt Active Filter for Voltage Regulation,Harmonic Elimination, Power-Factor Correction, and Balancing of NonlinearLoads[J]. IEEE Trans. on Power Electronics,2000,15(3):495-507.
    [42] M. Depenbrock, V. Staudt, H. Wrede. A theoretical investigation of originaland modified instantaneous power theory applied to four-wire systems[J].IEEE Trans. on Industry Applications,2003,39(4):1160-1168.
    [43] R. S. Herrera, P. Salmeron. Instantaneous Reactive Power Theory: AComparative Evaluation of Different Formulations[J]. IEEE Trans. on PowerDelivery,2007,22(1):595-604.
    [44] M. A. Mulla, C. Rajagopalan, A. Chowdhury. Hardware implementation ofseries hybrid active power filter using a novel control strategy based ongeneralised instantaneous power theory[J]. IET Power Electronics,2013,6(3):592-600.
    [45] R. S. Herrera, P. Salmeron. Present point of view about the instantaneousreactive power theory[J]. IET Power Electronics,2009,2(5):484-495.
    [46] Y. Xu, L. M. Tolbert, J. N. Chiasson, et al. A generalised instantaneous non-active power theory for STATCOM[J]. IET HElectric Power ApplicationsH,2007,1(6):853-861.
    [47] R. S. Herrera, P. Salmeron. Instantaneous Reactive Power Theory: AReference in the Nonlinear Loads Compensation[J]. IEEE Trans. on HIndustrialElectronicsH,2009,56(6):2015-2022.
    [48] R. S. Herrera, P. Salmeron, Kim Hyosung. Instantaneous Reactive PowerTheory Applied to Active Power Filter Compensation: Different Approaches,Assessment, and Experimental Results[J]. IEEE Trans. on HIndustrialElectronicsH,2008,55(1):184-196.
    [49] Seong-Jeub Jeon. Unification and Evaluation of the Instantaneous ReactivePower Theories[J]. IEEE Trans. on H Power Electronics,H2008,23(3):1502-1510.
    [50]忻黎敏,许维胜,余有灵.基于递推离散傅里叶变换和同步采样的谐波电流实时检测方法[J].电网技术,2008,32(6):14-18.
    [51] K. Borisov, H. L. Ginn, Chen Guangda. A Computationally Efficient RDFT-Based Reference Signal Generator for Active Compensators[J]. IEEE Trans.on Power Delivery,2009,24(4):2396-2404.
    [52] V. M. Moreno, M. Liserre, A. Pigazo, et al. A Comparative Analysis of Real-Time Algorithms for Power Signal Decomposition in Multiple SynchronousReference Frames[J]. IEEE Trans. on HPower ElectronicsH,2007,22(4):1280-1289.
    [53] I. Sadinezhad, V. G. Agelidis. Real-Time Power System Phasors andHarmonics Estimation Using a New Decoupled Recursive-Least-SquaresTechnique for DSP Implementation[J]. IEEE Trans. on HIndustrial ElectronicsH,2013,60(6):2295-2308.
    [54] S. Rechka, E. Ngandui, Xu Jianhong, et al. Analysis of harmonic detectionalgorithms and their application to active power filters for harmonicscompensation and resonance damping[J]. Canadian Journal of HElectrical andComputer Engineering,H2003,28(1):41-51.
    [55] Yu Yilin, Xu Yonghai, Liu Xiaobo. Research of Improved Iterative DFTMethod in Harmonic Current Detection[C].2011Asia-Pacific Power andEnergy Engineering Conference (APPEEC),2011:1-4.
    [56] T. Komrska, J. Zak, Z. Peroutka. Reactive power and harmonic currentscompensation in traction systems using active power filter with DFT-basedcurrent reference generator[C].13th European Conference on PowerElectronics and Applications,2009:1-10.
    [57] J. M. Maza-Ortega, J. A. Rosendo-Macias, A. Gomez-Exposito. ReferenceCurrent Computation for Active Power Filters by Running DFTTechniques[J]. IEEE Trans. on Power Delivery,2010,25(3):1986-1995.
    [58]蔡忠法,陈隆道,陈国志.基于自适应神经网络的谐波分析模型与算法[J].电工技术学报,2008,23(7):118-123.
    [59]向东阳,王公宝,马伟明等.基于FFT和神经网络的非整数次谐波谐波检测方法[J].中国电机工程学报,2005,25(9):35-39.
    [60]王小华,何怡刚.基于神经网络的电力系统高精度频率谐波分析[J].中国电机工程学报,2007,27(34):102-106.
    [61] G. W. Chang, Chen Cheng-I, Teng Yu-Feng. Radial-Basis-Function-BasedNeural Network for Harmonic Detection[J]. IEEE Trans. on HIndustrialElectronicsH,2010,57(6):2171-2179.
    [62] C. F. Nascimento, A. A. Oliveira, A. Goedtel, et al. Neural Network-BasedApproach for Identification of the Harmonic Content of a Nonlinear Load in aSingle-Phase System[J]. IEEE Latin America Transactions,2010,8(1):65-73.
    [63] M. Valtierra-Rodriguez, R. de Jesus Romero-Troncoso, R. A. Osornio-Rios,Detection and Classification of Single and Combined Power QualityDisturbances Using Neural Networks[J]. IEEE Trans. on HIndustrialElectronicsH,2014,61(5):2473-2482.
    [64]陈淑华,付青,马桂龙等.基于神经网络自适应预测算法的谐波检测[J].电工技术学报,2007,27(34):102-106.
    [65]周林,夏雪,万蕴杰等.基于小波变换的谐波测量方法综述[J].电工技术学报,2006,21(9):67-74.
    [66]陈继开,李浩昱,杨世彦等. Tsallis小波包奇异熵与功率谱分析在电力谐波检测的应用[J].电工技术学报,2010,25(8):193-199.
    [67]赵成勇,何明锋.基于复小波变换相位信息的谐波检测算法[J].中国电机工程学报,2005,25(1):38-42.
    [68]韩志伟,刘志刚,鲁晓.基于CUDA的高速并行小波算法及其在电力系统谐波分析中的应用[J].电力自动化设备,2010,30(1):98-105.
    [69]曹健,林涛,强晓刚等.采用改进支持向量机和复小波变换的谐波及间谐波测量方法[J].高电压技术,2011,37(6):1384-1390.
    [70]滕召胜,罗志坤,孙传奇等.基于小波包分解与重构算法的谐波电能计量[J].电工技术学报,2010,25(8):200-206.
    [71]张鹏,李红斌.一种基于离散小波变换的谐波分析方法[J].电工技术学报,2012,27(3):252-259.
    [72] J. Barros, R. I. Diego. Analysis of Harmonics in Power Systems Using theWavelet-Packet Transform[J]. IEEE Trans. on IHnstrumentation andMeasurementH,2008,57(1):63-69.
    [73] J. Barros, R. I. Diego. M. de Apraiz. Applications of Wavelet Transform forAnalysis of Harmonic Distortion in Power Systems: A Review[J]. IEEE Trans.on HInstrumentation and MeasurementH,2012,61(10):2604-2611.
    [74] Liu zhanchen, Du Tianjun. Anti-aliasing wavelet packet method for harmonicdetection[J]. Journal of HSystems Engineering and ElectronicsH,2009,20(1):197-203.
    [75]陈仲,罗颖鹏,石磊,陈淼.并联型APF两种典型控制方式的机制解析[J].中国电机工程学报,2010,30(33):37-43.
    [76]周雒维,张东,杜雄等.一种新型的串联型有源电力滤波器[J].中国电机工程学报,2005,25(14):41-45.
    [77]梅军,沈亚飞,郑建勇等.三相四线制系统中基于等功率法的谐波检测[J].电力自动化设备,2008,28(2):49-53.
    [78]王俊杰,郑益慧,姚钢等.有源电力滤波器的动态因子LMS谐波检测方法[J].电力自动化设备,2011,31(4):91-95.
    [79]李辉,吴正国,邹云屏,刘飞,吴言凤.变步长自适应算法在有源滤波器谐波检测中的应用[J].中国电机工程学报,2006,26(9):99-103.
    [80]李辉,李亦斌,邹云屏,等.一种新的变步长自适应谐波检测算法[J].电力系统自动化,2005,29(2):69-73.
    [81] H乐江源H, H谢运祥H, H张志H等.三相有源电力滤波器精确反馈线性化空间矢量PWM复合控制[J].中国电机工程学报,2010,30(15):32-39.
    [82] H朱宁辉H, H白晓民H, H董伟杰H.自适应参数的有源电力滤波器SVPWM控制方法研究[J].中国电机工程学报,2012,32(增刊):188-193.
    [83] N. Viswanath, A. K. Kapoor. HPerformance estimation of HCC and SVPWMcurrent control techniques on shunt active power filters[C].2010InternationalConference on Power, Control and Embedded Systems (ICPCES),2010:1-6.
    [84] H洪峰H, H单任仲H, H王慧贞H等.一种变环宽准恒频电流滞环控制方法[J].电工技术学报,2009,24(1):115-119.
    [85] H乐健H, H姜齐荣H, H韩英铎H.基于统一数学模型的三相四线有源电力滤波器的电流滞环控制策略分析[J].中国电机工程学报,2007,27(10):85-91.
    [86] H胡义华H, H邓焰H, H刘全伟H等.分段式虚拟过采样数字滞环控制[J].中国电机工程学报,2012,32(36):1-8.
    [87] Y. Suresh, A. K. Panda, M. Suresh. Real-time implementation of adaptivefuzzy hysteresis-band current control technique for shunt active powerfilter[J]. IET HPower ElectronicsH,2012,5(7):1188-1195.
    [88] N. Prabhakar, M. K. Mishra. Dynamic Hysteresis Current Control toMinimize Switching for Three-Phase Four-Leg VSI Topology to CompensateNonlinear Load[J]. IEEE Trans. on HPower Electronics,H2010,25(8):1935-1942.
    [89] Wu Fengjiang, Sun Bo, Zhao Ke, et al. Analysis and Solution of CurrentZero-Crossing Distortion With Unipolar Hysteresis Current Control in Grid-Connected Inverter[J]. IEEE Trans. on HIndustrial ElectronicsH,2013,60(10):4450-4457.
    [90] Carl Ngai-Man Ho, Victor S. P. Cheung, Henry Shu-Hung Chung. Constant-Frequency Hysteresis Current Control of Grid-Connected VSI WithoutBandwidth Control[J]. IEEE Trans. on HPower Electronics,H2009,24(11):2484-2495.
    [91] R. Gupta. Generalized Frequency Domain Formulation of the SwitchingFrequency for Hysteresis Current Controlled VSI Used for LoadCompensation[J]. IEEE Trans. on HPower Electronics,H2012,27(5):2526-2535.
    [92]张树全,戴珂,谢斌等.多同步旋转坐标系下指定次谐波电流控制[J].中国电机工程学报,2010,30(3):55-62.
    [93] Quoc-Nam Trinh, Hong-Hee Lee. An Advanced Current Control StrategyforThree-Phase Shunt Active Power Filters[J]. IEEE Trans. on HIndustrialElectronicsH,2013,60(12):5400-5410.
    [94] H. Daniyal, E. Lam, L. J. Borle, et al. Hysteresis, PI and Ramptime CurrentControl Techniques for APF: An experimental comparison[C].6th IEEEConference on Industrial Electronics and Applications (ICIEA),2011:2151-2156.
    [95]郭伟峰,徐殿国,武健等. LCL有源电力滤波器新型控制方法[J].中国电机工程学报,2010,30(3):42-48.
    [96]唐诗颖,彭力,康勇等.并联有源滤波器广义积分控制设计新方法[J].中国电机工程学报,2011,31(12):40-45.
    [97]武健,徐殿国,何娜等.基于优化滑动傅立叶分析和广义积分的并联有源滤波器控制策略[J].电网技术,2005,29(17):21-25.
    [98]周娟,张勇,耿乙文等.四桥臂有源滤波器在静止坐标系下的改进PR控制[J].中国电机工程学报,2012,32(6):113-120.
    [99] Luo An, Shuai Zhikang, Zhu Wenji, et al. HCombined System for HarmonicSuppression and Reactive Power Compensation[J]. IEEE Trans. on IndustrialElectronics,2009,56(2):418-428.
    [100]郭伟峰,武健,徐殿国等.新型滑模控制的并联混合有源电力滤波器[J].中国电机工程学报,2009,29(27):29-35.
    [101]周卫平,吴正国,刘大明等.有源电力滤波器变趋近律滑模变结构控制[J].中国电机工程学报,2005,25(23):91-94.
    [102] Fei Juntao, Zhang Shenglei, Zhou Jian. Adaptive harmonic compensation ofshunt active power filter using sliding mode controller[C].2012IEEEInternational Conference on Robotics and Biomimetics (ROBIO),2012:2175-2180.
    [103]何英杰,刘进军,王兆安等.基于重复预测原理的三电平APF无差拍控制方法[J].电工技术学报,2010,25(2):114-120.
    [104]高吉磊,黄先进,林飞.基于重复观测器的PWM整流器无差拍控制[J].电工技术学报,2010,25(6):47-54.
    [105]周娟,秦静,王子绩等.内置重复控制器无差拍控制在有源滤波器中的应用[J].电工技术学报,2013,28(2):233-238.
    [106] J. HAllmelingH. A control structure for fast harmonics compensation in activefilters[J]. IEEE Trans. on HPower ElectronicsH,2004,19(2):508-514.
    [107] L. Malesani, P. Mattavelli, S. Buso. Robust dead-beat current control forPWM rectifiers and active filters[J]. IEEE Trans. on Industry Applications,1999,35(3):613-620.
    [108]武健,何娜,徐殿国.重复控制在并联有源滤波器中的应用[J].中国电机工程学报,2008,28(18):66-72.
    [109]仇志凌,杨恩星,孔洁等.基于LCL滤波器的并联有源电力滤波器电流闭环控制方法[J].中国电机工程学报,2009,29(18):15-20.
    [110]于晶荣,粟梅,孙尧.有源电力滤波器的改进重复控制及其优化设计[J].电工技术学报,2012,27(2):235-242.
    [111] H耿攀H, H戴珂H, H魏学良H等.三相并联型有源电力滤波器电流重复控制[J].电工技术学报,2007,22(2):127-131.
    [112] H刘飞H, H宫金武H, H彭光强H等.一种复合式重复控制在并联型有源电力滤波器设计中的应用[J].电工技术学报,2012,27(12):138-145.
    [113] J. Miret, M. Castilla, J. Matas, et al. Selective Harmonic-CompensationControl for Single-Phase Active Power Filter With High HarmonicRejection[J]. IEEE Trans. on IHndustrial ElectronicsH,2009,56(8):3117-3127.
    [114] Chen Dong, Zhang Junming, Qian Zhaoming. An Improved RepetitiveControl Scheme for Grid-Connected Inverter With Frequency-AdaptiveCapability[J]. IEEE Trans. on HIndustrial ElectronicsH,2013,60(2):814-823.
    [115] Chen Dong, Zhang Junming, Qian Zhaoming. Research on fast transient and6n±1harmonics suppressing repetitive control scheme for three-phase grid-connected inverters[J]. IET HPower ElectronicsH,2013,6(3):601-610.
    [116] X. H. Wu, S. K. Panda, J. X. Xu. Design of a Plug-In Repetitive ControlScheme for Eliminating Supply-Side Current Harmonics of Three-PhasePWM Boost Rectifiers Under Generalized Supply Voltage Conditions[J].IEEE Trans. on HPower ElectronicsH,2010,25(7):1800-1810.
    [117]陈兵,谢运祥,宋静娴.单周控制有源电力滤波器关键参数的最优选择[J].电工技术学报,2008,23(7):86-91.
    [118]钱挺,吕征宇,胡进.基于单周控制的有源滤波器双环控制策略[J].中国电机工程学报,2003,23(3):34-37.
    [119] K. M. Smedley, Zhou Luowei, Qiao Chongming. Unified constant-frequencyintegration control of active power filters-steady-state and dynamics[J]. IEEETrans. on HPower ElectronicsH,2001,16(3):428-436.
    [120] Jin Taotao, K. M. Smedley. Operation of One-Cycle Controlled Three-PhaseActive Power Filter With Unbalanced Source and Load[J]. IEEE Trans. onHPower ElectronicsH,2006,21(5):1403-1412.
    [121]漆铭钧,罗安,刘定国等.有源电力滤波器参考电流的预测方法及其实现[J].中国电机工程学报,2009,29(7):128-134.
    [122] H于晶荣H, H滕召胜H, H章兢H.有源电力滤波器预测电流控制及稳定性分析[J].电工技术学报,2009,24(7):164-170.
    [123]吴勇,徐金榜,王庆义等.并联有源电力滤波器电流预测控制[J].华中科技大学学报,2008,36(4):99-102.
    [124] J. M. Espi, J. Castello, R. Garcia-Gil. An Adaptive Robust Predictive CurrentControl for Three-Phase Grid-Connected Inverters[J]. IEEE Trans. on HIndustrial ElectronicsH,2011,58(8):3537-3546.
    [125] Wu Yong, Guo Jinglei. Research on current predictive control for activepower filter[C].2008IEEE International Conference on IndustrialTechnology,2008:1-5.
    [126]薛花,姜建国.并联型有源滤波器的自适应无源性控制方法研究[J].中国电机工程学报,2007,27(25):114-118.
    [127] Liang Zhishan, Qiu Yinfeng. Passivity-based control for three-phase four-legshunt active power filter[C].2009IEEE International Conference on Controland Automation,2009:2106-2110.
    [128] Sun Jianjun, Li Cong, Zha Xiaoming, et al. Study on passivity-based controland its robust analyzing of active power filter[C].4th IEEE Conference onIndustrial Electronics and Applications,2009:2227-2231.
    [129] Shyu Kuo-Kai, Yang Ming-Ji, Chen Yen-Mo, et al. Model ReferenceAdaptive Control Design for a Shunt Active-Power-Filter System[J]. IEEETrans. on HIndustrial ElectronicsH,2008,55(1):97-106.
    [130] Parmod Kumar, Parmod Kumar. Soft Computing Techniques for the Controlof an Active Power Filter[J]. IEEE Trans. on Power Delivery,2009,24(1):452-461.
    [131] Luo An, Xu Xianyong, Fang Houhui, et al. Feedback-Feedforward PI-TypeIterative Learning Control Strategy for Hybrid Active Power Filter WithInjection Circuit[J]. IEEE Trans. on H Industrial ElectronicsH,2010,57(11):3767-3779.
    [132] A. Bhattacharya, C. Chakraborty. A Shunt Active Power Filter With EnhancedPerformance Using ANN-Based Predictive and Adaptive Controllers[J]. IEEETrans. on HIndustrial ElectronicsH,2011,58(2):421-428.
    [133] Liu Weiwei, Lu Guojun, Huang Yangguang, et al. Proposal of an expert PIDcontrol strategy for current controllers in parallel active power filters[C].2012China International Conference on Electricity Distribution,2012:1-4.
    [134]王伟,周林,徐明.有源电力滤波器控制方法综述[J].继电器,2006,34(20):81-86.
    [135]耿池勇,高厚磊,刘炳旭等.适用于同步相量测量的DFT算法研究[J].电力自动化设备,2004,24(1):84-86.
    [136]忻黎敏,许维胜,余有灵.基于递推离散傅里叶变换和同步采样的谐波电流实时检测方法[J].电网技术,2008,32(6):14-18.
    [137]张同尊,邵俊松,方勇杰.一种基于离散傅里叶变换的频率测量算法[J].电力系统自动化,2007,31(22):70-72.
    [138]张加胜,李浩光.基于滞环控制的电压型变流器开关频率分析[J].电力系统及其自动化学报,2008,20(2):57-59.
    [139]王存平,尹项根,张哲等.配电网STATCOM输出LCL滤波器特性分析及参数设计[J].电工技术学报,2011,26(12):99-104.
    [140]王要强,吴凤江,孙立等.阻尼损耗最小化的LCL滤波器参数优化设计[J].中国电机工程学报,2010,30(27):90-95.
    [141] M. Liserre, F. Blaabjerg, and S. Hansen. Design and control of LCL-filter-based three-phase active rectifier[J]. IEEE Trans. on Industrial Applications,2005,41(5):1281-1291.
    [142] Guo Xizheng, You Xiaojie, Li Xinran, et al. Design method for the LCLfilters of three-phase voltage source PWM rectifiers[J]. Journal of powerelectronics,2012,12(4):559-566.
    [143] Sun Wei, Chen Zhe, Wu Xiaojie. Intelligent optimize design of LCL filter forthree-phase voltage-source PWM rectifier[J]. IEEE6th International PowerElectronics and Moton Control Conference,2009:970-974.
    [144]潘东华,阮新波,王学华等.提高LCL型并网逆变器鲁棒性的电容电流即时反馈有源阻尼方法[J].中国电机工程学报,2013,33(18):1-10.
    [145]许津铭,谢少军,肖华锋. LCL滤波器有源阻尼控制机制研究[J].中国电机工程学报,2012,32(9):27-33.
    [146] Shen Guoqiao, Xu Dehong, Cao Luping, et al. An improve control strategyfor grid-connected voltage source inverters with an LCL filter[J]. IEEE Trans.on Power Electronics,2008,23(4):1899-1906.
    [147] J. Dannehl, F. Fuchs, P. Thgersen. PI state space current control of grid-connected PWM converters with LCL filters[J]. IEEE Trans. on PowerElectronics,2010,25(9):2320-2330.
    [148] M. Liserre, A. Dell’Aquila, F. Blaabjerg. Genetic algorithm-based design ofthe active damping for an LCL-filter three-phase active rectifier[J]. IEEE Trans. on Power Electronics,2004,19(1):76-86.
    [149] J. Dannehl, F. Fuchs, S. Hansen, et al. Investigation of active dampingapproaches for PI-based current control of grid-connected pulse widthmodulation converters with LCL filters[J]. IEEE Trans. on IndustryApplications,2010,46(4):1509-1517.
    [150] M. Malinowski, S. Bernet. A simple voltage sensorless active dampingscheme for three-phase PWM converters with an LCL filter[J]. IEEE Trans.on Industrial Electronics,2008,55(4):1876-1880.
    [151]孙蔚,伍小杰,戴鹏等.基于LCL滤波器的电压源型PWM整流器控制策略综述[J].电工技术学报,2008,23(1):90-96.
    [152] M. Bierhoff, F. Fuchs. Active damping for three-phase PWM rectifiers withhigh-order line-side filters[J]. IEEE Trans. on Industrial Electronics,2009,56(2):371-379.
    [153] I. J. Gabe, V. F. Montagner, H. Pinheiro. Design and implementation of arobust current controller for VSI connected to the grid through an LCLfilter[J]. IEEE Trans. on Power Electronics,2009,24(6):1444-1452.
    [154]吴隆辉,卓放,张鹏博等.一种用于配电系统谐振抑制及谐波治理的新型PAPF控制方法[J].中国电机工程学报,2008,28(27):70-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700