用户名: 密码: 验证码:
电磁仿真结果可信度FSV评估方法的关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为电磁仿真模型有效性评估的核心内容,仿真结果可信度的定量评估可以消除主观目测评估的不确定性和不稳定性,为仿真模型修正及改进提供指导。特征选择验证(FSV:Feature Selective Validation)方法是IEEE标准1597.1所确立的电磁仿真有效性评估体系的核心方法,结合IEEE标准委员会的修订要求,对FSV方法本身的特性、有效性及功能拓展等关键问题进行研究对IEEE标准1597.1的进一步修订和推广具有重要意义。
     本课题首先对FSV方法主要特性进行了分析。通过与常用数据差异评估算法的对比说明了FSV方法在电磁仿真结果可信度评估中的适用性。对FSV方法数据敏感性的分析主要考察待评估数据的数据量变化对评估结果的影响,分析证明了当数据密度及数据丢失比例在一定范围内变化时FSV评价结果具有鲁棒性。参数敏感性分析则考察FSV方法中关键参数取值变化对评估结果的影响,通过分析确定了两个敏感参数并验证了这两个参数取值的合理性。
     在论证了FSV特性的基础上,为了使FSV方法更接近于专家评价,提出了对其评估结果定性表达方法的改进。首先,提出使用连续概率密度函数代替直方图来表示定性评价结果,从而可以提供更加细致的定性信息,并可以为多结果之间的交叉统计分析提供条件。其次,研究了FSV方法的定性结果与定量结果之间对应关系的模糊化问题。使用浮动边界代替原有的硬边界来重新定义定性评估与定量结果之间的对应关系,在结果表达层面减小了FSV方法的定性评估结果与专家调查结果之间的差异。此外,本课题通过组织新的数据可信度专家问卷调查,分析了专家目测评估的特点,为本课题对FSV方法的改进提供了参考数据。
     针对FSV方法在实际应用中出现的三种失效情况,分别研究了其失效原因及解决方案。首先,通过对直流差异评估量(ODM)算法的改进,解决了FSV方法在评估正负交替数据时的失效问题,且这一改进对常规数据的评估没有影响。其次,通过分段评估改进了FDM的计算,提出了改进的MAF-FSV算法,解决了对含有瞬态分量数据的评估失效问题。最后,探索了畸变数据的评估问题,提出使用Feature Selective Correction(FSC)技术进行数据校正,改进了全局差异评估量(GDM)计算方法。以上改进均通过与专家调查结果的对比证明了其有效性,增强了FSV方法的评估稳定性。
     针对FSV方法在实际应用中面临的多仿真结果可信度的综合评价问题,引入模糊综合评价模型和层次分析法,建立了基于FSV的多结果可信度综合评估方法,拓展了FSV方法的功能。在此基础上结合本课题对FSV提出的改进,研究高频多导体串扰简化模型的仿真结果可信度评估问题。通过对频域和时域仿真结果的综合评价证明了本课题提出的简化算法的有效性和优势。
Quantifying the credibility of simulation result can eliminate the uncertainty and instability introduced by subjective visual assessment, which is the core content of validity assessment of electromagnetic simulation model. Further, quantitative assessment can provide a range of useful information for the rectification and improvement of the simulation model. The Feature Selective Validation (FSV) method is the core of the electromagnetic simulation validity assessment system established by the IEEE standard1597.1. So it is important to study the properties, validity, functional extension and other key issues of FSV method, which will also meet the requirement of IEEE Standards Association on the revision and promotion of IEEE standard1597.1.
     Properties of FSV method are first investigated in this project. The applicability of FSV method in the credibility assessment of electromagnetic simulation result is demonstrated by comparing with some frequently used data comparison algorithms. The influence of the quantity of data points on the assessment result is evaluated by data sensitivity analysis. It is demonstrated that the FSV result keeps robust when data density and integrity of data sets are changed to some extent. The parameter sensitivity analysis examines the influence of the changing values of key parameters on the FSV results. In this way, two sensitive parameters are identified and their values are proved to be reasonable.
     Based on the comprehensive discussion of the properties of FSV method, the improvement in the representation of FSV qualitative result is proposed, which aims to reduce the discrepancy between FSV result and experts’ assessment. First, the histogram result is replaced by the probability density function which can give the qualitative results in detail and makes it possible to do cross statistical analysis between multiple data. Further, fuzzification of the correspondence relationship between FSV qualitative and quantitative results is studied, which is realized by introducing floating boundaries of qualitative categories. It is shown that the agreement between FSV prediction and experts’ assessment can be improved by the floating boundaries. In addition, characteristics of visual assessment are also analyzed by performing a new data credibility survey. These visual assessments offer reference information for the following research on the improvement of FSV.
     Assessment failures of FSV method in three situations are also discussed and improved. First, the problem occured in the assessment of data oscillating between positive and negative half planes is solved by improving the algorithm of Offset Difference Measure (ODM). Data tests suggest that this modification can reduce the disagreement between FSV results and visual assessment without any pre-processing to original data sets. Secondly, the MAF-FSV method is proposed to improve the assessment of transient data sets, which divides the data sets under comparison into three regions and modifies the algorithm of Feature Difference Measure (FDM). Additionally, the assessment of distorted data sets is discussed. New Global Difference Measure (GDM) is calculated after the data sets are corrected by the Feature Selective Correction (FSC) technique. All of these improvements are validated by comparing with the survey results.
     To assess the credibility of multiple simulation results, the comprehensive assessment method is established based on the FSV method, fuzzy comprehensive assessment model and the Analytic Hierarchy Process (AHP), which extends the function of FSV method. Then the method is applied to the validation of the reduction model of multiconductor crosstalk problem in high frequency. In this process, improvements of FSV proposed in this project are also used. The validity and advantages of the proposed model are demonstrated by the comprehensive credibility assessments of simulation results in frequency and time domain.
引文
[1] Duffy A P,Martin A J M,Orlandi A,et al. Feature Selective Validation (FSV)for Validation of Computational Electromagnetics (CEM). Part I-the FSVMethod[J]. IEEE Transactions on Electromagnetic Compatibility,2006,48(3):449-459.
    [2] Orlandi A,Duffy A P,Archambeault B,et al. Feature Selective Validation(FSV) for Validation of Computational Electromagnetics (CEM). Part II-Assessment of FSV Performance[J]. IEEE Transactions on ElectromagneticCompatibility,2006,48(3):460-467.
    [3] IEEE Std.1597.1-2008. IEEE Standard for Validation of ComputationalElectromagnetics Computer Modeling and Simulations[S]. New York:IEEE,2008:1-41.
    [4] IEEE Std.1597.2-2010. IEEE Recommended Practice for Validation ofComputational Electromagnetics Computer Modeling and Simulations[S]. NewYork:IEEE,2011:1-124.
    [5] Martin A J M. Quantitative Data Validation[D]. Leicester:De MontfortUniversity Ph. D. dissertation,1999:1-167.
    [6] Antonini G,Ciccomancini Scogna A,Orlandi A,et al. Applications of FSV toEMC and SI Data[C]. IEEE International Symposium on ElectromagneticCompatibility,Chicago,U. S.,2005:278-283.
    [7] Duffy A,Martin A,Antonini G,et al. The Feature Selective Validation (FSV)Method[C]. IEEE International Symposium on ElectromagneticCompatibility,Chicago,U. S.,2005:272-277.
    [8] Denton A,Martin A,Duffy A. Quantifying EMC Measurement Accuracy UsingFeature Selective Validation[J]. Applied Computational ElectromagneticsSociety Journal,2008,23(1):104-109.
    [9] Drozd A,Kasperovich I,Norgard J,et al. Feature Selected Validation andVerification (FSVV) of CEM Code Predictions Using IR Thermal Images ofEM Fields[C].2008Asia-Pacific Symposium on ElectromagneticCompatibility,Singapore,2008:359-62.
    [10] Knockaert J,Peuteman J,Catrysse J,et al. Modifying the Feature-SelectiveValidation Method to Validate Noisy Data Sets[J]. IET Science Measurement&Technology,2008,2(4):244-257.
    [11] Orlandi A,Antonini G,Polisini C,et al. Progress in the Development of a2DFeature Selective Validation (FSV) Method[C].2008IEEE InternationalSymposium on Electromagnetic Compatibility,Michigan,U. S.,2008:818-823.
    [12] Archambeault B,Duffy A,Sasse H,et al. Challenges in Developing aMultidimensional Feature Selective Validation Implementation[C].2010IEEEInternational Symposium on Electromagnetic Compatibility,Fort Lauderdale,U. S.,2010:726-731.
    [13] Telleria R J,Silva F,Orlandi A,et al. Factors Influencing the SuccessfulValidation of Transient Phenomenon Modelling[C].2010Asia-PacificSymposium on Electromagnetic Compatibility,Beijing,China,2010:338-341.
    [14] IEEE Std1516.4-2007. IEEE Recommended Practice for Verification,Validation, and Accreditation of a Federationan Overlay to the High LevelArchitecture Federation Development and Execution Process[S]. New York:IEEE,2007:1-76.
    [15]刘飞,马萍,杨明,等.复杂仿真系统可信度量化研究[J].哈尔滨工业大学学报,2007,39(1):1-3.
    [16]杨明,张冰,马萍,等.仿真系统VV&A发展的五大关键问题[J].系统仿真学报,2003,15(11):1506-1508.
    [17]刘兴堂,刘力,孙文.仿真系统VV&A及其标准/规范研究[J].计算机仿真,2006,23(3):61-66.
    [18]王维平.仿真模型有效性确认与验证[M].长沙:国防科技大学出版社,1998:1-16.
    [19]唐见兵,查亚兵,李革.仿真VV&A研究综述[J].计算机仿真,2006,23(11):82-85.
    [20] Drozd A L. Selected Methods for Validating Computational ElectromagneticModeling Techniques[C]. IEEE International Symposium on ElectromagneticCompatibility,Chicago,U. S.,2005:301-306.
    [21] Sypek P,Dziekonski A,Mrozowski M. How to Render FDTD ComputationsMore Effective Using a Graphics Accelerator[J]. IEEE Transactions onMagnetics,2009,45(3):1324-1327.
    [22] Sani A,Yan Z,Yang H,et al. An Efficient FDTD Algorithm Based on theEquivalence Principle for Analyzing Onbody Antenna Performance[J]. IEEETransactions on Antennas and Propagation,2009,57(4):1006-1014.
    [23] Dogaru T,Le C. Sar Images of Rooms and Buildings Based on FDTDComputer Models[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(5):1388-1401.
    [24] Topa T,Karwowski A,Noga A. Using GPU with CUDA to AccelerateMOM-Based Electromagnetic Simulation of Wire-Grid Models[J]. IEEEAntennas and Wireless Propagation Letters,2011,10:342-345.
    [25] Huapeng Z,Zhongxiang S. Hybrid Discrete Singular Convolution-Method ofMoments Analysis of a2-D Transverse Magnetic Reverberation Chamber[J].IEEE Transactions on Electromagnetic Compatibility,2010,52(3):612-619.
    [26] Freni A,De Vita P,Pirinoli P,et al. Fast-Factorization Acceleration of MOMCompressive Domain-Decomposition[J]. IEEE Transactions on Antennas andPropagation,2011,59(12):4588-4599.
    [27] Bogdanov F G,Karkashadze D D,Jobava R G,et al. Validation of HybridMOM Scheme with Included Equivalent Glass Antenna Model for HandlingAutomotive EMC Problems[J]. IEEE Transactions on ElectromagneticCompatibility,2010,52(1):164-172.
    [28] Li X,Zhonghai Y,Bin L,et al. High-Frequency Circuit Simulator: AnAdvanced Three-Dimensional Finite-Element Electromagnetic-SimulationTool for Microwave Tubes[J]. IEEE Transactions on Electron Devices,2009,56(5):1141-1151.
    [29] Jian L,Dawoon C,Yunhyun C. Analysis of Rotor Eccentricity in SwitchedReluctance Motor with Parallel Winding Using Fem[J]. IEEE Transactions onMagnetics,2009,45(6):2851-2854.
    [30] Dlala E. Comparison of Models for Estimating Magnetic Core Losses inElectrical Machines Using the Finite-Element Method[J]. IEEE Transactionson Magnetics,2009,45(2):716-725.
    [31] Candeo A,Dughiero F. Numerical Fem Models for the Planning of MagneticInduction Hyperthermia Treatments with Nanoparticles[J]. IEEE Transactionson Magnetics,2009,45(3):1658-1661.
    [32]贾旭东,李庚银,赵成勇,等.电力系统仿真可信度评估方法的研究[J].中国电机工程学报,2010,30(19):51-57
    [33] Duffy A P,Woolfson M S,Benson T M. Use of Correlation Functions to Assistthe Experimental Validation of Numerical Modeling Techniques[J]. Microwaveand Optical Technology Letters,1994,7(8):361-364.
    [34] Williams A J M,Woolfson M S,Benson T M,et al. Quantitative Validation ofNumerical Technique Results against Experimental Data[C]. Proceedings of10th International Conference on Antennas and Propagation,U.K.:IET,1997:532-535.
    [35] Duffy A P,Williams A J M,Benson T M,et al. Quantitative Assessment ofExperimental Repeatability[J]. IEE Proceedings-Science Measurement andTechnology,1998,145(4):177-180.
    [36] Ruddle A,Ward D,Williams A,et al. Objective Validation of AutomotiveEMC Models[C].1998IEEE International Symposium on ElectromagneticCompatibility,Denver,U. S.,1998:475-479.
    [37] Williams A J M,Duffy A P,Woolfson M S,et al. A Powerful New Techniquefor the Quantitative Validation of Modeled and Experimental Data[J].Microwave and Optical Technology Letters,1998,17(5):284-287.
    [38]李鹏波.仿真可信性及其在导弹系统一体化研究中的应用[D].长沙:国防科技大学博士学位论文,1999:1-11.
    [39] Balci O,Saadi S D. Proposed Standard Processes for Certification of Modelingand Simulation Applications[C]. Proceedings of the2002Winter SimulationConference,2002:1621-1637.
    [40] Balci O. Verification, Validation, and Certification of Modeling and SimulationApplications[C]. Proceedings of the2003Winter Simulation Conference,2003:150-158.
    [41] Balci O. Quality Assessment, Verification, and Validation of Modeling andSimulation Applications[C]. Proceedings of the2004Winter SimulationConference,2004:129.
    [42] Sargent R G,Nance R E,Overstreet C M,et al. The Simulation ProjectLife-Cycle: Models and Realities[C]. Proceedings of the2006WinterSimulation Conference,2006:863-871.
    [43] Sargent R G. Verification and Validation of Simulation Models[C]. Proceedingsof the2008Winter Simulation Conference,2008:157-169.
    [44] Sargent R G. Verification and Validation of Simulation Models[C]. Proceedingsof the2009Winter Simulation Conference,2009:162-176.
    [45] Thomas D,Joiner A,Wei L,et al. The Unique Aspects of SimulationVerification and Validation[C]. IEEE Aerospace Conference,Montana,U. S.,2010:1-7.
    [46] Sargent R G. Some Subjective Validation Methods Using Graphical Displays ofData[C]. Proceedings of the1996Winter Simulation Conference,1996:345-351.
    [47] Duffy A,Orlandi A. A Review of Statistical Methods for Comparing Two DataSets[J]. Applied Computational Electromagnetics Society Journal,2008,23(1):90-97.
    [48] Sargent R G. Verification and Validation of Simulation Models[C]. Proceedingsof the2010Winter Simulation Conference,2010:166-183.
    [49]曹维,翁斌伟,陈陈.电力系统暂态变量的prony分析[J].电工技术学报,2000,15(06):56-60.
    [50]贺仁睦.电力系统动态仿真准确度的探究[J].电网技术,2000,24(12):1-4.
    [51]马进,贺仁睦.电力系统动态仿真的灵敏度分析[J].电力系统自动化,2005,29(17):20-27.
    [52]高松,贺仁睦,马进,等.电力系统动态仿真误差评定准则研究[J].电力系统自动化,2006,30(4):6-10.
    [53]周成,贺仁睦,王吉利,等.电力系统元件模型仿真准确度评估[J].电网技术,2009,33(14):12-16.
    [54]周成,贺仁睦.应用界标分界法的电力系统动态仿真准确度评估[J].中国电机工程学报,2010,30(7):42-47.
    [55]周成,贺仁睦.电力系统仿真模型有效性的动态评估[J].电网技术,2010,34(3):61-64.
    [56] Kosterev D N,Taylor C W,Mittelstadt W A. Model Validation for the August10,1996WSCC System Outage[J]. IEEE Transactions on Power Systems,1999,14(3):967-979.
    [57] Han D,He R,Ma J. Power System Dynamic Simulation Validation Based onSimilarity Theory and Analytical Hierarchy Process[C]. InternationalConference on Power System Technology,Chongqing,China,2006,2006:1-7.
    [58] Drozd A L. Progress on the Development of Standards and RecommendedPractices for CEM Computer Modeling and Code Validation[C].2003IEEESymposium on Electromagnetic Compatibility,Istanbul,Turkey,2003:313-316.
    [59] Drozd A L,Archambeault B. Recent Developments in the Formation ofStandards and Recommended Practices for Validating ComputationalElectromagnetics Models and Numerical Codes[C].2004InternationalSymposium on Electromagnetic Compatibility,Santa Clara,Canada,2004:687-690.
    [60] Coleby D E,Duffy A P. A Visual Interpretation Rating Scale for Validation ofNumerical Models[J]. Compel-the International Journal for Computation andMathematics in Electrical and Electronic Engineering,2005,24(4):1078-1092.
    [61] Martin A J M,Ruddle A R,Duffy A P,et al. Comparison of Measured andComputed Local Electric Field Distributions Due to Vehicle-MountedAntennas Using2D Feature Selective Validation[C]. IEEE InternationalSymposium on Electromagnetic Compatibility,Chicago,U. S.,2005:290-295.
    [62] Duffy A,Orlandi A. The Influence of Data Density on the Consistency ofPerformance of the Feature Selective Validation (FSV) Technique[J]. AppliedComputational Electromagnetics Society Journal,2006,21(2):164-172.
    [63] Orlandi A,Antonini G,Ritota C,et al. Enhancing Feature Selective Validation(FSV) Interpretation of EMC/SI Results with Grade-Spread[C]. IEEEInternational Symposium on Electromagnetic Compatibility,Portland,2006:362-367.
    [64] Archambeault B,Yu Z. Application of the Feature Selective Validation Methodto Radio Path Loss Measurements[C]. IEEE International Symposium onElectromagnetic Compatibility,Austin,U. S.,2009:259-263.
    [65] Hiltz L G. Characterization Study of the Feature Selective Validation (FSV)Technique on Simple and Complex Waveforms[C].2009IEEE InternationalSymposium on Electromagnetic Compatibility,Austin,U. S.,2009:268-273.
    [66] Pan S,Wang H,Fan J. Comparison among Different Via Models Based onFeature Selective Validation Technique[C]. IEEE International Symposium onElectromagnetic Compatibility,Austin,U. S.,2009:264-267.
    [67] Jauregui R,Riu P J,Silva F. Transient FDTD Simulation Validation[C].2010IEEE International Symposium on Electromagnetic Compatibility,FortLauderdale,U. S.,2010:257-262.
    [68] Knockaert J,Pissoort D,Vanhee F. Comparing EMC-Signatures by FSV as aQuality Assessment Tool[C]. Progress in Electromagnetics ResearchSymposium,Marrakesh,Morocco,2011:1099-1103.
    [69] Knockaert J,Ramdani M,Malki M E A,et al. EMC-Signatures ofMicrocontrollers under Thermal Stress Analyzed by FSV[C].8th InternationalWorkshop on Electromagnetic Compatibility of Integrated Circuits,Dubrovnik,Croatia,2011:148-152.
    [70] Drozd A L,Archambeault B,Duffy A,et al. Development of Next GenerationFSV Tools and Standards[C]. IEEE International Symposium onElectromagnetic Compatibility,Pittsburgh,U. S.,2012:674-678.
    [71] Johnson M R. FSV Versus Human Subjective Data Evaluation; an InformalSurvey[C]. IEEE International Symposium on Electromagnetic Compatibility,Pittsburgh,U. S.,2012:679-684.
    [72] Johnson M R,Coffey E L. Using FSV with Far-Field Patterns[C]. IEEEInternational Symposium on Electromagnetic Compatibility,Pittsburgh,U. S.,2012:696-701.
    [73] Zhang J,Zhang J,Lim J,et al. Using FSV in High-Speed ChannelCharacterization and Correlation[C].2012IEEE International Symposium onElectromagnetic Compatibility,Pittsburgh,U. S.,2012:690-695.
    [74] Zhang G,Duffy A,Sasse H,et al. Improvement in Definition of ODM forFSV[J]. IEEE Transactions on Electromagnetic Compatibility,2013,55(4):773-779.
    [75] Laramore G E. Elastic and Inelastic Low-Energy Electron Diffraction (LEED)from Solids[J]. Journal of Vacuum Science and Technology,1972,9(2):625-633.
    [76] Fedak D G,Fischer T E,Robertson W D. Surface Structure Analysis byOptical Simulation of LEED Patterns[J]. Journal of Applied Physics,1968,39(12):5658-5668.
    [77] Zanazzi E,Jona F. A Reliability Factor for Surface Structure Determinations byLow-Energy Electron Diffraction[J]. Surface Science,1977,62(1):61-80.
    [78] Van Hove M,Tong S,Elconin M. Surface Structure Refinements of2H-Mos2,2H-Nbse2and W(100)p(2×1)-O Via New Reliability Factors for SurfaceCrystallography[J]. Surface Science,1977,64(1):85-95.
    [79] Duffy A,Orlandi A,Sasse H. Offset Difference Measure Enhancement for theFeature-Selective Validation Method[J]. IEEE Transactions onElectromagnetic Compatibility,2008,50(3):413-415.
    [80] Jauregui R,Zhang G,Rojas-Mora J,et al. Analyzing Transient Phenomena inthe Time Domain Using the Feature Selective Validation (FSV) Method[J].2013,to be published.
    [81] Bhobe A,Sochoux P. Comparison of Measured and Computed near and FarFields of a Heatsink Using the Feature Selective Validation (FSV) Method[C].IEEE International Symposium on Electromagnetic Compatibility,FortLauderdale,U. S.,2010:732-736.
    [82] De Paulis F,Raimondo L,Orlandi A. Impact of Shorting Vias Placement onEmbedded Planar Electromagnetic Bandgap Structures within MultilayerPrinted Circuit Boards[J]. IEEE Transactions on Microwave Theory andTechniques,2010,58(7):1867-1876.
    [83] Pan S,Wang H,Fan J. Applying Feature Selective Validation (FSV) as anObjective Function for Data Optimization[C].2010IEEE InternationalSymposium on Electromagnetic Compatibility,Fort Lauderdale,U. S.,2010:718-21.
    [84] Archambeault B,Diepenbrock J. Quantifying the Quality of Agreementbetween Simulation and Validation Data for Multiple Data Sets[C]. IEEEInternational Symposium on Electromagnetic Compatibility,Fort Lauderdale,U. S.,2010:722-725.
    [85] Jauregui R,Aragon M,Silva F. The Role of Uncertainty in the FeatureSelective Validation (FSV) Method[J]. IEEE Transactions on ElectromagneticCompatibility,2013,55(1):217-20.
    [86]张宇,刘雨东,计钊.向量相似度测度方法[J].声学技术,2009,28(4):532-536.
    [87]傅惠民.仿真结果统计检验方法[J].机械强度,2005,27(5):598-603.
    [88]史永刚,王国民,李华峰,等.激光拉曼光谱相似性测度方法[J].现代科学仪器,2011,4(4):117-120.
    [89]傅惠民,林逢春,陈建伟.动态仿真结果相关性检验和分析方法[J].机械强度,2007,29(4):584-588.
    [90]田润涛,谢培山.色谱指纹图谱相似度评价方法的规范化研究(一)[J].中药新药与临床药理,2006,17(1):40-42.
    [91]胡兹莆.用可靠性因子R确定表面结构[J].中国科学技术大学学报,1990,20(2):203-207.
    [92]马立平.统计数据标准化——无量纲化方法[J].北京统计,2000,(3):34-35.
    [93] Edmundson H P. The Goodness-of-Fit Statistics of Kolmogorov andSmirnov[M]. United States:John Wiley&Sons,1958:1-30.
    [94] Massey Jr F J. The Kolmogorov-Smirnov Test for Goodness of Fit[J]. Journalof the American statistical Association,1951,46(253):68-78.
    [95] Conover W J. Practical Nonparametric Statistics[M]. U. S.:John Wiley&Sons,1998:1-100.
    [96] Smimov N Y. Tables for Estimating the Goodness of Fit of EmpiricalDistributions[J]. Annals of Mathematical Statistics,1948,19:279-281.
    [97] Archambeault B,Connor S,Duffy A,et al. Comparing FSV and HumanResponses to Data Comparisons[C]. IEEE International Symposium onElectromagnetic Compatibility,Chicago,U. S.,2005:284-289.
    [98] Jauregui R,Pous M,Fernandez M,et al. Transient Perturbation Analysis inDigital Radio[C]. IEEE International Symposium on ElectromagneticCompatibility,Fort Lauderdale,U. S.,2010:263-268.
    [99]冯文江,李俊建,王品.基于粒子群算法的认知无线电参数优化及敏感度分析[J].计算机科学,2011,38(10):87-90.
    [100]Simonoff J S. Smoothing Methods in Statistics[M]. New York:SpringerVerlag,1996:149-176.
    [101]Devore J,Peck R. Statistics:The Exploration and Analysis of Data[M].California:Duxbury Press,1993:1-60.
    [102]Cooper R A,Weekes A J. Data, Models and Statistical Analysis[M]. Oxford:Philip Allan,1983:48-51.
    [103]Martin A J M,Duffy A P. A Compensation Technique to Aid the Comparison ofExperimental and Modeled Data[C]. IEEE International Symposium onElectromagnetic Compatibility,Minneapolis,U. S.,2002:475-480.
    [104]谢季坚,刘承平.模糊数学方法及其应用[M].华中科技大学出版社,2000:143-170.
    [105]Saaty T L. How to Make a Decision: The Analytic Hierarchy Process[J].European Journal of Operational Research,1990,48(1):9-26.
    [106]Saaty T,Vargas L L G. Models, Methods, Concepts, and Applications of theAnalytic Hierarchy Process[M]. New York:Springer,2001:1-100.
    [107]杨惠珍,康凤举,李俊.层次分析法在水下航行器系统仿真可信性评估中的应用研究[J].系统仿真学报,2002,14(10):1299-1301.
    [108]许树柏.实用决策方法:层次分析法原理[M].天津大学出版社,1988:1-16.
    [109]Paul C R. Analysis of Multiconductor Transmission Lines[M]. New York:Johnwilly&Sons,1994:128-140.
    [110] F. M. Tesche M V I, T. Karlsson. EMC Analysis Methods and ComputationalMethods[M]. New York:John willy&Sons,1997:130-165.
    [111] Andrieu G,Kone L,Bocquet F,et al. Multiconductor Reduction Technique forModeling Common-mode Currents on Cable Bundles at High Frequency forAutomotive Applications[J]. IEEE Transactions on ElectromagneticCompatibility,2008,50(1):175-184.
    [112] Xiaopeng D,Haixiao W,Beetner D G,et al. Approximation of Worst CaseCrosstalk at High Frequencies[J]. IEEE Transactions on ElectromagneticCompatibility,2011,53(1):202-208.
    [113] Andrieu G,Kone L,Bocquet F,et al. Experimental Validations of the"Equivalent Cable Bundle Method"[C].18th International Zurich Symposiumon Electromagnetic Compatibility,Munich,Germany,2007:163-166.
    [114] Andrieu G,Bertuol S,Bunlon X,et al. Discussions About AutomotiveApplication of the "Equivalent Cable Bundle Method" in the High FrequencyDomain[C].20th International Zurich Symposium on ElectromagneticCompatibility,Zurich,Switzerland,2009:165-168.
    [115] Andrieu G,Reineix A,Bunlon X,et al. Extension of the "Equivalent CableBundle Method" for Modeling Electromagnetic Emissions of Complex CableBundles[J]. IEEE Transactions on Electromagnetic Compatibility,2009,51(1):108-118.
    [116] Harrington R F. Field Computation by Moment Methods[M]. New York:Macmillan,1968:1-15.
    [117] Weiland M C T. Discrete Electromagnetism with the Finite IntegrationTechnique[J]. Progress In Electromagnetics Research,2001,32:65-87.
    [118]葛德彪,闫玉波.电磁波时域有限差分方法[M].西安电子科技大学出版社,2005:117-132.
    [119]齐磊,卢铁兵,崔翔.基于时域有限差分法的非均匀多导体传输线瞬态分析[J].中国电机工程学报,2003,23(7):102-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700