用户名: 密码: 验证码:
气体分子在ABO_3型氧化物表面吸附的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)以其所具有的转换效率高、燃料选择灵活和污染排放少等优点获得了越来越多的关注。目前,提高SOFC阴极的催化活性以适应更低的工作温度和寻找具有抗碳沉积和硫中毒的新型阳极材料都是该技术走向实用化需要解决的问题,钙钛矿型的稀土-过渡族复合氧化物是解决这两个问题的首选材料。稀土元素的替代、碱土元素的掺杂和引入贵金属催化剂都是优选和改善阴极和阳极材料性能的几种主要的实验研究手段,在这方面已经有大量实验结果的报道。但是,目前关于不同材料之间所存在的性能差异现象的起因,贵金属催化剂在阴极氧还原过程中的作用,以及LaCrO3基氧化物比Ni基阳极更耐硫毒化的现象等方面还缺乏足够详实的微观机制分析。事实上,对于电极反应机制、不同表面位置的催化活性以及它们对表面结构和缺陷的依赖性等方面的信息目前仍难以完全通过实验测量直接获得,这方面实验观测的缺失需要借助第一性原理计算加以弥补。第一性原理计算模拟能够提供电子结构、几何参数、相关能量和中间吸附物等多种信息,是一种有助于阐明电极反应机制的研究方法。本论文研究了气体分子在ABO3型氧化物表面的吸附机制,验证了贵金属的引入促进了O2分子解离吸附的实验结论,阐明了LaCrO3基阳极材料比传统的Ni基阳极具有更好抗硫性的原因。
     基于密度泛函理论的第一性原理计算了体相LaMnO3的电子结构以及以6层薄片(Slab)周期结构为模型,重点研究了Ag原子与LaMnO3(001)表面相互作用的电子性质,同时对O2分子在Ag预吸附和纯净的LaMnO3(001)表面的吸附情况进行对比分析,进一步揭示O2-LaMnO3吸附体系相互作用机理。
     研究贵金属原子(Ag、Pt、Pd)在La1xSrxMnO3(001)表面的吸附性能及O2分子在La1xSrxMnO3(001)表面的吸附和解离机制。研究贵金属原子吸附对O2分子在La1xSrxMnO3(001)表面吸附的催化作用,进而探讨贵金属原子和O2分子间相互作用机理;研究结果表明贵金属原子预吸附表面后,使O2分子的吸附能由0.495eV提高到0.591~1.118eV,键长和键布局的结果表明贵金属原子的预吸附促进O2分子的解离,从理论上验证了贵金属的负载促进了O2分子解离吸附的实验结论。
     基于密度泛函理论的GGA+U方法对PrMnO3(001)面的表面性能及氧在表面的吸附性质进行了探讨,结果表明PrO-终端面的表面褶皱大于MnO2-终端面,说明PrO-终端面比MnO2-终端面更粗糙;两个终端面第一层和第二层的距离都是收缩的;相反,对于两个终端面的第二层和第三层的距离都是膨胀的。在PrMnO3(001)的MnO2-终端和PrO-终端两个面的氧空位形成能分别为2.764eV和3.624eV,这表明在MnO2-终端面更容易产生氧空位。体相PrMnO3的氧空位形成能为3.226eV,Sr掺杂体相PrMnO3后,氧空位形成能减小到0.333eV。
     采用密度泛函理论研究了H2S、SH和S在钙钛矿氧化物LaCrO3(001)表面的吸附机制。H2S分子更容易吸附在LaO-终端面的O位,H2S在表面吸附后,电子由衬底向吸附物转移,同时H2S分子内部电荷重新分布。SH和S更容易吸附在Cr位,键布局和态密度的结果表明吸附原子和表面Cr原子形成杂化;预测了硫基物在LaCrO3(001)表面的吸附能的顺序为H2S<SH<S。从吸附能的角度,分析了LaCrO3相比于传统的Ni-YSZ阳极材料表现出更好的抗硫性的原因。
Solid oxide fuel cell (SOFC) as power generator has attracted considerable attention due to their high energy conversion efficiency, excellent fuel flexibility and low level of pollutant emission. At present, increasing the SOFC cathode catalytic activity at lower temperature and looking for new anode materials with resistance to carbon deposition and sulfur poisoning are needed to solve the problem for the practical technology. Rare earth-transition metal composite perovskites oxide is the preferred material to solve the problems. Rare earth element replacement, alkaline element doping and noble metal catalysis loading are main experimental means for optimization and improvement of cathode and anode material performance. A large number of experimental results have been reported. However, detailed microscopic mechanism analysis is still lack about the cause of the performance difference of different material, the role of noble metal catalysis for oxygen reduction reaction in cathode, and LaCrO3oxide is more resistant to sulfur poisoning phenomenon than Ni-based anode. In fact, the reaction mechanism of electrode, catalytic activity of different surface positions and their reliance on surface structure and defect, which are difficult to be directly obtained by experimental measurement. The first-principles calculation can make up for the loss. The first-principle calculation has proved to be a powerful tool to elucidate reaction mechanism as the technique can provide electronic structure, geometrical parameters, related energy and adsorbed intermediate species. The adsorption mechanisms of gas molecules on ABO3-type oxide surface are studied in paper. The experimental conclusion which noble metal loading promoted the O2molecule dissociation adsorption is verified. We have clarified the reason which LaCrO3based anode material is more sulfur-tolerant than traditional Ni-based anode.
     Bulk LaMnO3electronic structure has been investigated using first-principles calculation based on the density functional theory. We calculate electronic properties of interaction between Ag atom and LaMnO3(001) surface with6layer slab model. The comparative analysis of O2molecule adsorption properties on pure LaMnO3(001) surface and Ag loaded surface is implemented. We reveal the interaction mechanism of the O2-LaMnO3adsorption system.
     The adsorption properties of noble metal atoms (Ag、Pt、Pd) on La1xSrxMnO3(001) and the mechanisms of O2molecule adsorption and dissocation on La1xSrxMnO3(001) surface have been investigated. We further analysis noble metal catalytic role for O2molecule adsorption and the interaction mechanisms between O2molecule and noble metal atoms. Results indicate that the adsorption energies of O2molecule increase from0.495eV to0.591~1.118eV due to pre-adsorbed noble metal atoms. Bond length and bond population show the pre-adsorbed noble metal atoms facilitate O2molecule dissociate to O atoms. We theoretically verified the experiment conclusion that the loaded noble metals promoted the O2molecule dissociative adsorption.
     We have investigated surface properties of the PrMnO3(001) and oxygen adsorption on surface using density functional theory with the generalized gradient approximation (GGA+U) method. The surface rumpling of the PrO-terminated surface is much larger than that of the MnO2-terminated surface and PrO-terminated surface is rough than MnO2-terminated surface. Both the PrO-and MnO2-terminated surfaces display reduction of interlayer distance of the first layer and the second layer, expansion of the second layer and the third layer. The formation energies of oxygen vacancy on MnO2-terminated surface and PrO-terminated surface are2.764eV and3.624eV, respectively. This implies that the oxygen vacancy occurs more readily at the MnO2-terminated surface as compared with the PrO-terminated surface. The formation energy of oxygen vacancy in bulk PrMnO3is3.226eV. The oxygen vacancy formation energy of bulk PrMnO3decreases from3.226eV to0.333eV due to the doped Sr.
     Density functional theory calculations are employed to investigate the adsorption of H2S、SH and S on the (001) surface of LaCrO3. H2S molecule adsorption is found to be stable with H2S binding preferentially at O site on the LaO-terminated surface. The adsorption of H2S molecule leads to the electrons transferring from the substrate to the molecule and the charges rearrangement within the molecule. SH and S are found to be preferentially adsorbed at the Cr site. Both bond population and PDOS analysis show that there is hybridization between adatoms and surface Cr atoms. We predict the adsorption energies of sulfur-containing species increase following the sequence H2S
引文
[1]Chroneos A, Yildiz B, Taranc A, Parfitt D, Kilner J A. Oxygen Diffusion in SolidOxide Fuel Cell Cathode and Electrolyte Materials: Mechanistic Insights FromAtomistic Simulations[J]. Energy&Environmental Science,2011,4(8):2774-2789.
    [2]黄守国,夏长荣,孟广耀.中温固体氧化物燃料电池Ag-BSB阴极材料制备及性能表征[J].功能材料,2005,36(1):74-76.
    [3]雷永泉,石群,石永康.新能源材料[M].天津:天津大学出版社,2005:13-15.
    [4]Singha S C, Kendall K.高温固体氧化物燃料电池—原理、设计和应用[M].韩敏芳,蒋先锋,译.北京:科学出版社,2004:311-313.
    [5]毛宗强.燃料电池[M].北京:化学工业出版社,2005:19.
    [6]Fleig J. Solid Oxide Fuel Cell Cathodes: Polarization Mechanisms and Modeling ofthe Electrochemical Performance[J]. Annual Review of Materials Research,2003,33:361-382.
    [7]Minh N Q. Ceramic Fuel Cells[J]. Journal of the American Ceramic Society,1993,76(3):563-588.
    [8]Shannon, R D. Revised Effective Ionic Radii and Systematic Studies of InteratomicDistances in Halides and Chalcogenides[J]. Acta Crystallographica Section A,1976,A32:751-767.
    [9]Balaguer M, Vert V B, Navarrete L, Serra J M. SOFC Composite Cathodes Based onLSM and Co-doped Cerias(Ce0.8Gd0.1X0.1O2-δ,X=Gd, Cr, Mg, Bi, Ce)[J]. Journal ofPower Sources,2013,223:214-220.
    [10]Han J W, Yildiz B. Enhanced One Dimensional Mobility of Oxygen on StrainedLaCoO3(001) Surface[J]. Journal of Materials Chemistry,2011,21:18983-18990.
    [11]Han J W, Jalili H, Kurua Y, Cai Z, Yildiz B. Strain Effects on the Surface Chemistryof La0.7Sr0.3MnO3[J]. Journal of the Electrochemical Society,2011,35(1):2097-2104.
    [12]Singhal S C. Advances in Solid Oxide Fuel Cell Technology[J].Solid State Ionics,2000,135(1-4):305-313.
    [13]Chen K F, Lv Z, Chen X J, Ai N, Huang X Q, Du X B, Su W H. Development ofLSM-based Cathodes for Solid Oxide Fuel Cells Based on YSZ Films[J]. Journal ofPower Sources,2007,172(2):742-748.
    [14]Maguire E, Gharbage B, Marques F M B, Labrincha J A. Cathode Materials forIntermediate Temperature SOFCs[J]. Solid State Ionics,2000,127(3-4):329-335.
    [15]Ishihara T, Kudo T, Matsuda H, Takita Y. Doped PrMnO3Perovskite Oxide as a NewCathode of Solid Oxide Fuel Cells For Low Temperature Operation[J].Journal of theElectrochemical Society,1995,142(5):1519-1524.
    [16]Kojima I, Adachi H, Yasumori I. Electronic Structures of the LaBO3(B=Co, Fe, Al)Perovskite Oxides Related to Their Catalysis[J]. Surface Science,1983,130(1):50-62.
    [17]Primdahl S, Hansen J R, Grahl-Madsen L, Larsen P H. Sr-Doped LaCrO3Anode forSolid Oxide Fuel Cells[J]. Journal of the Electrochemical Society,2001,148(1):A74-A81.
    [18]Yi F, Li H, Chen H, Zhao R, Jiang X. Preparation and Characterization of La and Crco-doped SrTiO3Materials for SOFC Anode[J]. Ceramics International,2013,39(1):347-352.
    [19]Tanasescu S, Berger D, Neiner D, Totir N D. Thermodynamic Characterisation ofSome Doped Lanthanum Chromites used as Interconnects in SOFC[J]. Solid StateIonics,2003,157(1-4):365-370.
    [20]Sakai N, Yamaji K, Horita T, Yokokawa H, Kawada T, Dokiya M. OxygenTransport Properties of La1-xCaxCrO3-δ as an Interconnect Material of a Solid OxideFuel Cell[J]. Journal of the Electrochemical Society,2000,147(9):3178-3182.
    [21]Mori M, Hiei Y. Thermal Expansion Behavior of Titanium-Doped La(Sr)CrO3SolidOxide Fuel Cell Interconnects[J]. Journal of the American Ceramic Society,2001,84(11):2573-2578.
    [22]Williford R E, Singh P, Engineered Cathodes for High PerformanceSOFCs[J]. Journal of Power Sources,2004,128(1):45-53.
    [23]Zhu B, Liu X R, Sun M T, Ji S J, Sun J C. Calcium Doped Ceria-Based Materials forCost-Effective Intermediate Temperature Solid Oxide Fuel Cells[J]. Solid StateScience,2003,5(8):1127-1134.
    [24]Xia C R, Liu M L. Novel Cathodes for Low-Temperature Solid Oxide Fuel Cells[J].Advanced Materials,2002,14(7):521-523.
    [25]Yamaura H, Ikuta T, Yahiro H, Okada G. Cathodic Polarization of Strontium-DopedLanthanum Ferrite In Proton-Conducting Solid Oxide Fuel Cell[J]. Solid State Ionics,2005,176(3-4):269-274.
    [26]Doshi R, Richards Von L, Carter J D, Wang X P, Krumpelt M. Development ofSolid-Oxide Fuel Cells that Operate at500oC[J]. Journal of Electrochemistry Society,1999,146(4):1273-1278.
    [27]Gong M Y, Liu X B, Trembly J, Johnson C. Sulfur-tolerant Anode Materials for SolidOxide Fuel Cell Application[J]. Journal of Power Sources,2007,168(2):289-298.
    [28]Chen K, Tian Y, Lü Z, Ai N, Huang X, Su W. Behavior of3mol%Yttria-StabilizedTetragonal Zirconia Polycrystal Film Prepared by Slurry Spin Coating[J]. Journal ofPower Sources,2009,186(1):128-132.
    [29]Chen K, Ai N, Jiang S P. Enhanced Electrochemical Performance and Stability of(La,Sr)MnO3-(Gd,Ce)O2Oxygen Electrodes of Solid Oxide Electrolysis Cells byPalladium Infiltration[J]. International Journal of Hydrogen Energy,2012,37(2):1301-1310.
    [30]李艳,吕喆,黄喜强,贾莉,苗继鹏,苏文辉,掺银的Sm0.5Sr0.5CoO3中温固体氧化物燃料电池复合阴极材料的制备与性能研究[J].中国稀土学报,2004,22(5):660-664.
    [31]Uhlenbruck S, Tietz F, Haanappel V, Sebold D. Silver Incorporation Into Cathodesfor Solid Oxide Fuel Cells Operating at Intermediate Temperature[J]. Journal of SolidState Electrochemistry,2004,8(11):923-927.
    [32]Wang W, Zhang H, Lin G, Xiong Z. Study of Ag/La0.6Sr0.4MnO3Catalysts forComplete Oxidation of Methanol and Ethanol at Low Concentrations[J]. AppliedCatalysis B: Enviromental,2000,24(3-4):219-232.
    [33]Huang T J, Shen X D, Chou C L. Characterization of Cu, Ag and Pt AddedLa0.6Sr0.4Co0.2Fe0.8O3-δ and Gadolinia-doped Ceria as Solid Oxide Fuel CellElectrodes by Temperature-programmed Techniques[J]. Journal of Power Sources,2009,187(2):348-355.
    [34]Zhou W, Shao Z, Liang F, Chen Z G, Zhu Z, Jin W, Xu N. A New Cathode for SolidOxide Fuel Cells Capable of in Situ Electrochemical Regeneration[J]. Journal ofMaterials Chemistry,2011,21:15343-15351.
    [35]Liang F L, Chen J, Chi B, Pu J, Jiang S P, Li J. Redox Behavior of Supported PdParticles and Its Effect On Oxygen Reduction Reaction in Intermediate TemperatureSolid Oxide Fuel Cells[J]. Journal of Power Sources,2011,196(1):153-158.
    [36]Uchida H, Arisaka S, Watanabe M. High Performance Electrodes forMedium-Temperature Solid Oxide Fuel Cells: Activation of La(Sr)CoO3Cathodewith Highly Dispersed Pt Metal Electrocatalysts[J]. Solid State Ionics,2000,135(1-4):347-351.
    [37]Watanabe M, Uchida H, Shibata M, Mochizuki N, Amikura K. High PerformanceCatalyzed-Reaction Layer for Medium Temperature Operating Solid Oxide FuelCells[J]. Journal of the Electrochemistry Society,1994,141(2):342-346.
    [38]明彩兵,叶代启,刘艳丽,杨力.钙钛矿LaMnO3负载贵金属在催化氧化碳烟中的作用[J].环境科学,2008,29(3):576-582.
    [39]Haanappel V A C, Rutenbeck D, Mai A, Uhlenbruck S, Sebold D, Wesemeyer H,Rowekamp B, Tropartz C, Tietz F. The Influence of Noble-Metal-ContainingCathods on the Electrochemical Performance of Anode-supported SOFCs[J]. Journalof Power Sources,2004,130(1-2):119-128.
    [40]Choi Y M, Mebane D S, Lin M C, Liu M L. Oxygen Reduction on LaMnO3-BasedCathode Materials in Solid Oxide Fuel Cells[J]. Chemistry of Materials,2007,19(7):1690-1699.
    [41]Choi Y M, Lin M C, Liu M. Computational Study on the Catalytic Mechanism ofOxygen Reduction on La0.5Sr0.5MnO3in Solid Oxide Fuel Cells[J]. AngewandteChemie,2007,119(38):7352-7357.
    [42]Mastrikov Y A, Heifets E, Kotomin E A, Maier J. Atomic, Electronic andThermodynamic Properties of Cubic and Orthorhombic LaMnO3surfaces[J]. SurfaceScience,2009,603(2):326-335.
    [43]Piskunov S, Jacob T, Spohr E. Oxygen Adsorption at La1xSrxMnO3(001) Surfaces:Predictions From First Principles[J]. Physical Review B,2011,83(7):073402.
    [44]Mastrikov Y A, Merkle R, Heifets E, Kotomin E A, Maier J, Pathways for OxygenIncorporation in Mixed Conducting Perovskites: A DFT-Based Mechanistic Analysisfor (La, Sr)MnO3-δ[J]. The Journal of Physical Chemistry C,2010,114(7):3017-3027.
    [45]滕波涛,蒋仕宇,赵雷洪,罗孟飞.铈基催化剂的密度泛函理论研究进展[J].中国稀土学报,2010,28(2):129-140.
    [46]路战胜,罗改霞,杨宗献. Pd与CeO2(111)面的相互作用的第一性原理研究[J].物理学报,2007,56(9):5382-5388.
    [47]Yang Z X, Lu Z S, Luo G X, Hermansson K, Oxygen Vacancy Formation Energy atthe Pd/CeO2(111) Interface[J]. Physics Letter A,2007,369(1-2):132-139.
    [48]Tang Y, Zhang H, Cui L, Ouyang C, Shi S, Tang W, Li H, Chen L. Electronic Statesof Metal (Cu, Ag, Au) Atom on CeO2(111) Surface: The Role of Local StructuralDistortion[J]. Journal of Power Sources,2012,197(1):28-37.
    [49]Wang J H, Liu M, Lin M C. Oxygen Reduction Reactions in the SOFC Cathode ofAg/CeO2[J]. Solid State Ionics,2006,177(9-10):939-947.
    [50]Primdahl S, Hansen J R, Grahl-Madsen L, Larsen P H. Sr-Doped LaCrO3Anode forSolid Oxide Fuel Cells[J]. Journal of the Electrochemical Society,2001,148(1):A74-A81.
    [51]Munkundan R, Brosha E L, Garzon F H. Sulfur Tolerant Anodes for SOFCs[J].Electrochemistry Solid-State Letter,2004,7(1): A5-A7.
    [52]Vernoux P, Guindet J, Kleitz M. Gradual Internal Methane Reforming inIntermediate-Temperature Solid Oxide Fuel Cells[J]. Journal of the ElectrochemicalSociety,1998,145(10):3487-3492.
    [53]Sfeir J, Vanherle J, Mcevoy A. Stability of Calcium Substituted LanthanumChromites Used as SOFC Anodes for Methane Oxidation[J]. Journal of the EuropeanCeramic Society,1999,19(6-7):897-902.
    [54]Sfeir J. LaCrO3-based Anodes: Stability Considerations[J]. Journal of Power Sources,2003,118(1-2):276-285.
    [55]Tao S, Irvine J T S. Synthesis and Characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3-δ aRedox-Stable Efficient Perovskite Anode for SOFCs[J]. Journal of theElectrochemical Society,2004,151(2): A252-A259.
    [56]Zhu X B, Lü Z, Wei B, Chen K F, Liu M L, Huang X Q, Su W H. EnhancedPerformance of Solid Oxide Fuel Cells with Ni/CeO2ModifiedLa0.75Sr0.25Cr0.5Mn0.5O3-δ Anodes[J]. Journal of Power Sources,2009,190:326-330.
    [57]Zhu X B, Lü Z, Wei B, Chen K F, Liu M L, Huang X Q, Su W H. Fabrication andPerformance of Membrane Solid Oxide Fuel Cells with La0.75Sr0.25Cr0.5Mn0.5O3-δImpregnated Anodes[J]. Journal of Power Sources,2010,195:1793-1798.
    [58]Zhu X B, Lü Z, Wei B, Chen K F, Liu M L, Huang X Q, Su W H. A Comparison ofLa0.75Sr0.25Cr0.5Mn0.5O3-δ and Ni Impregnated Porous YSZ Anodes Fabricated in TwoDifferent Ways for SOFCs[J]. Electrochimica Acta,2010,55(12):3932-3938.
    [59]Zha S, Tsang P, Cheng Z, Liu M. Electrical Properties and Sulfur Tolerance ofLa0.75Sr0.25Cr1-xMnxO3under Anodic Conditions[J]. Journal of Solid State Chemistry.2005,178:1844-1850.
    [60]Alfonso D R, Cugini A V, Sorescu D C. Adsorption and Decomposition of H2S onPd(111) Surface: A First-Principles Study[J]. Catalysis Today,2005,99(3-4):315-322.
    [61]Alfonso D R. First-principles Studies of H2S Adsorption and Dissociation on MetalSurfaces[J]. Surface Science,2008,602(16):2758-2768.
    [62]Rodriguez J A, Chaturvedi S, Kuhn M, Ek J, Diebold U, Robbert P S, Geisler H. H2SAdsorption on Chromium, Chromia, and Gold/chromia Surfaces: PhotoemissionStudies[J]. The Journal of Chemical Physics,1997,107(21):9146-9156.
    [63]Rodriguez J A, Jirsak T, Chaturvedi S. Reaction of H2S with MgO(100) andCu/MgO(100) Surfaces: Band-Gap Size and Chemical Reactivity[J]. The Journal ofChemical Physics,1999,111(17):8077-8087.
    [64]Rodriguez J A, Jirsak T, Chaturvedi S, Hrbek J. The Interaction of H2S and S2withCs and Cs/ZnO Surfaces: Photoemission and Molecular-Orbital Studies[J]. SurfaceScience,1998,407(1-3):171-188.
    [65]Evarestov R A, Kotomin E A, Fuks D, Felsteiner J, Maier J. Ab Initio Calculationsof the LaMnO3Surface Properties[J]. Applied Surface Science,2004,238(1-4):457-463.
    [66]Dicks A L. Hydrogen Generation From Natural Gas for the Fuel Cell Systems ofTomorrow[J]. Journal of Power Sources,1996,61(1-2):113-124.
    [67]Koh J H, Yoo Y S, Park J W, Lim H C. Carbon Deposition and Cell Performance ofNi-YSZ Anode Support SOFC with Methane Fuel[J]. Solid State Ionics,2002,149(3-4):157-166.
    [68]Gong M, Liu X, Trembly J, Johnson C. Sulfur-Tolerant Anode Materials for SolidOxide Fuel Cell Application[J]. Journal of Power Sources,2007,168(2):289-298.
    [69]Munkundan R, Brosha E L, Garzon F H. Sulfur Tolerant Anodes for SOFCs[J].Electrochemical and Solid-State Letters,2004,7(1): A5-A7.
    [70]Koyama M, Kubo M, Miyamoto A. Large-Scale Calculations of Solid Oxide FuelCell Cermet Anode by Tight-binding Quantum Chemistry Method[J]. AppliedSurface Science,2005,244(1-4):598-602.
    [71]Simner S P, Anderson M D, Coleman J E, Stevenson J W. Performance of a Novel La(Sr) Fe (Co) O3-Ag SOFC Cathode[J]. Journal of Power Sources,2006,161(1):115-122.
    [72]Zhang J D, Ji Y, Gao H B, He T M, Liu J. Composite CathodeLa0.6Sr0.4Co0.2Fe0.8O3-Sm0.1Ce0.9O1.95-Ag for Intermediate-temperature Solid OxideFuel Cells[J]. Journal of Alloys and Compounds,2005,395:322-325.
    [73]Wang S, Kato T, Nagata S, Honda T, Kaneko T, Iwashita N, Dokiya M. Performanceof a La0.6Sr0.4Co0.8Fe0.2O3-Ce0.8Gd0.2O1.9-Ag Cathode for Ceria Electrolyte SOFCs[J].Solid State Ionics,2002,146(3-4):203-210.
    [74]Chen Y, Hua P, Lee M H, Wang H F. Au on (111) and (110) Surfaces of CeO2: ADensity-Functional Theory Study[J]. Surface Science,2008,602(10):1736-1741.
    [75]Bickel N, Schmidt G, Heinz K, Muller K. Ferroelectric Relaxation of the SrTiO3(110)Surface[J]. Physical Review Letters,1989,62(17):2009-2011.
    [76]Ibrahim K, Liu F, Qian H, Guo L, Xian D, Xiong G, Wu S. Valence Band Photo-emission Behavior of Pr1-xSrxMnO3[J]. Materials Science and Engineering B,2000,76(1):14-17.
    [77]Pal P, Dalai M K, Sekhar B R, Jha S N, Bhaskara Rao S V N, Das N C, Martin C,Studer F. Valence Band Electronic Structure of Pr1-xSrxMnO3from Photoemissionstudies[J]. Journal of Physics: Condensed Matter,2005,17(19):2993-2999.
    [78]贠江妮.钙钛矿型氧化物半导化掺杂与表面吸附光电特性的理论研究[D],西安:西北大学光学学科博士学位论文,2010:9.
    [79]Mastrikov Y A, Kuklja M M, Kotomin E A, Maier J. First-Principles Modelling ofComplex Perovskite (Ba1-xSrx)(Co1-yFey)O3-δ for Solid Oxide Fuel Cell and GasSeparation Membrane Applications[J]. Energy&Environmental Science,2010,3(10):1544-1550.
    [80]Gangopadhayay S, Inerbaev T, Masunov A E, Altilio D, Orlovskay N. StructuralCharacterization Combined with the First Principles Simulations ofBarium/Strontium Cobaltite/Ferrite as Promising Material for Solid Oxide Fuel CellsCathodes and High-Temperature Oxygen Permeation Membranes[J]. AppliedMaterials&Interfaces,2009,1(7):1512-1519.
    [81]Ganopadhyay S, Masunov A E, Inerbaev T, Mesit J, Guha R K, Sleiti A K, Kapat J S.Understanding Oxygen Vacancy Migration and Clustering in Barium StrontiumCobalt Iron Oxide[J]. Solid State Ionics,2010,181(23-24):1067-1073.
    [82]Kotomin E A, Mastrikov Y A, Kuklja M M, Merkle R, Roytburd A, Maier J. FirstPrinciples Calculations of Oxygen Vacancy Formation and Migration in MixedConducting Ba0.5Sr0.5Co1yFeyO3Δ Perovskites[J]. Solid State Ionics,2011,188(1):1-5.
    [83]Pavone M, Ritzmann A M, Carter E A. Quantum-Mechanics-Based DesignPrinciples for Solid Oxide Fuel Cell Cathode Materials[J]. Energy&EnvironmentalScience,2011,4(12):4933-4937.
    [84]Liu X, Hu J, Cheng B, Qin H, Zhao M, Yang C. First-Principles Study of O2Adsorption on the LaFeO3(010) Surface[J]. Sensors and Actuators B: Chemical,2009,139(2):520-526.
    [85]Lee C W, Behera R K, Wachsman E D, Phillpot S R, Sinnott S B, Stoichiometry ofthe LaFeO3(010) Surface Determined from First-Principles and ThermodynamicCalculations[J]. Physical Review B,2011,83(11):115418.
    [86]Choi Y M, Lin M C, Liu M. Rational Design of Novel Cathode Materials in SolidOxide Fuel Cells Using First-principles Simulations[J]. Journal of Power Sources,2010,195(5):1441-1445.
    [87]Shishkin M, Ziegler T. Oxidation of H2, CH4, and CO Molecules at the Interfacebetween Nickel and Yttria-Stabilized Zirconia: A Theoretical Study Based on DFT[J].The Journal of Physical Chemistry C,2009,113(52):21667-21678.
    [88]Galea N M, Lo J M H, Ziegler T. A DFT Study on the Removal of Adsorbed Sulfurfrom a Nickel(111) Surface: Reducing Anode Poisoning[J]. Journal of Catalysis,2009,263(2):380-389.
    [89]王一.高压提高PbTe热电效率的第一性原理研究[D],长春,吉林大学凝聚态物理学科博士学位论文,2008:27.
    [90]陆栋,蒋平,徐至中.固体物理学[M].上海:上海科学技术出版社,2003:138-139.
    [91]吴代鸣.固体物理基础[M].北京:高等教育出版社,2007:46.
    [92]Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Physical Review B,1964,136(3B): B864-B871.
    [93]Kohn W, Sham L J. Self-consistent Equations Including Exchange and CorrelationEffects[J]. Physics Review A,1965,140:1133-1138.
    [94]冯端,金国钧.凝聚态物理学(上卷).北京:高等教育出版社,2003:361-363.
    [95]王双喜. H2O在Be、Zr、CeO2表面吸附的第一性原理研究[D],北京:清华大学理学学科博士学位论文,2012:16.
    [96]Ceperley D M, Alder B J. Ground State of the Electron Gas by a StochasticMethod[J]. Physics Review Letter,1980,45(7):566-569.
    [97]Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation MadeSimple[J]. Physical Review Letters,1996,77(18):3865-3868.
    [98]Perdew J, Wang Y. Pair-distribution Function and its Coupling-constant Average forthe Spin-polarized Electron Gas[J]. Physical Review B,1992,46(20):12947.
    [99]Perdew J, Burke K. Ernzerhof M. Generalized Gradient Approximation MadeSimple[J]. Physical Review Letters,1996,77:3865-3868.
    [100]Vanderbilt D. Soft Self-consistent Pseudopotentials in a Generalized EigenvalueFormalism[J]. Physical Review B,1990,41(11):7892-7895.
    [101]Blochl P E. Projector Augmented-wave Method[J]. Physical Review B,1994,50(24):17953-17979.
    [102]Kresse G, Joubert D. From Ultrasoft Pseudopotentials to the ProjectorAugmented-wave Method[J]. Physical Review B,1999,59(3):1758-1775.
    [103]Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C.First Principles Methods Using CASTEP[J]. Zeitschriftfür Kristallographie,2005,220,567-570.
    [104]Monkhorst H J, Pack J D. Special Points for Brillouin-zone Integrations[J]. PhysicalReview B,1976,13(12):5188-5192.
    [105]Pfrommer B G, Cote M, Louie S G, Cohen M L. Relaxation of Crystals with theQuasi-newton Method[J]. Journal of Computational Physics,1997,131(1):233-240.
    [106]Pilania G, Ramprassad R. Adsorption of Atomic Oxygen on Cubic PbTiO3andLaMnO3(001) Surfaces: A Density Functional Theory Study[J]. Surface Science,2010,604(21-22):1889-1893.
    [107]Choi Y M, Lynch M E, Lin M C, Liu M. Prediction of O2Dissociation Kinetics onLaMnO3-based Cathode Materials for Solide Oxide Fuel Cells[J]. The Journal ofPhysical Chemistry C,2009,113(17):7290-7297.
    [108]Kotomin E A, Evarestov R A, Mastrikov Y A, Maiera J. DFT Plane WaveCalculations of the Atomic and Eelectronic Structure of LaMnO3(001) Surface[J].Physical Chemistry Chemical Physics,2005,7(11):2346-2350.
    [109]Evarestov R A, Kotomin E A, Heifets E, Maier J, Borstel G. Ab Initio Hartree-FockCalculations of LaMnO3(110) Surfaces[J]. Solid State Communication,2003,127(5):367-371.
    [110]Evarestov R A, Kotomin E A, Mastrikov Y A, Gryaznov D, Heifets E, Maier J.Comparative Density-functional LCAO and Plane-wave Calculations of LaMnO3Surfaces[J]. Physical Review B,2005,72(21):214411.
    [111]Banach G, Temmerman W M. Delocalization and Charge Disproportionation inLa(1-x)SrxMnO3[J]. Physical Review B,2004,69(5):054427.
    [112]Piskunov S, Heifets E, Jacob T, Kotomin E A, Ellis D E, Spohr E. ElectronicStructure and Thermodynamic Stability of LaMnO3and La1-xSrxMnO3(001)Surfaces: Ab Initio Calculations[J]. Physical Review B,2008,78(12):121406.
    [113]Zhukovskii Y F, Kotomin E A, Piskunov S, Mastrikov Y A, Ellis D E. The Effectof Oxygen Vacancies on the Atomic and Electronic Structure of Cubic ABO3Perovskite Bulk and the (001) Surface: Ab initio Calculations[J]. Ferroelectrics,2009,379(1):191-198.
    [114]Nowotny J, Rekas M. Defect Chemistry of La(Sr)MnO3[J]. Journal of AmericanCeramic Society,1998,81(1):67-80.
    [115]Segall M D, Pickard C J, Shah R, Payne M C. Population Analysis of Plane-waveElectronic Structure Calculations of Bulk Materials[J]. Physical Review B,1996,54(23):16317-16320.
    [116]Li N, Yao K L, Gao G Y, Wu Y Y. Surface Properties of the (001) Surface of CubicBaMnO3: A Density Functional Theory Study[J]. Journal of Applied Physics,2010,107(12):123704.
    [117]Yun J N, Zhang Z Y, Zhang F C. Adsorption and Reaction of CO on (100) Surfaceof SrTiO3by Density Function Theory Calculation[J]. Chinese Physics Letters,2008,25(9):3364-3367.
    [118]Kotomin E A, Mastrikov Y A, Heifets E, Maier Joachim. Adsorption of Atomic andMolecular Oxygen on the LaMnO3(001) surface: Ab Initio Supercell Calculationsand Thermodynamics[J]. Physical Chemistry Chemical Physics,2008,10(31):4644-4649.
    [119]Lide D R. CRC Handbook of Chemistry and Physics[M]. Boca Raton: CRC Press,2008:9.
    [120]Branda M M, Hernandez N C, Sanz J F, Illas F. Density Functional Theory Studyof the Interaction of Cu, Ag, and Au Atoms with the Regular CeO2(111) Surface[J].The Journal of Physical Chemistry C,2010,114(4):1934-1941.
    [121]Ralph J M, Schoeler A C, Krumpelt M. Materials for Low Temperature Solid OxideFuel Cells[J]. Journal of Materials Science,2001,36(5):1161-1172.
    [122]Maillet T, Barbier J, Duprez D. Reactivity of Steam in Exhaust Gas Catalysis III.Steam and Oxygen/steam Conversions of Propane on a Pd/Al2O3Catalyst[J].Applied Catalysis B: Environmental,1996,9(1-4):251-266.
    [123]Ciuparu D, Bensalem A, Pfefferle L. Pd-Ce Interactions and Adsorption Propertiesof Palladium: CO and NO TPD Studies over Pd–Ce/Al2O3Catalysts[J]. AppliedCatalysis B: Environmental,2000,26(4):241-255.
    [124]T rncrona A, Skoglundh M, Thorm hlen P, Fridell E, Jobson E. Low TemperatureCatalytic Activity of Cobalt Oxide and Ceria Promoted Pt and Pd: Influence ofPretreatment and Gas Composition[J]. Apply Catalysis B,1997,14(1-2):131-145.
    [125]Kresse G, Hafner J, Ab Initio Molecular-Dynamics Simulation of theLiquid-Metal-Amorphous-Semiconductor Transition in Germanium[J]. PhysicalReview B,1994,49(20):14251-14269.
    [126]Kresse G, Fürthmuller J. Efficient Iterative Schemes for Ab Initio Total-energyCalculations Using a Plane-Wave Basis Set[J]. Physical Review B,1996,54(16):11169-11186.
    [127]Kresse G, Marsman M, Fürthmuller J. Vasp the Guide[M]. Wien: University Wien,2009:1.
    [128]Fuks D, Dorfman S, Felsteiner J, Bakaleinikov L. Ab Initio Calculations of Atomicand Electronic Structure of LaMnO3and SrMnO3[J]. Solid State Ionics,2004,173(1-4):107-111.
    [129]Marrero-López D, Santos-Gómez L, Canales-Vázquez J, Martín F, Ramos-BarradoJ.R. Stability and Performance of Nanostructured La0.8Sr0.2MnO3CathodesDeposited by Spray-pyrolysis[J]. Electrochimica Acta,2014,134(10):159-166.
    [130]Sholklapper T Z, Radmilovic V, Jacobson C P. Visco S J, Jonghe L C D.Nanocomposite Ag–LSM Solid Oxide Fuel Cell Electrodes[J]. Journal of PowerSources,2008,175(1):206-210.
    [131]Zhou J, Chen G, Wu K, Cheng Y, Peng B, Guo J, Jiang Y. Density FunctionalTheory Study on Oxygen Adsorption in LaSrCoO4: an Extended Cathode Materialfor Solid Oxide Fuel Cells[J]. Applied Surface Science,2012,258(7):3133-3138.
    [132]Mills G, Josson H, Schenter G. Reversible Work Transition State Theory:Application to Dissociative Adsorption of Hydrogen[J]. Surface Science,1995,324(2-3):305-337.
    [133]Henkelman G, Uberuaga B P, Josson H. A Climbing Image Nudged Elastic BandMethod for Finding Saddle Points and Minimum Energy Paths[J]. Journal ofChemical Physics,2000,113(22):9901-9904.
    [134]Tang T, Gu K M, Cao Q Q, Wang D H, Zhang S Y, Du Y W. MagnetocaloricProperties of Ag-Substituted Perovskite-type Manganites[J]. Journal of Magnetismand Magnetic Materials,2000,222(1-2):110-114.
    [135]Song K, Cui H, Kim S, Kang S. Catalytic Combustion of CH4and CO onLa1-xMxMnO3Perovskites[J]. Catalysis Today,1999,47(1-4):155-160.
    [136]V. Choudhary, B. Uphade, S. Pataskar. Low Temperature Complete Combustion ofMethane over Ag-doped LaFeO3and LaFe0.5Co0.5O3Perovskite Oxide Catalysts[J].Fuel,1999,78(8):919-921.
    [137]James C M. Charged Dislocations and Plasto-electric Effect in Ionic Crystals[J].Materials Science and Engineering A,2000,287(2):265-271.
    [138]Liu Z P, Gong X Q, Kohanoff J, Sanchez C, Hu P. Catalytic Role of Metal Oxidesin Gold-Based Catalysts: A First Principles Study of CO Oxidation on TiO2Supported Au[J]. Physical Review Letters,2003,91(26):266102
    [139]赵爽.密度泛函方法研究银团簇与原子的相互作用[D],上海,复旦大学物理化学学科博士学位论文,2007:11.
    [140]Norby P, Dinnebier R E, Fitch A N. Decomposition of Silver Carbonate: TheCrystal Structure of Two High-Temperature Modifications of Ag2CO3[J]. InorganicChemistry,2002,41(14):3628-3637.
    [141]Hwang H J, Moon J W, Lee S, Lee E A. Electrochemical Performance ofLSCF-Based Composite Cathodes for Intermediate Temperature SOFCs[J].Journal of Power Sources,2005,145(2):243-248.
    [142]Liang F, Chen J, Jiang S P, Chi B, J Pu, L Jian. Development of Nanostructuredand Palladium Promoted (La,Sr)MnO3-Based Cathodes for IntermediateTemperature SOFCs[J]. Electrochemical and Solid-State Letters,2008,11(12):B213-B216.
    [143]Ishihara T, Kudo T, Matsuda H, Takita Y. Doped Perovskite Oxide, PrMnO3, as aNew Cathode for Solid-Oxide Fuel Cells that Decreases the OperatingTemperature[J]. Journal of the American Ceramics Society,1994,77(6):1682-1684.
    [144]Wen T L, Tu H, Xu Z, Yamamoto O. A Study of (Pr, Nd, Sm)1-xSrxMnO3CathodeMaterials for Solid Oxide Fuel Cell[J]. Solid State Ionics,1999,121(1-4):25-30.
    [145]Ran R, Wu X, Quan C, Weng D. Effect of Strontium and Cerium Doping on theStructural and Catalytic Properties of PrMnO3Oxides[J]. Solid State Ionics,2005,176(9-10):965-971.
    [146]Huang X, Pei L, Liu Z, Lu Z, Sui Y, Qian Z, Su W. A Study on PrMnO3-basedPerovskite Oxides Used in SOFC Cathodes[J]. Journal of Alloys and Compounds,2002,345(1-2):265–270.
    [147]Kostogloudis G C, Vasilakos N, Ftikos C. Preparation and Characterization ofPr1-xSrxMnO3+δ (x=0,0.15,0.3,0.4,0.5) as a Potential SOFC Cathode MaterialOperating at Intermediate Temperatures (500-700°C)[J]. Journal of the EuropeanCeramic Society,1997,17(12):1513-1521.
    [148]Sakaki Y, Takeda Y, Kato A, Imanishi N, Yamamoto O, Hattori M, M. Iio, Esaki Y.Ln1-xSrxMnO3(Ln=Pr, Nd, Sm and Gd) as the Cathode Material for Solid OxideFuel Cells[J]. Solid State Ionics,1999,118(3-4):187-194.
    [149]Huang X, Liu J, Lu Z, Liu W, Pei L, He T, Liu Z, Su W. Properties ofNonstoichiometric Pr0.6-xSr0.4MnO3as the Cathodes of SOFCs[J]. Solid State Ionics,2000,130(3-4):195-201.
    [150]Kang J S, Noh T W, Olson C G, Min B I. Photoemission Spectroscopy ofHalf-metallic Perovskite Manganites Pr1-xSrxMnO3[J]. Journal of ElectronSpectroscopy and Related Phenomena,2001,114-116:683-688.
    [151]Bouadjemi B, Bentata S, Abbad A, Benstaali W, Bouhafs B. Half-metallicFerromagnetism in PrMnO3Perovskite from First Principles Calculations[J]. SolidState Communications,2013,168:6-10.
    [152]Chakraborty M, Pal P, Sekhar B R. Half Metallicity in Pr0.75Sr0.25MnO3: A FirstPrinciple Study[J]. Solid State Communications,2008,145(4):197-200.
    [153]Temmerman W, Petit L, Svane A, Szotek Z, Luders M, Strange P, Staunton J,Hughes I, Gyorffy B. Handbook on the Physics and Chemistry of Rare Earths[M].Amsterdam: North-Holland,2009:39.
    [154]Dudarev S L, Botton G. A, Savrasov S Y, Humphreys C J, Sutton A P.Electron-energy-loss Spectra and the Structural Stability of Nickel Oxide: AnLSDA+U Study[J]. Physical Review B,1998,57(3):1505-1509.
    [155]Sánchez D, Alonso J A, Martínez-Lope M J. Neutron-diffraction Study of theJahn–Teller Transition in PrMnO3[J]. Journal of the Chemical Society, DaltonTransactions,2002,23:4422-4425.
    [156]Goudochnikov P, Bell A J. Correlations between Transition Temperature, ToleranceFactor and Cohesive Energy in2+:4+Perovskites[J]. Journal of physics:Condensed Matter.2007,19(17):176201.
    [157]Verma A S, Jindal V K. Lattice Constant of Cubic Perovskites[J]. Journal of Alloysand Compounds,2009,485(1-2):514-518.
    [158]Henkelman G, Arnaldsson A, Jo′nsson H. A fast and Robust Algorithm for BaderDecomposition of Charge Density[J]. Computational Materials Science,2006,36(3):354-360.
    [159]Zhukovskii Y, Kotomin E A, Evarestov R A, Ellis D E. Periodic Models inQuantum Chemical Simulations of F Centers in Crystalline Metal Oxides[J].International Journal of Quantum Chemistry,2007,107(14),2956-2985.
    [160]Ran R, Wu X, Quan C, Weng D, Effect of Strontium and Cerium Doping on theStructural and Catalytic Properties of PrMnO3Oxides[J]. Solid State Ionics,2005,176(9-10):965-971.
    [161]An W, Gatewood D, Dunlap B, Turner C H. Catalytic Activity of Bimetallic NickelAlloys for Solid Oxide Fuel Cell Anode Reactions from Density-functionalTheory[J]. Journal of Power Sources,2011,196(10):4724-4728.
    [162]Jin T, Lu K. Surface and Interface Behaviors of Sr-doped Lanthanum ManganiteAir Electrode in Different Moisture Atmospheres[J]. Journal of Power Sources,2012,197(1):20-27.
    [163]Zwinkels M F M, Hanssner O, Menon P G, Jaras S G. Preparation andCharacterization of LaCrO3and Cr2O3Methane Combustion Catalysts Supported onLaAl11O18-and Al2O3-coated Monoliths[J]. Catalysis Today,1999,47(1-4):73-82.
    [164]Cheng Z, Wang J H, Choi Y M, Yang L, Lin M C, Liu M L. From Ni-YSZ toSulfur-tolerant Anode Materials for SOFCs: Electrochemical Behavior, in situCharacterization, Modeling, and Future Perspectives[J]. Energy&EnvironmentalScience,2011,4(11):4380-4409.
    [165]Trembly J P, Marquez A I, Ohrn T R, Bayless D J. Effects of Coal Syngas and H2Son the Performance of Solid Oxide Fuel Cells: Single-cell Tests[J]. Journal ofPower Sources,2006,158(1):263-273.
    [166]Cheng Z, Zha S W, Liu M L. Influence of Cell Voltage and Current on SulfurPoisoning Behavior of Solid Oxide Fuel Cells[J]. Journal of Power Sources,2007,172(2):688-693.
    [167]Liu J, Madsen B D, Ji Z, Barnett S A. A Fuel-Flexible Ceramic-Based Anode forSolid Oxide Fuel Cells[J]. Electrochemical and Solid-State Letters,2002,5(6):A122-A124.
    [168]Tan W, Zhong Q, Yan H, Zhu X, Li H. Deactivation of Anode CatalystLa0.75Sr0.25Cr0.5Mn0.5O3±d in SOFC with Fuel Containing Hydrogen Sulfur: The Roleof Lattice Oxygen[J]. International Journal of Hydrogen Energy,2012,37(9):7398-7404.
    [169]Cheng P, Wang B, Vincent A. LaCrO3–VOx–YSZ Anode Material for Solid OxideFuel Cells Operating on H2S-containing Syngas[J]. Journal of Materials Science,2012,47(1):227-233.
    [170]Jia L, Wang X, Hua B, Li W, Chi B, Pu J. Computational Analysis of Atomic C andS Adsorption on Ni, Cu, and Ni-Cu SOFC Anode Surfaces[J]. International Journalof Hydrogen Energy,2012,37(16):11941-11945.
    [171]Chen H T, Choi Y M, Liu M, Lin M C. A First-principles Analysis for SulfurTolerance of CeO2in Solid Oxide Fuel Cells[J]. The Journal of Physical ChemistryC,2007,111(29):11117-11122.
    [172]Moriwake H, Tanaka I, Katsumi T, Koyama Y, Adachi H, Yakabe H, Yasuda I.Theoretical Solution Energy of Alkaline Earth Ions in Lanthanum Chromites[J].Materials Transactions,2002,43(7):1456-1459.
    [173]Olikawa K, Kamiyama T, Hashimoto T, Shimojyo Y, Morii Y. Structural PhaseTransition of Orthorhombic LaCrO3Studied by Neutron Powder Diffraction[J].Journal of Solid State Chemistry,2000,154(2):524-529.
    [174]Wang Y, Cheng H P. Oxygen Reduction Activity on Perovskite Oxide Surfaces: AComparative First-Principles Study of LaMnO3, LaFeO3, and LaCrO3[J]. TheJournal of Physical Chemistry C,2013,117(5):2106-2112.
    [175]Vitos L, Ruban A V, Skriver H L, Kolla′r J. The Surface Energy of Metals[J].Surface Science,1998,411(1-2):186-202.
    [176]Chase J M W. NIST-JANAF Thermochemical Tables[M]. New York: Hemisphere,1989:10.
    [177]Moreira R L, Dias A. Comment on “Prediction of Lattice Constant in Cubic Perovskites”[J]. Journal of Physics and Chemistry of Solids,2007,68(8):1617-1622.
    [178]POng K, Blaha P, Wu P. Origin of the Light Green Color and Electronic GroundState of LaCrO3[J]. Physical Review B,2008,77(7):73102-73105.
    [179]Lam D J, Veal B W, Ellis D E. Electronic Structure of Lanthanum Perovskites with3d Transition Elements[J]. Physical Review B,1980,22(12):5730-5739.
    [180]Pari G, Jaya S M, Subramoniam G, Asokamani R. Density-functional Descriptionof the Electronic Structure of LaMO3(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni)[J].Physical Review B,1995,51(23):16575-16581.
    [181]Shi W J, Xiong S J. Ab Initio Study of Water Adsorption on TiO2-terminated (100)Surface of SrTiO3with and without Cr Doping[J]. Surface Science,2010,604(21-22):1987-1995.
    [182]Kittel C. Introduction to Solid State Physics6th Ed.[M]. New York: Wiley,1986:5.
    [183]Kresse G, Halner J. First-principles Study of the Adsorption of Atomic H onNi(111),(100) and (110)[J]. Surface Science,2000,459(3):287-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700