用户名: 密码: 验证码:
级联型STATCOM故障诊断与容错控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在中压配电网的无功补偿和谐波治理领域,级联型静止同步补偿器(StaticSynchronous Compensator-STATCOM)因其具有模块化、大容量、谐波特性好和易于实现冗余控制等优点,近年来得到了广泛应用,其可靠性已经成为保障电力系统安全运行的一项关键技术。为此,近年来高容错STATCOM系统的概念被提出并成为了国内外研究的热点。高容错STATCOM系统是指当故障发生后,通过在线故障诊断装置在允许时间内诊断出故障类型和位置,在不停机的情况下在线重新配置系统的拓扑结构并采取相应的容错控制策略,使得系统能够在满足一定性能要求下继续运行。研究表明,在STATCOM系统中,变流器是实现各种控制策略的关键部分,但由于其长期处于高频动作和能量变换的工作环境,其功率开关器件也最容易发生故障,若故障后不及时处理将会造成STATCOM系统输出不平衡、谐波增加等危害,严重时还会造成保护停机。因此,研究STATCOM系统中变流器的故障诊断和容错控制将具有十分重要的理论意义和实际意义。
     高容错STATCOM系统实现的首要条件是快速准确的故障诊断,其诊断精度和诊断时间直接影响到容错控制的效果。STATCOM系统中的变流器环节是一个典型的包含连续状态变量和开关离散变量的复杂系统,且时刻处于对负载变化的动态响应中,使得传统的以输出电流或输出电压为原始信号的基于解析模型和信号处理的方法并不能有效地揭示系统的故障特性,不适合于变流器内部故障的分析和诊断。因此,本文针对传统方法在诊断时间、负载变化影响、故障样本需求等方面的缺点,以变流器中各功率模块电容电压为原始信号,将小波多分辨率分析、特征降维技术和多核最小二乘支持向量机等理论引入到故障诊断过程中,建立了针对变流器中功率器件开路故障的综合故障诊断系统。首先利用db40小波对原始信号进行8尺度分解,将各频带的高频小波分解序列的能量作为故障特征。在故障分类方面,引入了多核最小二乘支持向量机,并利用混沌粒子群优化算法对其进行参数优化,提出了基于核主成分分析和谱系聚类算法的故障特征降维方法。仿真和实验证明此方法克服了标准支持向量机计算复杂的缺点,提高了故障诊断的鲁棒性,继承了小样本学习的优点,在保证诊断准确率的同时缩短了诊断时间。
     针对空间矢量脉宽调制(SVPWM)方法在级联型STATCOM中实现难度大的缺点,研究了统一空间矢量脉宽调制(GSVPWM)方法的实现。通过零序分量的叠加将SVPWM方法等效为基于载波的方式,并且可通过改变零矢量分配系数方便的实现各种PWM方法的切换。提出了一种简单快速的GSVPWM数字化实现方法。此方法避免了传统SVPWM方法复杂的三角运算、坐标变换、空间矢量选择和矢量作用时间的计算,具有电压利用率高、开关损耗小、响应速度快、易于实现容错控制等特点。
     STATCOM的容错控制是指故障后通过调整系统的软硬件结构来保证装置在故障情况下稳定可靠的运行能力。本文对级联型STATCOM的容错拓扑及其控制策略展开了研究。采取了带1级冗余的模块冗余方案和仅旁路故障模块的隔离方案。系统正常运行时,各功率模块降额运行,当故障发生后通过封锁驱动脉冲和旁路机构将故障模块同主电路隔离。在分析故障对系统各控制环节影响的基础上,提出了具有容错功能的相间电容电压平衡控制策略、相内电容电压平衡控制策略和PWM控制策略,实现了STATCOM系统的容错运行。
     设计了8级联STATCOM的故障诊断和容错控制实验平台。基于FPGA的分布式集中控制结构使得系统具有模块化、控制简单、易于安装维护等优点。实验结果表明装置具有良好的动态补偿效果,对功率器件开路故障具有良好的诊断能力,容错控制响应迅速,具有良好的工业应用前景。
Cascaded static synchronous compensators(STATCOM) are widely used inreactive compensation and harmonic suppression on medium voltage distributionnetwork because of their advantages such as modularity, high power capacity, goodharmonic characteristic, and easily realized redundancy control. The reliability of theSTATCOM is directly related to the safe operation of the power grid. Therefore, theSTATCOM system with fault-tolerant capabilities is recently proposed and hasbecome a research focus for scholars both domestic and abroad. The STATCOMsystem with fault-tolerant capabilities can diagnose and analyze faults in a timelymanner as well as reconstruct both the software and hardware structures of the systemupon fault diagnosis to ensure that the device continues to operate safely without anyreduction or partly reduction in performance indicators. Research shows that thepower semiconductors in power converters are weak links of the STATCOM systembecause of their high frequency and energy transformation environment. Onlinereal-time fault diagnosis of power semiconductors and appropriate fault-tolerantcontrol strategies are effective means to improve the reliability of the STATCOMsystem. Therefore, research on fault diagnosis and fault-tolerant control strategies ofconverters in the STATCOM system has important significance both in theory andpractical value.
     The precondition of realization of the fault-tolerant STATCOM system isaccurate fault diagnosis. Immediacy and reliability of fault diagnosis is directlyimpacted to the effect of the fault-tolerant strategies. The converter in the STATCOMsystem is a typical hybrid system which include both continuous state variables anddiscrete switching variables. It is always in dynamic response of the load change.Therefore, the traditional analytical modeling method or signal processing methodwhich takes the output current or voltage as the original signal can not effectivelyreveal the fault features of the system. The traditional method can not be used foranalyzing and diagnosing faults inside converters. A comprehensive fault diagnosismethod for converters is proposed by using wavelet multi-resolution analysis(MRA),fault feature dimension reduction techniques and multi-kernel least squares supportvector machines(MLS-SVM). Capacitor voltages of power modules in the converter isselected for the original signal. The method overcomes the traditional shortcomings indiagnosis time, load changes, fault samples requirements, etc. First, the original signals are decomposed into eight layers via the db40wavelet, and the detailcoefficient energy of each layer is selected as the fault features. The fault classifier isthen constructed by using MLS-SVM. The parameters of the MLS-SVM is optimizedbased on chaotic particle swarm optimization algorithm(CPSO). Finally, thedimensions of the features are reduced by using kernel principal componentanalysis(KPCA) and hierarchical clustering algorithm(HCA). The simulation andexperimental results demonstrate that it overcome the complex calculation of thetraditional SVM, improved the robustness of fault diagnosis, maintained theadvantages on small sample learning, and reduced diagnostic time while maintainingdiagnostic accuracy.
     Due to the space vector pulse width modulation(SVPWM) method is difficult toachieve in the cascaded STATCOM, a generalized SVPWM(GSVPWM) method isproposed with the aim of reducing switch loss and easily implement. The SVPWMcan be equivalent to a carrier-based method by adding one zero sequence component.Different PWM methods are obtained easily by changing the zero vector distributioncoefficient. A simple digital realization method for the GSVPWM is also proposed toavoid calculations such as complex trigonometric function, coordinate transformations,space vector selections, and duration time calculations. The advantages of theGSVPWM method are highest DC voltage utilization ratio, low switch loss, quicklyresponse, and easily realized fault-tolerant control, etc.
     By reconfiguring software and hardware structures fault-tolerant controlstrategies of the STATCOM system can ensure post-fault systems have such reliableand stable operation capability. The fault-tolerant topologies and control strategies ofthe cascade STATCOM are discussed. Redundancy scheme with one stageredundancy and isolation scheme with only bypassing the fault module are applied inthe system. The power modules run less than its rated value when normal operation.When the fault happens, the drive pulses are secured and the fault module is isolatedfrom main circuit with bypass device. The influences of fault on each system controllink are analyzed. Fault-tolerant control strategies such as phase-to-phase capacitorvoltage balance control, one phase capacitor voltage balance control and PWMcontrol are proposed to guarantee the reliable and stable operation of the STATCOM.
     An eight cascaded STATCOM experiment platform is designed for faultdiagnosis and fault-tolerant control. The distributed control structure based on fieldprogrammable gate array(FPGA) is chose for its advantages such as modularity, easily control and maintenance. The experimental results demonstrate that the platform havegood dynamic compensation effects, accurate diagnostic ability, and fine fault-tolerantcontrol performance. It has a good prospect in industry application.
引文
[1] N. G. Hingorani, L. Gyugyi. Understanding FACTS: concepts and technology of FlexibleAC Transmission Systems[M]. Piscataway, NJ: IEEE Press,2000:16-18.
    [2]吴文辉,刘会金.静止同步补偿器(STATCOM)技术的研究现状与发展[J].华东交通大学学报,2005,22(2):89-94.
    [3]李永东.大容量多电平变换器[M].北京:科学出版社,2005.
    [4]刘文华,姜齐荣,梁旭,刘遵义,纪勇.±20Mvar STATCOM总体设计[J].电力系统自动化,2000,24(23):14-18.
    [5]许湘莲.基于级联多电平逆变器的STATCOM及其控制策略研究[D].武汉:华中科技大学图书馆,2006.
    [6] Fedyczak Z, Strzelecki R, Kasperek R, etal. Three-phase self-commutated static Varcompensator based on Cuk converter topology[C]. In:2000IEEE31stAnnual PowerElectronics Specialists Conference,2000,6:494-499.
    [7] Sobrink K H, Renz K W, Tyll H K. Operation Experience and Field Tests of the ASVG atRejsby Hede[C]. In: IEEE Powercon'98, Beijing,1998:318-322.
    [8]刘文华,姜齐荣,梁旭,等.采用GTO逆变器的20Mvar STATCOM[J].电力系统自动化,2000,24(23):19-23.
    [9]朱永强,崔文进,胡东辰,等.±50MVar静止补偿器接入系统运行策略仿真研究[J].电力系统自动化,2004,28(21):77-80.
    [10]诸纪新.±50Mvar STATCOM装置在上海电网中的应用[J].电气建设,2006,12:14-17.
    [11]王永源,李旷,张海涛,等.基于载波移相PWM控制策略的±200MVA级链式STATCOM的直流电容电压控制方法[J].电气技术,2011.12:20-23.
    [12] E Twining, D G holmes. Voltage Compensation in Weak Distribution Networks SuingMultiple Shunt Connected Voltage Sources Inverters[C]. In: IEEE Power Tech ConferenceProceedings,2003,4:116-121.
    [13] Twining, M J Newman, P C Loh, etal. Voltage Compensation in Weak DistributionNetworks Using a D-STATCOM[C]. In: Power Electronics and Drive Systems,2003,1:178-183.
    [14]单庆晓,李永东,潘孟春.级联型逆变器的新进展[J].电工技术学报,2004,19(2):1-9.
    [15] Keith Corzine, Yakov Familiant. A new cascaded multilevel H-bridge Drive[J]. IEEETRANSACTIONS ON POWER ELECTRONICS,2002,17(1):125-131.
    [16]黄剑.南方电网±200Mvar静止同步补偿装置工程实践[J].南方电网技术,2012,6(2):14-20.
    [17] Wenchao Song, Alex Q.Huang. Fault-tolerant design and control strategy for cascadedH-bridge multilevel converter-based STATCOM[J]. IEEE TRANSACTIONS ONINDUSTRIAL ELECTRONICS,2010,57(8):2700-2708.
    [18]安群涛.三相电机驱动系统中逆变器故障诊断与容错控制策略研究[D].哈尔滨:哈尔滨工业大学图书馆,2011.
    [19]张科,原会静,郭磊,王立楠.换流站交流滤波电抗器故障分析[J].电力电容器与无功补偿,2013,34(1):74-79.
    [20] Bin Lu, Santosh K.Sharma. A Literature review of IGBT fault diagnostic and protectionmethods for power inverters[J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS,2009,45(5):1770-1777.
    [21]安群涛,孙力,赵克等.基于开关函数模型的逆变器开路故障诊断方法[J].中国电机工程学报,2010,30(6):1-6.
    [22] P. M. Frank. Fault diagnosis in dynamic systems using analytical and knowledge-basedredundancy-a survey and some new results [J]. Auto-matica,1990,26(3):459-474.
    [23] Jacobina C B, Ribeiro R L A, Lima A M N, et al. Fault-tolerant reversible AC motor drivesystem[J]. IEEE Transactions on Industry Applications,2003,39(4):1077-1084.
    [24] Ribeiro R L A, Jacobina C B, Silva E R C, et al. Fault Detection of Open-Switch Damage inVoltage-Fed PWM Motor Drive Systems[J]. IEEE Transactions on Power Electronics,2003,18(2):587-593.
    [25] Ribeiro R L A, Jacobina C B, Silva E R C, et al. Fault-tolerant Voltage-Fed PWM InverterAC Motor Drive Systems[J]. IEEE Transactions on Industrial Electronics,2004,51(2):439-446.
    [26]杨忠林,吴正国,李辉.基于直流侧电流检测的逆变器开路故障诊断方法[J].中国电机工程学报,2008,28(27):18-22.
    [27]陈雷,唐轶.基于电流检测的STATCOM变流器开路故障诊断[J].电力电容器与无功补偿,2011,32(6):31-34.
    [28] Peuget R, Courtine S, Rognon J P. Fault detection and isolation on a PWM inverter byknowledge-based model[J]. IEEE Transactions on Industry Applications,1998,34(6):1318-1326.
    [29] Mendes A M S, Marques Cardoso A J. Voltage source inverter fault diagnosis in variablespeed AC drives by the average current Park’s vector approach[C]//Proceedings of the19987th International Conference on Power Electronics and Variable Speed Drives. London, UK:IEEE,1998:538-543.
    [30] Caseiro J AA, Cardoso A J M. Fault diagnosis on a PWM rectifier AC drive system withfault tolerance using the average current Park’s vector approach[C]//IEEE InternationalElectric Machines and Drives Conference. Miami, FL, USA: IEEE,009:695-701.
    [31] Kral C, Kafka K. Power Electronics Monitoring for a Controlled Voltage SourceInverter Drive with Induction Machines[C]. Proceedings of the IEEE Power ElectronicsSpecialist Conference,2000:213-217.
    [32](美)多布著.李建平,杨万年译.小波十讲[M].国防工业出版社,2004.
    [33]彭玉华.小波变换与工程应用[M].北京:科学出版社,1999.
    [34]吴正国,夏立,尹为明.现代信号处理技术—高阶谱、时频分析与小波变换[M].武汉:武汉大学出版社,2003.
    [35]于飞,田玲玲,刘喜梅等.基于小波多分辨率分析和主元分析的电力电子电路故障诊断[J].华东理工大学学报,2006,32(9):1113-1115.
    [36]顾晓光,赵建军,杨鹏等.基于多分辨率分析和支持向量机的电力电子电路故障诊断技术[J].河南大学学报(自然科学版),2011,41(3):300-303.
    [37] Dong-Eok Kim, Dong-Choon Lee. Fault diagnosis of three-phase PWM inverters usingwavelet and SVM[C]. Industrial Electronics, Cambridge,2008:329-334.
    [38]杨忠林.基于小波包分解的逆变器单管开路故障分析[J].低压电器,2010,(23):53-57.
    [39]杨忠林.基于小波包分解的逆变器一相开路故障诊断[J].电机与控制应用,2011,38(7):34-37.
    [40]周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社,2000:5-6.
    [41]蔡涛,段善旭,康勇.电力电子系统故障诊断技术研究综述[J].电测与仪表,2008,45(509):1-7.
    [42]梅雪峰,郑建勇,梅军,郭学英.基于电流轨迹和神经网络的逆变器故障诊断方法[J].电测与仪表,2010,47(532):5-8.
    [43]崔博文,任章.基于傅里叶变换和神经网络的逆变器故障检测与诊断[J].电工技术学报,2006,21(7):37-43.
    [44]马皓,徐德鸿,卞敬明.基于神经网络的电力电子电路故障诊断[J].电力电子技术,1997,11(4):10-12.
    [45] Hao Ma, Dehong Xu, Yim-Shu Lee, Fault diagnosis of power electronic circuits based onneural network and waveform analysis[C]. Proceedings of the IEEE1999Internationalconference on Power Electronic and Drive Systems,1999,234-237.
    [46]郑连清,王腾,邹涛.基于神经网络的三相全控桥整流电路故障诊断[J].重庆大学学报,2004,27(9):72-75.
    [47] Zidani F, Diallo D, Benbouzid M E H, et al. A Fuzzy-Based Approach for the Diagnosis ofFault Modes in a Voltage-Fed PWM Inverter Induction Motor Drive[J]. IEEE Transactionson Industrial Electronics,2008,52(2):586-593.
    [48] Park J H, Kim D H, Kim S S, et al. C-ANFIS Based Fault Diagnosis for Voltage-Fed PwmMotor Drive Systems[C]. Proceedings of the IEEE Annual Meeting of the FuzzyInformation,2004:379-383.
    [49]张国宣.基于统计学习理论的支持向量机分类方法研究[D].合肥:中国科技大学,2004.
    [50]孙宗海.支持向量机及其在控制中的应用研究[D].浙江:浙江大学,2003.
    [51]胡清,王荣杰,詹宜巨.基于支持向量机的电力电子电路故障诊断技术[J].中国电机工程学报,2008,28(12):107-111.
    [52]王德成,林辉.基于支持向量机的功率变换器开关管开路故障诊断[J].火力与指挥控制,2010,35(1):126-128.
    [53]尹金良,朱永利,俞国勤.基于多分类相关向量机的变压器故障诊断新方法[J].电力系统保护与控制,2013,41(5):77-82.
    [54] Psorakis I, Damoulas T, Girolami M A. Multiclass relevance vector machines: sparsity andaccuracy[J]. IEEE Trans on Neural Networks,2010,21(10):1588-1598.
    [55]康守强,王玉静,杨广学,宋立新,V.I.MIKULOVICH.基于经验模态分解和超球多类支持向量机的滚动轴承故障诊断方法[J].中国电机工程学报,2011,31(14):96-102.
    [56]许桂梅,黄圣国.基于多核支持向量机的飞机重着陆诊断[J].计算机工程,2011,37(10):157-159.
    [57]欧阳俊,陆锋,刘兴权,段滢滢.基于多核混合支持向量机的城市短时交通预测[J].中国图象图形学报,2010,15(11):1688-1695.
    [58] Damoulas T, Girolami M A. Probabilistic multi-class multi-kernel learning: on protein foldrecognition and remote homology detection[J]. Bioinformatics,2008,24(10):1264-1270.
    [59] Charfi F, Sellami F, Al-Haddad K. Fault Diagnostic in Power System Using WaveletTransforms and Neural Networks[C]. Proceedings of the IEEE International Symposium onIndustrial Electronics,2006:1143-1148.
    [60] Mamat M R, Rizon M, Khanniche M S. Fault Detection of3-Phase VSI UsingWavelet-Fuzzy Algorithm[J]. American Journal of Applied Sciences,2006,3(1):1642-1648.
    [61] Khanniche M S, Mamat M R. Wavelet-Fuzzy-Based Algorithm for Condition Monitoringof Voltage Source Inverter[J]. Electronics Letters,2004,40(4):267-268。
    [62]龙伯华,谭阳红,许慧,孙磊,文娟.基于量子神经网络的电力电子电路故障诊断[J].电工技术学报,2009,24(10):170-175.
    [63]刘远,王天真,汤天浩,李继芳,陈嘉琦.基于PCA-SVM模型的多电平逆变系统故障诊断[J].电力系统保护与控制,2013,41(3):66-72.
    [64]许树楷,陈名,傅闯,张海涛,黎小林,李明,吴宇霆.南方电网±200Mvar静止同步补偿装置系统调试[J].南方电网技术,2012,6(2):21-25.
    [65] Hammond P W. Enhancing the reliability of modular medium-voltage drives[J]. IEEETransactions on Industrial Electronics,2002,49(5):948-954.
    [66] Rodriguez J, Hammond P W, Pontt J, et al. Operation of a medium-voltage drive underfaulty conditions[J]. IEEE Transactions on Industrial Electronics,2005,52(4):1080-1085.
    [67] Zang Yi, Wang Xu, Xu Bin, et al. Fault-tolerant design for multilevel cascaded H-bridgeinverter[C]. ICEMI’2005, Beijing, China.8:259-263.
    [68]卫三民,刘丛伟,孙旭东,等.串联H桥多电平变频器单元故障时的控制方法[J].清华大学学报(自然科学版),2003,43(3):369-372.
    [69] Wei Sanmin, Li Fahai, Sun Xudong, et al. Control method for cascaded H-bridge multilevelinverter with faulty power cells[C]. IEEE APEC Conf. Rec., Miami, USA,2003.
    [70]汪光森,王乘,周建中.级联多电平逆变器单元故障时的载波调制[J].华中科技大学学报(自然科学版),2005,33(2):109-111.
    [71] A.Lesnica, R.Marquardt. An Innovative Modular Multilevel Converter Topology Suitablefor a wide Power Range[C]. Power Tech Conference Proceedings,2003IEEE Bologna.
    [72] M.Glinka. Prototype of multiphase modular multilevel converter with2MW Power ratingand17level output voltage[C]. Conf. Ree. IEEE-PESO2004:2572-2576.
    [73] Akagi. H. Classifieation, Terminology, and Application of the Modular Multilevel CascadeConverter(MMCC)[J]. Power Electronics, IEEE Transactions on, vol.PP, no.99, PP.l.0
    [74] Hagiwara, M.:Maeda, R.:Akagi. Control and Analysis of the Modular Multilevel CascadeConverter Based on Double-Star Chopper-Cells(MMCC-DSCC)[J]. Power Electronics,IEEE Transactions on, vol.26, no.6, PP.1649-1658, June2011.
    [75]于德政.基于模块化多电平换流器结构的HVDC Light系统的研究[D].安徽:合肥工业大学,2009.
    [76]连霄壤.模块化多电平STATCOM控制策略研究[D].杭州:浙江大学图书馆,2012.
    [77]连霄壤,江道灼.基于模块化多电平的静止无功补偿器故障容错控制[J].电力系统保护与控制,2012,40(16):83-89.
    [78]倪喜军,赵剑锋,曹武,孙轲,黄华.级联型逆变器故障状况下的调制重构[J].中国电机工程学报,2010,30(33):16-22.
    [79]王旭,臧义,徐彬,林家泉.基于开关管的级联H桥逆变器故障处理方法[J].中国电机工程学报,2007,27(7):76-81.
    [80]栗时平,刘桂英.静止无功功率补偿技术[M].北京:中国电力出版社,2006.
    [81]夏正龙,史丽萍,陈丽兵,杨晓冬.基于LCL滤波器的中高压链式STATCOM参数设计[J].煤炭学报,2013,38(8):1503-1510.
    [82]徐德鸿,程肇基,崔学军.用傅立叶分析法诊断电力电子电路的故障[J].浙江大学学报(自然科学版),1994,28(6):666-673.
    [83] Raghuveer M. Rao, Mysore Raghuveer, Ajit S.Bopardikar. Wavelet Transforms:Introduction to Theory and Applications[M]. NJ: Prentice Hall PTR,1998.
    [84] Kumar A, Fuhrmann D R et al. A new transform for time-frequency[J]. IEEE Transactionson Signal Processing,1992,40(7):1697-1707.
    [85] Stéphane Mallat著,杨力华,戴道清,黄文良等译.信号处理的小波导引[M].北京:机械工业出版社,2002:1-120.
    [86] Harten A. Discrete multi-resolution analysis and generalized wavelets[J]. AppliedNumerical Mathematics,1993,2:153-192.
    [87]肖伟,杨军锋.基于多分辨率分析的模拟电路故障诊断[J].微计算机信息,2008,8-1(24):193-194.
    [88]钱贺.主分量法在机械设备故障诊断方法中的应用[D].北京:华北电力大学,2006.
    [89]俞星,尹洪胜,张敏,于宁宁,刘秀英,高飞.基于主分量和小波分析的煤矿主通风机故障诊断研究[J].煤矿机械,2010,31(4):238-240.
    [90] Scholkopf B, Smola A, Müller K R. Nonlinear Component Analysis as a Kernel EigenvalueProblem[J]. Neural Computation,1998,10(5):1299:1319.
    [91]邓晓刚,田学民.一种基于KPCA的非线性故障诊断方法[J].山东大学学报(工学版),2005,35(3):103-106.
    [92]孙丽萍,陈果,谭真臻.基于核主成分分析的小波尺度谱图像特征提取[J].交通运输工程学报,2009,9(5):62-66.
    [93](英)Nello Cristianini, John Shawe-Taylor著,李国正,王猛,曾华军译.支持向量机导论[M].电子工业出版社,2004.
    [94]曹丽娟.小波分析在信号诊断中的应用[D].北京:华北电力大学,2008.
    [95]赵永平,孙健国.一类非平坦函数的多核最小二乘支持向量机的鲁棒回归算法[J].信息与控制,2008,37(2):160-165.
    [96]郭创新,朱承治,张琳等.应用多分类多核学习支持向量机的变压器故障诊断方法[J].中国电机工程学报,2010,30(13):128-134.
    [97]肖永良,夏利民.基于局部多核支持向量机的视频镜头边界检测[J].信息与控制,2011,40(3):381-386.
    [98] Nakajima S, Binder A, Muller C, et al. Multiple kernel learning for object classifications.Proceedings of Technical Report on Information-Based Induction Sciences2009[C]. Tokyo,Japan: Japanese Society of Applied Mathematics,2009.1~8.
    [99] Kloft M, Brefeld U, Sonnenburg S, et al. Efficient and accurate lp-norm MKLs.Proceedings of Advances in Neural Information Processing Systems[C]. Cambridge, USA:MIT Press,2009.997~1005.
    [100]Kressel U. Pair wise classification and support vector machines. In B.Scholkopf,Advances in Kemel Methods-Support Vector Leaming, MIT Press, Cambrifge,Massachusetts,1999,255-268.
    [101]Platt J, Cristianini N, Shawe-Taylor J. Large margin DAGs for multiclass classification. In:Advances in neural information processing systems, Massachusetts: MIT Press,2000.
    [102]刘爱伦,袁小艳,俞金寿.基于KPCA-SVC的复杂过程故障诊断[J].仪器仪表学报,2007,28(5):870-874.
    [103]Vapnik V.N. The nature of statistical learning theory. New York Springer Verlag,1995.
    [104]I.Guyon, J.Weston, S.Barnhiii, etal. Gene selection for cancer classification using supportvector machines[J]. Machine Learning,2002,46:389-422.
    [105]LIU Xianglou, JIA Dongxu, LI Hui. Research on Kernel parameter optimization of supportvector machine in speaker recognition[J]. Science Technology and Engineering,2010,10(7):1669-1673.
    [106]EBERHARTR, KENNEY J. A new optimizer using particle swarm theory[C]. Proc of thesixth International Symposium on Micro Machine and Human Science, Piscataway, USA,1995:39-43.
    [107]CHEN PW, WANG JY, LEE H. Model selection of SVMs using GA approach[C]. Proc of2004IEEE Int Joint Confon Neural Networks, Piscataway, USA,2004:2035-2040.
    [108]Xianlun Tang, Ling Zhuang, Changjiang Jiang.Prediction of silicon content in hot metalusing support vector regression based on chaos particle swarm optimization[J].ExpertSystems with Applications,2009,36(9):11853-11857.
    [109]田婷,贺利乐.混沌粒子群算法在电液伺服阀优化设计中的应用[J].机械设计与制造,2010,(8):74-76.
    [110]黄炜斌,马光文,王和康,李佳,王立明.混沌粒子群算法在水库中长期优化调度中的应用[J].水力发电学报,2010,29(1):102-105.
    [111]杨瑞连,曾光明,李晓东.混沌粒子群算法在水污染控制系统规划中的应用[J].环境工程学报,2010,4(12):2679-2681.
    [112]姬张建,袁运斌,盛传贞.沌粒子群支持向量机并考虑地形改正的GPS高程拟合[J].大地测量与地球动力学,2010,30(2):95-98.
    [113]盛煜翔,潘海天,夏陆岳,蔡亦军,孙小方.混合混沌粒子群算法在苯与甲苯闪蒸过程优化中的应用[J].浙江工业大学学报,2010,38(3):318-321.
    [114]任文进,钟清流.基于混沌粒子群的支持向量机参数优化[J].科学技术与工程,2007,7(18):4597-4599.
    [115]刘维亭,范洲远.基于混沌粒子群算法的无线传感器网络覆盖优化[J].计算机应用,2011,31(2):338-340.
    [116]仇国庆,唐贤伦,庄陵,杨志龙.基于混沌粒子群优化的神经网络在旋转机械故障诊断中的应用[J].中国机械工程,2008,19(21):2642-2645.
    [117]王燕,孙向风,李明.基于混沌粒子群优化的支持向量机训练方法[J],计算机工程,2010,36(23):189-191.
    [118]周习祥,李加升,杨赛良.基于混沌粒子群优化算法的数字PID参数整定[J].电力电子技术,2010,44(10):62-64.
    [119]Xianlun Tang, Ling Zhuang, Jun Cai, Changbing Li.Multi-fault classification based onsupport vector machine trained by chaos particle swarm optimization[J].Knowledge-BasedSystems,2010,23(5):486-490.
    [120]Bilal Alatas, Erhan Akin, A. Bedri Ozer.Chaos embedded particle swarmoptimizationalgorithms[J]. Chaos, Solitons&Fractals,2009,40(4):1715-1734.
    [121]Bo Liu, Ling Wang, Yi-Hui Jin, Fang Tang, De-Xian Huang.Improved particle swarmoptimization combined with chaos[J]. Chaos, Solitons&Fractals,2005,25(5):1261-1271.
    [122]Bilal Alatas, Erhan Akin, A. Bedri Ozer.Chaos embedded particle swarm optimizationalgorithms[J]. Chaos, Solitons&Fractals,2009,40(4):1715-1734.
    [123]Qian-jin Guo, Hai-bin Yu, Ai-dong Xu.A hybrid PSO-GD based intelligent method formachine diagnosis[J]. Digital Signal Processing,2006,16(4):402-418.
    [124]林玉娥.粒子群优化算法的改进及其在管道保温优化设计中的应用[D].大庆:大庆石油学院,2006.
    [125]K.W. Chau.Application of a PSO-based neural network in analysis of outcomes ofconstruction claims[J]. Automation in Construction,2007,16(5):642-646.
    [126]Ying-Pin Chang, Chia-Nan Ko.A PSO method with nonlinear time-varying evolution basedon neural network for design of optimal harmonic filters[J]. Expert Systems withApplications,2009,36(3):6809-6816.
    [127]Jialin Zhou, Zhengcheng Duan, Yong Li, Jianchun Deng, Daoyuan Yu.PSO-based neuralnetwork optimization and its utilization in a boring machine[J]. Journal of MaterialsProcessing Technology,2006,178(1-3):19-23.
    [128]Malhi A, Gao RX. PCA-based feature selection scheme for machine defect classification.IEEE Trans Instrum Meas2004;53:1517-1525.
    [129]He Q, Yi-bing L, Peng L. Kernel principal components analysis for early identification ofgear tooth crack. In: IEEE Proceedings of the6th World Congress on Intelligent Control andAutomation;2006; Dalian: IEEE. pp.5748-5751.
    [130]Suykens J A K, Lukas L, Vandewalle J. Sparse approximation using least squares supportvector machines [A]. Proceedings of the2000IEEE International Symposium on Circuitsand Systems[C]. Piscataway, NJ, USA: IEEE,2000.757~760.
    [131]de Kruif B J, de Vries T J A. Pruning error minimization in least squares support vectormachines [J].IEEE Transactions on Neu2ral Networks,2003,14(3):696~702.
    [132]Zeng X Y, Chen X W. SMO2based pruning methods for sparse least squares support vectormachines [J]. IEEE Transactions on Neural Networks,2005,16(6):1541~1546.
    [133]Suykens J A K, De Brabanter J, Lukas L, et al. Weighted least squares support vectormachines[J]. Robustness and sparse approximation,2002,48(1-4):85~105.
    [134]R Naderi, A Rahmati. Phase-shifted carrier PWM technique for general cascadedinverters[J]. IEEE Trans. Power Electron.,2008,23(3):1257-1269.
    [135]Peng, F.Z., Jin Wang. A universal STATCOM with delta-connected cascade multilevelinverter. Power Electronics Specialists Conference,2004. PESC04.2004IEEE35thAnnual,Volume5,20-25June2004:3529–3533.
    [136]王鸿雁,陈阿莲,邓焰等.基于控制自由度组合的多电平逆变器载波PWM控制方法[J].中国电机工程学报,2004.24(1):131-136.
    [137]陈增禄,毛惠丰,周炳根等.SPWM数字化自然采样法的理论及应用研究[J].中国电机工程学报,2005,25(1):32-37.
    [138]王长永,张仲超.级联型相移SPWM变流器及其在有源电力滤波器中的应用[J].电力系统自动化,2001,25(1):28-30.
    [139]Jana K C, Biswas S K, Thakura P. A simple and generalized space vector PWM control ofcascaded H-bridge multilevel inverters[C]//IEEE International conference on digital objectidentifier. Mumbai,2006:1281-1286.
    [140]Trabelsi M, Ben-Brahim L, Yokoyama T, et al. An improved SVPWM method formultilevel inverters[C]//Power Electronics and Motion Control Conference,201215thInternational Digital Object Identifier. Novi Sad,2012: LS5c.1-1-LS5c.1-7.
    [141]任明炜,饶翔.链式STATCOM的SVPWM方法分析与实现[J].电力电子技术,2010,44(8):41-43.
    [142]L Asiminoaei, P Rodriguez, F Blaabjerg. Application of discontinuous PWM modulation inactive power filters[J]. IEEE Trans. Power Electron.,2008,23(4):1692-1706.
    [143]N V Nguyen, B X Nguyen, H H Lee. An optimized discontinuous PWM method tominimize switching loss for multilevel inverters[J]. IEEE Trans. Ind. Electron.,2011,58(9):3958-3966.
    [144]于飞,张晓峰,李槐树等.基于零序偏移时间的低耗高性能PWM控制方法[J].电力系统自动化,2005,29(2):39-44.
    [145]Ojo O. The generalized discontinuous PWM scheme for three-phase voltage sourceinverters[J]. IEEE Transactions on Industrial Electronics,2004,51(6):1280-1289.
    [146]马丰民,吴正国,侯新国.基于统一PWM调制器的随机空间矢量调制[J].中国电机工程学报,2007,27(7):98-102.
    [147]文小玲,尹项根,张哲.三相逆变器统一空间矢量PWM实现方法[J].电工技术学报,2009,24(10):87-93.
    [148]史喆,石新春.级联型逆变器的一种新型SVPWM方法[J].电工技术学报,2005,20(10):30-97.
    [149]黄本润,夏立,吴正国.H桥级联多电平逆变器相移SVPWM技术的研究[J].通信电源技术,2011,28(3):21-24.
    [150]韦力,靳坤,王明山.一种新型SVPWM调制方法的研究与实现[J].电测与仪表,2010,47(532):9-12.
    [151]Kolar J, Ertl H, Zach F. Influence of the modulation method on the conduction andswitching losses of a PWM converter system[J]. IEEE Transactions on Industry Application,1991,27(6):1063-1075.
    [152]D Grahame Holmes, Thomas A Lipo. Pulse width modulation for power converters:principles and practice[M]. Wiley-IEEE Press,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700