用户名: 密码: 验证码:
硅衬底氮化镓基黄光LED外延生长与器件性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来, GaN基LED发展迅速,开启了半导体照明的时代,使LED进入了人们的生活,被大众所熟悉。然而,半导体照明的普及还有很长的路要走。目前白光照明都是基于蓝光LED激发荧光粉模式,其效率较低、成本偏高且色品质不足。如果不用荧光粉,仅使用不同颜色的高效LED配色形成白光,发光效率将会有较大的提升空间,照明品质也会得到大幅改善。而实现配色白光照明的关键在于提高长波段LED的发光效率,特别是黄光LED的效率。本文选取在Si衬底上研发GaN基黄光LED,目的是从最常规的方式入手,利用现有成熟的设备、源料和工艺,在目前蓝光和绿光的基础上探索新的器件结构和生长条件,用简单易行的方法提高GaN基黄光LED的发光效率。
     首先对黄光LED的生长工艺和外延结构进行了创新:利用AlN插入层改善GaN晶体质量,利用AlGaN渐变缓冲层调整GaN应力,通过升高温度改善量子阱质量,引入应力准备层减小量子阱的应力,引入V型坑屏蔽位错和释放应力,优化生长条件降低C污染,成功地在Si衬底上生长出GaN黄光LED外延材料。
     对外延材料的各项性质进行了表征:测试了XRD摇摆曲线,计算了GaN中的位错密度;使用TEM观察了缓冲层、量子阱和V型坑的界面,分析了位错与界面状态的成因;测量了GaN的晶格常数和倒易空间mapping,研究了GaN与量子阱的应力状态;测量并拟合了各外延层的厚度与组分。
     研究了Si衬底上GaN基黄光LED的器件性能:室温35A/cm2电流密度下,通350mA电流,器件的发光波长为566nm,电压为3.23V,光输出功率为72mW,对应外量子效率高达9.4%,低电流密度下外量子效率最高达到22.2%,该结果优于文献报道水平。对比了Si衬底蓝、绿、黄三种波段LED的波长飘移,提出了量化计算压电场屏蔽和能带填充对波长飘移影响的方法,把波长随电流密度飘移的主要原因归结于压电场屏蔽。研究了GaN基黄光LED变温变电流EL光谱,观察到低温大电流下3个新的子发光峰,建立了空穴泄漏模型,将其分别归结于V型坑侧壁量子阱,蓝光应力准备阱、In0.04Ga0.96N/GaN超晶格等三个区域的发光。
     研究了GaN基蓝、绿、黄三种波段LED效率的三种droop特性,把效率随电流密度droop的主要原因归结于应力引起的压电场;把效率随温度droop的主要原因归结为缺陷引起的非辐射复合;把效率随波长droop的主要原因归结为In组分升高引起的应力增大与缺陷增多。从能量转换的角度解释了LED的效率droop的原因,即载流子与环境的能量交换(吸收或释放能量)会延长载流子辐射复合寿命,降低发光效率。此外,还对比了AlGaInP与GaN基黄光LED的性能差异,观察到前者发光效率与发光波长的温度稳定性明显不如后者,因此,GaN基取代AlGaInP基是黄光LED发展的必然趋势。
     本论文研究结果表明,Si衬底GaN基LED不但在蓝、绿光范围内具有很高的发光效率,而且在长波段范围也具备很大的发展潜力。相信在在不久的将来,随着技术的进步,GaN基黄光LED效率必定会得到大幅提升,使用高效LED配色实现白光照明将成为现实。
Recent years, the rapid development of GaN based LEDs starts an age of solidstate lighting, LEDs come into people’s lives and be known by more and morepeople. However, there is still a long way to go for solid state lighting, the currentwhite lighting is based on phosphor conversion which has a relatively low efficiency,high cost and insufficient illumination quality. If we mix high efficient LEDs withmultiple colors to obtain white light, there will be huge potential on efficiencyimprovement with much better illumination quality. The key issue for realization ofcolor mixing is to enhance the efficiency of LEDs in long wavelength range,especially the yellow LEDs. In this study, we choose to research GaN based yellowLED on Si substrate, the purpose is to use the conventional method, utilize currentmature equipment, source materials and epitaxial growth technologies, optimize thedevice structure and growth technology on the basis of blue and green LEDs toenhance the efficiency of GaN based yellow LEDs in a simple way.
     The paper begins with epitaxial growth, introduces many methods to optimizethe growth technology and epitaxial structure for yellow LEDs:use AlN interlayersto improve crystal quality of GaN and AlGaN step buffers to modulate the stress inGaN; improve the quality of quantum wells by increasing growth temperature,introduce blue quantum wells as prestrained layer to release stress, introduceV-defects to screen dislocations, optimize growth conditions to reduce carboncontamination, and finally, we successfully grow high brightness GaN based yellowLED on Si substrate.
     The epitaxial properties of as grown wafer were investigated. Dislocationdensities were calculated by rocking curve measurement, the interfaces and defectsof buffer layers, MQWs and V-defects were studied by TEM, the stress within GaNand MQWs were analyzed by XRD reciprocal space mapping, thickness andcomposition of the layers were measured and simulated.
     We test the device properties of GaN based yellow LEDs on Si substrate, atroom temperature and350mA driven current, the LED emits72mW yellow lightwith a wavelength of567nm, whereas the external quantum efficiency (EQE) is 9.4%, and the EQE reaches22.2%at a small current density, the results are of highlevel around the world. Higher voltage observed at a lower temperature is explainedby the carrier transportation mechanism. We also conclude that the main factoraffecting wavelength shift is screening of polarization field, and a method is set upto evaluate the effects of screening and band filling on wavelength shift. Three sidepeaks are observed on the El spectra which are determined to be originated from theside wall of V-defects, the prestrained blue MQWs and the supper lattice,respectively, a model of hole leakage is introduced to explain the phenomenon.
     Finally, we study the similarities and differences on droop behavior amongGaN based blue, green and yellow LEDs. Through the study, we conclude that: thedroop of efficiency with current density can be attributed to polarization field, thedroop of efficiency with temperature can be attributed defect related non-radiativerecombination, and the droop of efficiency with wavelength is mainly attributed toincreasing of stress and defects due to increment of indium content. We setup a newmodel to explain the droop mechanism in the view point of energy conversion, thatis any energy transferring process will increase carriers’ recombination life time,which lower the efficiency. Besides, the efficiency droop between AlGaInP and GaNbased LEDs is compared. We observed that the GaN based LEDs’ efficiencystability as well as wavelength stability versus temperature is much better than thoseof AlGaInP based LEDs, thus we predict that GaN will replace AlGaInP and takedominant in yellow emission range.
     This study reveals that GaN based LEDs on Si substrate have not only highefficiency on blue and green emission range, but also great potential in longwavelength range. With the development of technology, we believe that theefficiency of GaN based yellow LED will be greatly enhance in the near future,whereas the color mixing white lighting will become true.
引文
[1] Kong Hua‐Shuang, Ibbetson James and Edmond John. Status of GaN/SiC‐based LEDsand their application in solid state lighting [J]. physica status solidi (c),2014,
    [2] Thejokalyani N and Dhoble SJ. Novel approaches for energy efficient solid state lighting byRGB organic light emitting diodes–A review [J]. Renewable and Sustainable Energy Reviews,2014,32448-467.
    [3] Wierer Jonathan J, Tsao Jeffrey Y and Sizov Dmitry S. The potential of III‐nitride laserdiodes for solid‐state lighting [J]. physica status solidi (c),2014,
    [4] DenBaars Steven P, Feezell Daniel, Kelchner Katheryn, et al. Development ofgallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lightingand displays [J]. Acta Materialia,2013,61(3):945-951.
    [5] Sabzalian Mohammad R, Heydarizadeh Parisa, Zahedi Morteza, et al. High performance ofvegetables, flowers, and medicinal plants in a red-blue LED incubator for indoor plantproduction [J]. Agronomy for Sustainable Development,2014,1-8.
    [6] Alferov Zhores. Heterostructures for Optoelectronics: History and Modern Trends [J].2013,
    [7] Cho Jaehee, Schubert E Fred and Kim Jong Kyu. Efficiency droop in light‐emitting diodes:Challenges and countermeasures [J]. Laser&Photonics Reviews,2013,7(3):408-421.
    [8] Xie Rong-Jun and Hirosaki Naoto, in III-Nitride Based Light Emitting Diodes andApplications (Springer,2013), pp.291-326.
    [9] Chen Ching-Yi, Yang Tsung-Hsun, Hsu Chien-Hung, et al. High-efficiency White LEDPackaging with Reduced Phosphor Concentration [J].2013,
    [10] Department of Energy, Solid State Lighting Research and Development, Multi-YearProgram Plan [J].2012,
    [11] Yan Bohan, You Jiun-Pyng, Tran Nguyen T, et al, presented at the Advanced PackagingMaterials (APM),2013IEEE International Symposium on,2013(unpublished).
    [12] Yuan Fei, Pan Kailin, Chen Shujing, et al, presented at the Electronic PackagingTechnology (ICEPT),201314th International Conference on,2013(unpublished).
    [13] Hung Chih Ching, Hsieh Chi Chang, Li Yan Huei, et al. LED Color Mixing MechanismDesign [J]. Applied Mechanics and Materials,2013,2842894-2898.
    [14] Moreno Ivan, Rodriguez Nayeli and Basilio Jose Carlos, presented at the SPIE OpticalEngineering+Applications,2013(unpublished).
    [15] Liu Peng, Wang Huihui, Wu Rengmao, et al. Uniform illumination design by configurationof LEDs and optimization of LED lens for large-scale color-mixing applications [J]. Appliedoptics,2013,52(17):3998-4005.
    [16] Chen Xinlian, Kong Fanmin, Li Kang, et al. Study of light extraction efficiency of flip-chipGaN-based LEDs with different periodic arrays [J]. Optics Communications,2014,31490-96.
    [17] Saito Shinji, Hashimoto Rei, Hwang Jongil, et al. InGaN Light-Emitting Diodes on c-FaceSapphire Substrates in Green Gap Spectral Range [J]. Applied Physics Express,2013,6(11):111004.
    [18] Oh Jeong Rok, Cho Sang-Hwan, Oh Ji Hye, et al. The realization of a whole palette ofcolors in a green gap by monochromatic phosphor-converted light-emitting diodes [J]. Opticsexpress,2011,19(5):4188-4198.
    [19] Park Il-Kyu and Park Seong-Ju. Green Gap Spectral Range Light-Emitting Diodes withSelf-Assembled InGaN Quantum Dots Formed by Enhanced Phase Separation [J]. AppliedPhysics Express,2011,4(4):042102.
    [20] Tan Cher Ming and Lai Chao Sung. Systematic Root Cause Analysis for GaP Green LightLED Degradation [J]. Device and Materials Reliability, IEEE Transactions on,2013,13(1):156-160.
    [21] Gontaruk ON, Kovalenko AV, Konoreva OV, et al. Electroluminescence of CommercialGap Green-Light-Emitting Diodes [J]. Journal of Applied Spectroscopy,2014,1-4.
    [22] Davies Matthew J, Dawson Philip, Massabuau Fabien C‐P, et al. The effects of varyingthreading dislocation density on the optical properties of InGaN/GaN quantum wells [J]. physicastatus solidi (c),2014,
    [23] Li Zhi, Kang Junjie, Wang Bo Wei, et al. Two distinct carrier localization in greenlight-emitting diodes with InGaN/GaN multiple quantum wells [J]. Journal of Applied Physics,2014,115(8):083112.
    [24] Liu Tong, Jiao Shujie, Wang Dongbo, et al. Growth and characterization of quaternaryAlInGaN multiple quantum wells with different aluminum composition [J]. Applied SurfaceScience,2014,
    [25] Rabinovich OI. III-V heterostructure simulation and investigation [J]. Journal of Alloys andCompounds,2014,586S258-S261.
    [26] Ong Anna. STUDY ON THE LIGHT EMITTING DIODE (LED) INDUSTRY PART ONE:INTRODUCTION ON LED [J].2010,
    [27] Rodrigues WA, Morais LMF, Donoso-Garcia PF, et al, presented at the Power ElectronicsConference (COBEP),2011Brazilian,2011(unpublished).
    [28] El-Zein Nada. The LED Lighting Revolution [J]. Sustainability, Energy and Architecture:Case Studies in Realizing Green Buildings,2013,171.
    [29] Narukawa Yukio, Ichikawa Masatsugu, Sanga Daisuke, et al. White light emitting diodeswith super-high luminous efficacy [J]. Journal of physics D: Applied physics,2010,43(35):354002.
    [30] Ahn Byung-Lip, Jang Cheol-Yong, Leigh Seung-Bok, et al. Effect of LED lighting on thecooling and heating loads in office buildings [J]. Applied Energy,2014,1131484-1489.
    [31] Liu Zhaojun, Ma Jun, Huang Tongde, et al. Selective epitaxial growth of monolithicallyintegrated GaN-based light emitting diodes with AlGaN/GaN driving transistors [J]. AppliedPhysics Letters,2014,104(9):091103.
    [32] Bhardwaj Sachin, Ozcelebi T and Lukkien Johan, presented at the Pervasive Computingand Communications Workshops (PERCOM Workshops),20108th IEEE InternationalConference on,2010(unpublished).
    [33] Liu Dan and Yu Hong. Smart Control for Wireless Indoor Lighting System Based onZigBee Technology [J]. Advanced Materials Research,2014,898792-796.
    [34] Kim Nammoon, Jing Changqiang, Zhou Biao, et al. Smart Parking Information SystemExploiting Visible Light Communication [J].2014,
    [35] Van Driel WD, Yuan CA, Koh S, et al, presented at the Thermal, Mechanical andMulti-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE),201112th International Conference on,2011(unpublished).
    [36] Shailesh KR, Kurian Ciji Pearl and Kini Savitha G. Solid State Lighting Reliability fromFailure Mechanisms Perspective: A Review of Related Literature [J]. International Journal ofSemiconductor Science&Technology,2012,3(1):43-50.
    [37] Guo Yu, Pan Kailin, Chen Shujing, et al, presented at the Electronic Packaging Technology(ICEPT),201314th International Conference on,2013(unpublished).
    [38] Pecht Michael, Das Diganta and Chang Moon-Hwan, in Thermal Management for LEDApplications (Springer,2014), pp.3-14.
    [39] Ye S, Xiao F, Pan YX, et al. Phosphors in phosphor-converted white light-emitting diodes:Recent advances in materials, techniques and properties [J]. Materials Science and Engineering:R: Reports,2010,71(1):1-34.
    [40] Sommer Christian, Hartmann Paul, Pachler Peter, et al. White light quality of phosphorconverted light-emitting diodes: A phosphor materials perspective of view [J]. Journal of Alloysand Compounds,2012,520146-152.
    [41] Nishiura S, Tanabe S, Fujioka K, et al. Properties of transparent Ce: YAG ceramicphosphors for white LED [J]. Optical Materials,2011,33(5):688-691.
    [42] Huang Chien-Hao and Chen Teng-Ming. A novel single-composition trichromaticwhite-light Ca3Y (GaO)3(BO3)4: Ce3+, Mn2+, Tb3+phosphor for UV-light emitting diodes[J]. The Journal of Physical Chemistry C,2011,115(5):2349-2355.
    [43] da Silva Cosmo M, Gouveia-Neto Artur S and Bueno Luciano A, presented at the SPIEOPTO,2014(unpublished).
    [44] Yang Chiu Jung, Huang Chien Sheng, Chen Chih Wei, et al. The Color Mixing White-LightLEDs [J]. Applied Mechanics and Materials,2013,378440-443.
    [45] Teupner Anne, Bergenek Krister, Wirth Ralph, et al, presented at the SPIE OPTO,2014.
    [46] Moreno Ivan and Rodriguez Nayeli. Multifunctional LED packaging for simple,color-tunable spotlights [J]. SPIE Newsroom,2013,1-2.
    [47] Hung Po-Chieh and Tsao Jeffrey Y. Maximum white luminous efficacy of radiation versuscolor rendering index and color temperature: Exact results and a useful analytic expression [J].Display Technology, Journal of,2013,9(6):405-412.
    [48] Paskova Tanya and Evans Keith R. GaN substrates—progress, status, and prospects [J].Selected Topics in Quantum Electronics, IEEE Journal of,2009,15(4):1041-1052.
    [49] Zheludev Nikolay. The life and times of the LED—a100-year history [J]. Nature Photonics,2007,1(4):189-192.
    [50] Goodfellow RC and Mabbitt AW. Wide-bandwidth high-radiance gallium-arsenidelight-emitting diodes for fibre-optic communication [J]. Electronics Letters,1976,12(2):50-51.
    [51] Horng RH, Wuu DS, Wei SC, et al. AlGaInP light-emitting diodes with mirror substratesfabricated by wafer bonding [J]. Applied Physics Letters,1999,75(20):3054-3056.
    [52] Seo Jae Won, Oh Hwa Sub and Kwak Joon Seop. High-efficiency vertical AlGaInPlight-emitting diodes with conductive omni-directional reflectors [J]. Current Applied Physics,2011,11(3): S385-S387.
    [53] Shim Jong-In, Han Dong-Pyo, Kim Hyunsung, et al. Efficiency droop in AlGaInP andGaInN light-emitting diodes [J]. Applied Physics Letters,2012,100(11):111106-4.
    [54] Razeghi M. III-Nitride Optoelectronic Devices: From Ultraviolet Toward Terahertz [J].Photonics Journal, IEEE,2011,3(2):263-267.
    [55] Kneissl M, Kolbe T, Chua C, et al. Advances in group III-nitride-based deep UVlight-emitting diode technology [J]. Semiconductor Science and Technology,2011,26(1):014036.
    [56] Wierer Jonathan J, Sizov Dmitry S, Neumann Alexander, et al, presented at the CLEO:Science and Innovations,2013(unpublished).
    [57] Schubert E. Fred, Light-Emitting Diodes2006.
    [58] Langer Torsten, Kruse Andreas, Ketzer Fedor Alexej, et al. Origin of the “green gap”:Increasing nonradiative recombination in indium‐rich GaInN/GaN quantum well structures [J].physica status solidi (c),2011,8(7‐8):2170-2172.
    [59] Wetzel Christian and Detchprohm Theeradetch. Closing the “Green Gap” in LED materials[J]. Energy (eV),2009,22.25.
    [60] Diodes Novel Green Light Emitting.
    [61] Deng Zhen, Jiang Yang, Ma Ziguang, et al. A novel wavelength-adjusting method inInGaN-based light-emitting diodes [J]. Scientific reports,2013,3
    [62] Zhao Hongping, Liu Guangyu, Arif Ronald A, et al. Current injection efficiency inducedefficiency-droop in InGaN quantum well light-emitting diodes [J]. Solid-State Electronics,2010,54(10):1119-1124.
    [63] Piprek Joachim. Efficiency droop in nitride‐based light‐emitting diodes [J]. physicastatus solidi (a),2010,207(10):2217-2225.
    [64] Zakheim DA, Pavluchenko AS, Bauman DA, et al. Efficiency droop suppression in InGaN‐based blue LEDs: Experiment and numerical modelling [J]. physica status solidi (a),2012,209(3):456-460.
    [65] Wang CH, Ke CC, Lee CY, et al. Hole injection and efficiency droop improvement inInGaN/GaN light-emitting diodes by band-engineered electron blocking layer [J]. AppliedPhysics Letters,2010,97(26):261103.
    [66] Akyol F, Nath DN, Krishnamoorthy S, et al. Suppression of electron overflow andefficiency droop in N-polar GaN green light emitting diodes [J]. Applied Physics Letters,2012,100(11):111118.
    [67] Chung Roy B, Han Changseok, Pan Chih-Chien, et al. The reduction of efficiency droop byAl0.82In0.18N/GaN superlattice electron blocking layer in (0001) oriented GaN-based lightemitting diodes [J]. Applied Physics Letters,2012,101(13):131113.
    [68] Wang Jiaxing, Wang Lai, Wang Lei, et al. An improved carrier rate model to evaluateinternal quantum efficiency and analyze efficiency droop origin of InGaN based light-emittingdiodes [J]. Journal of Applied Physics,2012,112(2):023107.
    [69] Meyaard David S, Lin Guan-Bo, Cho Jaehee, et al. Identifying the cause of the efficiencydroop in GaInN light-emitting diodes by correlating the onset of high injection with the onset ofthe efficiency droop [J]. Applied Physics Letters,2013,102(25):251114.
    [70] Meyaard David S, Lin Guan-Bo, Ma Ming, et al. GaInN light-emitting diodes usingseparate epitaxial growth for the p-type region to attain polarization-inverted electron-blockinglayer, reduced electron leakage, and improved hole injection [J]. Applied Physics Letters,2013,103(20):201112.
    [71] Hafiz Shopan, Zhang Fan, Monavarian Morteza, et al, presented at the SPIE OPTO,2014(unpublished).
    [72] Guo Wei, Zhang Meng, Bhattacharya Pallab, et al. Auger recombination in III-nitridenanowires and its effect on nanowire light-emitting diode characteristics [J]. Nano letters,2011,11(4):1434-1438.
    [73] Kioupakis Emmanouil, Rinke Patrick, Delaney Kris T, et al, presented at the APS MeetingAbstracts,2011(unpublished).
    [74] Kioupakis Emmanouil, Rinke Patrick, Delaney Kris T, et al. Indirect Auger recombinationas a cause of efficiency droop in nitride light-emitting diodes [J]. Applied Physics Letters,2011,98(16):161107.
    [75] Kioupakis Emmanouil, Yan Qimin and Van de Walle Chris G. Interplay of polarizationfields and Auger recombination in the efficiency droop of nitride light-emitting diodes [J].Applied Physics Letters,2012,101(23):231107.
    [76] Binder M, Nirschl A, Zeisel R, et al. Identification of nnp and npp Auger recombination assignificant contributor to the efficiency droop in (GaIn) N quantum wells by visualization of hotcarriers in photoluminescence [J]. Applied Physics Letters,2013,103(7):071108.
    [77] Iveland Justin, Martinelli Lucio, Peretti Jacques, et al. Direct measurement of Augerelectrons emitted from a semiconductor light-emitting diode under electrical injection:identification of the dominant mechanism for efficiency droop [J]. Physical review letters,2013,110(17):177406.
    [78] Perretti Jacques, Weisbuch Claude, Iveland Justin, et al, presented at the SPIE OPTO,2014(unpublished).
    [79] Wang CH, Chen JR, Chiu CH, et al. Temperature-dependent electroluminescence efficiencyin blue InGaN–GaN light-emitting diodes with different well widths [J]. Photonics TechnologyLetters, IEEE,2010,22(4):236-238.
    [80] Meyaard David S, Shan Qifeng, Cho Jaehee, et al. Temperature dependent efficiency droopin GaInN light-emitting diodes with different current densities [J]. Applied Physics Letters,2012,100(8):081106-081106-3.
    [81] Rao Feng, Ge Zhi Chen and Zhu Jin Lian. Effect of Temperature and Current on LuminousEfficiency of High Power LED [J]. Advanced Materials Research,2012,347310-313.
    [82] Chen J-R, Wu Y-C, Ling S-C, et al. Investigation of wavelength-dependent efficiency droopin InGaN light-emitting diodes [J]. Applied Physics B,2010,98(4):779-789.
    [83] Shin Dong-Soo, Han Dong-Pyo, Oh Ji-Yeon, et al. Study of droop phenomena inInGaN-based blue and green light-emitting diodes by temperature-dependentelectroluminescence [J]. Applied Physics Letters,2012,100(15):153506.
    [84] Nakamura Shuji, Senoh Masayuki, Iwasa Naruhito, et al. High-Brightness InGaN Blue,Green and Yellow Light-Emitting Diodes with Quantum Well Structures [J]. Japanese Journal ofApplied Physics,1995,34(Part2, No.7A): L797.
    [85] Funato Mitsuru, Ueda Masaya, Kawakami Yoichi, et al. Blue, Green, and AmberInGaN/GaN Light-Emitting Diodes on Semipolar {11-22} GaN Bulk Substrates [J]. JapaneseJournal of Applied Physics,2006,45(26): L659.
    [86] Sato Hitoshi, Chung Roy B., Hirasawa Hirohiko, et al. Optical properties of yellowlight-emitting diodes grown on semipolar (11-22) bulk GaN substrates [J]. Applied PhysicsLetters,2008,92(22):221110-3.
    [87] Yamamoto Shuichiro, Zhao Yuji, Pan Chih-Chien, et al. High-EfficiencySingle-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar (20-21)GaN Substrates [J]. Applied Physics Express,2010,3(12):122102.
    [88] Park Il-Kyu, Kwon Min-Ki, Baek Sung-Ho, et al. Enhancement of phase separation in theInGaN layer for self-assembled In-rich quantum dots [J]. Applied Physics Letters,2005,87(6):-.
    [89] Park Il-Kyu, Kwon Min-Ki, Kim Jeom-Oh, et al. Green light-emitting diodes withself-assembled In-rich InGaN quantum dots [J]. Applied Physics Letters,2007,91(13):133105-3.
    [90] Soh C. B., Liu W., Hartono H., et al. Enhanced optical performance of amber emittingquantum dots incorporated InGaN/GaN light-emitting diodes with growth on UV-enhancedelectrochemically etched nanoporous GaN [J]. Applied Physics Letters,2011,98(19):-.
    [91] Lv Wenbin, Wang Lai, Wang Jiaxing, et al. InGaN/GaN multilayer quantum dotsyellow-green light-emitting diode with optimized GaN barriers [J]. Nanoscale Research Letters,2012,7(1):1-8.
    [92] Akyol Fatih, Nath Digbijoy N., uuml, et al. N-Polar III-Nitride Green (540nm) LightEmitting Diode [J]. Japanese Journal of Applied Physics,50(5):052101.
    [93] Delage SL and Dua Christian. Wide band gap semiconductor reliability: status and trends[J]. Microelectronics Reliability,2003,43(9-11):1705-1712.
    [94]邝海,刘军林,程海英, et al.转移基板材质对Si衬底GaN基LED芯片性能的影响[J].光学学报,2009,28(1):143-145.
    [95] Jeong Seong-Muk, Kissinger Suthan, Kim Dong-Wook, et al. Characteristic enhancementof the blue LED chip by the growth and fabrication on patterned sapphire (0001) substrate [J].Journal of Crystal Growth,2010,312(2):258-262.
    [96] Xiao-Hui Huang, Jian-Ping Liu, Ya-Ming Fan, et al. Improving InGaN-LED performanceby optimizing the patterned sapphire substrate shape [J]. Chinese Physics B,2012,21(3):037105.
    [97] Kawai Ryosuke, Kondo Toshiyuki, Suzuki Atushi, et al. Realization of extreme lightextraction efficiency for moth‐eye LEDs on SiC substrate using high‐reflection electrode [J].physica status solidi (c),2010,7(7‐8):2180-2182.
    [98] Chen P, Zhang R, Zhao ZM, et al. Growth of high quality GaN layers with AlN buffer on Si(111) substrates [J]. Journal of Crystal Growth,2001,225(2):150-154.
    [99] Hageman PR, Haffouz S, Kirilyuk Victoria, et al. High quality GaN layers on Si (111)substrates: AlN buffer layer optimisation and insertion of a SiN intermediate layer [J].PHYSICA STATUS SOLIDI A APPLIED RESEARCH,2001,188(1/2):523-526.
    [100] Pan Xu, Wei Meng, Yang Cuibai, et al. Growth of GaN film on Si (111) substrate usingAlN sandwich structure as buffer [J]. Journal of Crystal Growth,2011,318(1):464-467.
    [101] Xu Zhongjie, Zhang Lixia, He Hongtao, et al. Growth of GaN on Si (111): Surfaces andcrystallinity of the epifilms and the transport behavior of GaN/Si heterojunctions [J]. Journal ofApplied Physics,2011,110(9):093514.
    [102] Liu Junlin, zhang Jianli, Mao Qinghua, et al. Effects of AlN interlayer on growth ofGaN-based LED on patterned silicon substrate [J]. CrystEngComm,2013,15(17):3372-3376.
    [103] Chichibu Shigefusa F, Uedono Akira, Onuma Takeyoshi, et al. Origin of defect-insensitiveemission probability in In-containing (Al, In, Ga) N alloy semiconductors [J]. Nature materials,2006,5(10):810-816.
    [104] Lester SD, Ponce FA, Craford MG, et al. High dislocation densities in high efficiency GaN‐based light‐emitting diodes [J].Applied Physics Letters,1995,66(10):1249-1251.
    [105] Ferdous MS, Wang X, Fairchild MN, et al. Effect of threading defects on InGaN GaNmultiple quantum well light emitting diodes [J]. Applied Physics Letters,2007,91(23):231107.
    [106] Hader J, Moloney JV and Koch SW, presented at the SPIE OPTO,2011(unpublished).
    [107] Wuu DS, Wang WK, Wen KS, et al. Defect reduction and efficiency improvement ofnear-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template [J].Applied Physics Letters,2006,89(16):161105.
    [108] Schubert Martin F, Chhajed Sameer, Kim Jong Kyu, et al. Effect of dislocation density onefficiency droop in GaInN GaN light-emitting diodes [J]. Applied Physics Letters,2007,91(23):231114.
    [109] Ishikawa Hiroyasu, Zhao Guang-Yuan, Nakada Naoyuki, et al. GaN on Si substrate withAlGaN/AlN intermediate layer [J]. Japanese Journal of Applied Physics,1999,38(5A): L492.
    [110] Ishikawa Hiroyasu, Yamamoto Kensaku, Egawa Takashi, et al. Thermal stability of GaNon (111) Si substrate [J]. Journal of Crystal Growth,1998,189178-182.
    [111] Wang JF, Yao DZ, Chen J, et al. Strain evolution in GaN layers grown on high-temperatureAlN interlayers [J]. Applied Physics Letters,2006,89(15):152105.
    [112] Raghavan Srinivasan, Weng Xiaojun, Dickey Elizabeth, et al. Effect of AlN interlayers ongrowth stress in GaN layers deposited on (111) Si [J]. Applied Physics Letters,2005,87(14):142101-142101-3.
    [113] Reiher A, Bl sing J, Dadgar A, et al. Efficient stress relief in GaN heteroepitaxy on Si (111)using low-temperature AlN interlayers [J]. Journal of Crystal Growth,2003,248563-567.
    [114] Bl sing J, Reiher A, Dadgar A, et al. The origin of stress reduction by low-temperatureAlN interlayers [J]. Applied Physics Letters,2002,81(15):2722-2724.
    [115] Lu Yuan, Liu Xianglin, Wang Xiaohui, et al. Influence of the growth temperature of thehigh-temperature AlN buffer on the properties of GaN grown on Si (111) substrate [J]. Journal ofCrystal Growth,2004,263(1):4-11.
    [116] Speck JS, Brewer MA, Beltz G, et al. Scaling laws for the reduction of threadingdislocation densities in homogeneous buffer layers [J]. Journal of Applied Physics,1996,80(7):3808-3816.
    [117] Srikant V, Speck JS and Clarke DR. Mosaic structure in epitaxial thin films having largelattice mismatch [J]. Journal of Applied Physics,1997,82(9):4286-4295.
    [118] Chen Chih-Yen, Liu Zhan Hui, Lin Chun-Han, et al. Strain reduction and crystalimprovement of an InGaN/GaN quantum-well light-emitting diode on patterned Si (110)substrate [J]. Applied Physics Letters,2013,103(14):141914.
    [119] Meidia H and Mahajan S, presented at the Semiconductor Electronics (ICSE),201210thIEEE International Conference on,2012(unpublished).
    [120] Yang Yibin, Xiang Peng, Liu Minggang, et al. Effect of compositionally graded AlGaNbuffer layer grown by different functions of trimethylaluminum flow rates on the properties ofGaN on Si (111) substrates [J]. Journal of Crystal Growth,2013,37623-27.
    [121] Vennegues P, Beaumont B, Bousquet V, et al. Reduction mechanisms for defect densitiesin GaN using one-or two-step epitaxial lateral overgrowth methods [J]. Journal of AppliedPhysics,2000,87(9):4175-4181.
    [122] Gibart Pierre. Metal organic vapour phase epitaxy of GaN and lateral overgrowth [J].Reports on Progress in Physics,2004,67(5):667.
    [123] Bauer E and van der Merwe Jan H. Structure and growth of crystalline superlattices: Frommonolayer to superlattice [J]. Physical Review B,1986,33(6):3657.
    [124] Copel M, Reuter MC, Kaxiras Efthimios, et al. Surfactants in epitaxial growth [J].Physical review letters,1989,63(6):632.
    [125] Zheleva Tsvetanka, Jagannadham K and Narayan J. Epitaxial growth in large‐lattice‐mismatch systems [J]. Journal of Applied Physics,1994,75(2):860-871.
    [126] G tz W, Johnson NM, Walker J, et al. Hydrogen passivation of Mg acceptors in GaNgrown by metalorganic chemical vapor deposition [J]. Applied Physics Letters,1995,67(18):2666-2668.
    [127] G tz W, Johnson NM, Walker J, et al. Activation of acceptors in Mg‐doped GaN grownby metalorganic chemical vapor deposition [J]. Applied Physics Letters,1996,68(5):667-669.
    [128] van de Walle Chris G and Neugebauer J rg, presented at the APS March MeetingAbstracts,1997(unpublished).
    [129] Park Seong-Eun, Seok Han Won, Gyoo Lee Hyung, et al. Effect of native defects onelectrical and optical properties of undoped polycrystalline GaN [J]. Journal of Crystal Growth,2003,253(1–4):107-111.
    [130] Kucheyev S. O., Toth M., Phillips M. R., et al. Chemical origin of the yellowluminescence in GaN [J]. Journal of Applied Physics,2002,91(9):5867-5874.
    [131] Seager C. H., Tallant D. R., Yu J., et al. Luminescence in GaN co-doped with carbon andsilicon [J]. Journal of Luminescence,2004,106(2):115-124.
    [132] Kimura Takeshi and Hashizume Tamotsu. Effect of carbon incorporation on electricalproperties of n-type GaN surfaces [J]. Journal of Applied Physics,2009,105(1):-.
    [133] Yuan Tzu-Tao, Kuei Ping-Yu, Hsieh Li-Zen, et al. Impact of the gas flow ratio on thephysical properties of GaN grown by vertical flow metalorganic chemical vapour deposition [J].Journal of Crystal Growth,2010,312(15):2239-2242.
    [134] Jones A. C. Metalorganic precursors for vapour phase epitaxy [J]. Journal of CrystalGrowth,1993,129(3–4):728-773.
    [135] Koleske D. D., Wickenden A. E., Henry R. L., et al. Influence of MOVPE growthconditions on carbon and silicon concentrations in GaN [J]. Journal of Crystal Growth,2002,242(1–2):55-69.
    [136] Chen Jr-Tai, Forsberg Urban and Janzén Erik. Impact of residual carbon ontwo-dimensional electron gas properties in AlxGa1xN/GaN heterostructure [J]. AppliedPhysics Letters,2013,102(19):-.
    [137] ZHANG Jian-Li, LIU Jun-Lin, PU Yong, et al. Effects of Carrier Gas on CarbonIncorporation in GaN [J]. Chinese Physics Letters,2014,31(03):037102.
    [138] Sengupta Debasis, Mazumder Sandip, Kuykendall William, et al. Combined ab initioquantum chemistry and computational fluid dynamics calculations for prediction of galliumnitride growth [J]. Journal of Crystal Growth,2005,279(3–4):369-382.
    [139] Lyons J. L., Janotti A. and Van de Walle C. G. Carbon impurities and the yellowluminescence in GaN [J]. Applied Physics Letters,2010,97(15):-.
    [140] El-Masry NA, Piner EL, Liu SX, et al. Phase separation in InGaN grown by metalorganicchemical vapor deposition [J]. Applied Physics Letters,1998,72(1):40-42.
    [141] Sugahara Tomoya, Hao Maosheng, Wang Tao, et al. Role of dislocation in InGaN phaseseparation [J]. Japanese Journal of Applied Physics,1998,37(10B): L1195.
    [142] McCluskey MD, Romano LT, Krusor BS, et al. Phase separation in InGaN/GaN multiplequantum wells [J]. Applied Physics Letters,1998,72(14):1730-1732.
    [143] Govindhan Dhanaraj Kullaiah Byrappa, Vishwanath Prasad, Springer Handbook of CrystalGrowth2010.
    [144] Huang Y, Wang H, Sun Q, et al. Study on the thermal stability of InN by in-situ laserreflectance system [J]. Journal of Crystal Growth,2005,281(2):310-317.
    [145] Leyer M, Stellmach J, Meissner Ch, et al. The critical thickness of InGaN on (0001) GaN[J]. Journal of Crystal Growth,2008,310(23):4913-4915.
    [146] Wang Q, Bai J, Gong YP, et al. Influence of strain relaxation on the optical properties ofInGaN/GaN multiple quantum well nanorods [J]. Journal of physics D: Applied physics,2011,44(39):395102.
    [147] Yu ET, Dang XZ, Asbeck PM, et al. Spontaneous and piezoelectric polarization effects inIII–V nitride heterostructures [J]. Journal of Vacuum Science&Technology B,1999,17(4):1742-1749.
    [148] Bernardini Fabio and Fiorentini Vincenzo. Spontaneous vs. piezoelectric polarization inIII-V nitrides: conceptual aspects and practical consequences [J]. arXiv preprintcond-mat/9908087,1999,
    [149] Romanov AE, Baker TJ, Nakamura S, et al. Strain-induced polarization in wurtziteIII-nitride semipolar layers [J]. Journal of Applied Physics,2006,100(2):023522-023522-10.
    [150] Bernardini Fabio, Fiorentini Vincenzo and Vanderbilt David. Spontaneous polarization andpiezoelectric constants of III-V nitrides [J]. Physical Review B,1997,56(16): R10024.
    [151] Bernardini Fabio and Fiorentini Vincenzo. Macroscopic polarization and band offsets atnitride heterojunctions [J]. Physical Review B,1998,57(16): R9427.
    [152] Cao XA, Yang Y and Guo H. On the origin of efficiency roll-off in InGaN-basedlight-emitting diodes [J]. Journal of Applied Physics,2008,104(9):093108.
    [153] Huang Chi-Feng, Tang Tsung-Yi, Huang Jeng-Jie, et al. Prestrained effect on the emissionproperties of InGaN GaN quantum-well structures [J]. Applied Physics Letters,2006,89(5):051913.
    [154] Choi Suk, Ji Mi-Hee, Kim Jeomoh, et al. Efficiency droop due to electron spill-over andlimited hole injection in III-nitride visible light-emitting diodes employing lattice-matchedInAlN electron blocking layers [J]. Applied Physics Letters,2012,101(16):161110.
    [155] Liu Guangyu, Zhang Jing, Zhao Hongping, et al, presented at the SPIE OPTO,2012.
    [156] Zhang Jianli, Xiong Chuanbing, Liu Junlin, et al. High brightness InGaN-based yellowlight-emitting diodes with strain modulation layers grown on Si substrate [J]. Applied Physics A,2014,114(4):1049-1053.
    [157] Liu Lei, Wang Wenjie, Huang J-L, et al, presented at the SPIE Optical Engineering+Applications,2012(unpublished).
    [158] Tsai Chia-Lung, Fan Gong-Cheng and Lee Yu-Sheng. Effects of strain-compensatedAlGaN/InGaN superlattice barriers on the optical properties of InGaN light-emitting diodes [J].Applied Physics A,2011,104(1):319-323.
    [159] Liu Lei, Wang Lei, Li Ding, et al. Influence of indium composition in the prestrainedInGaN interlayer on the strain relaxation of InGaN/GaN multiple quantum wells in laser diodestructures [J]. Journal of Applied Physics,2011,109(7):-.
    [160] Wen-Yu Cao, Yong-Fa He, Zhao Chen, et al. Effects of a prestrained InGaN interlayer onthe emission properties of InGaN/GaN multiple quantum wells in a laser diode structure [J].Chinese Physics B,2013,22(7):076803.
    [161] Wu XH, Elsass CR, Abare A, et al. Structural origin of V-defects and correlation withlocalized excitonic centers in InGaN/GaN multiple quantum wells [J]. Applied Physics Letters,1998,72(6):692-694.
    [162] Cho HK, Lee JY, Yang GM, et al. Formation mechanism of V defects in the InGaN/GaNmultiple quantum wells grown on GaN layers with low threading dislocation density [J]. AppliedPhysics Letters,2001,79(2):215-217.
    [163] Sharma Nikhil, Thomas Paul, Tricker David, et al. Chemical mapping and formation ofV-defects in InGaN multiple quantum wells [J]. Applied Physics Letters,2000,77(9):1274-1276.
    [164] Shiojiri M, Chuo CC, Hsu JT, et al. Structure and formation mechanism of V defects inmultiple InGaN GaN quantum well layers [J]. Journal of Applied Physics,2006,99(7):073505.
    [165] Mahanty S, Hao M, Sugahara T, et al. V-shaped defects in InGaN/GaN multiquantumwells [J]. Materials Letters,1999,41(2):67-71.
    [166] Meng Liang, Guohong Wang, Hongjian Li, et al. Low threading dislocation density inGaN films grown on patterned sapphire substrates [J]. Journal of Semiconductors,2012,33(11):113002.
    [167] Leszczynski M, Teisseyre Ha, Suski T, et al. Lattice parameters of gallium nitride [J].Applied Physics Letters,1996,69(1):73-75.
    [168] Pereira S, Correia MR, Pereira E, et al. Strain and composition distributions in wurtziteInGaN/GaN layers extracted from x-ray reciprocal space mapping [J]. Applied Physics Letters,2002,80(21):3913-3915.
    [169] Pereira S, Correia MR, Pereira E, et al. Interpretation of double x-ray diffraction peaksfrom InGaN layers [J]. Applied Physics Letters,2001,79(10):1432-1434.
    [170] Liu Junlin, Feng Feifei, Zhou Yinhua, et al. Stability of Al/Ti/Au contacts to N-polarn-GaN of GaN based vertical light emitting diode on silicon substrate [J]. Applied PhysicsLetters,2011,99(11):111112-3.
    [171] Wang Guangxu, Xiong Chuanbing, Liu Junlin, et al. Improving p-type contactcharacteristics by Ni-assisted annealing and effects on surface morphologic evolution of InGaNLED films grown on Si (111)[J]. Applied Surface Science,2011,257(20):8675-8678.
    [172] Hashimoto Rei, Hwang Jongil, Saito Shinji, et al. High‐efficiency yellow light‐emittingdiodes grown on sapphire (0001) substrates [J]. physica status solidi (c),2014,
    [173] Cao XA, Stokes EB, Sandvik PM, et al. Diffusion and tunneling currents in GaN/InGaNmultiple quantum well light-emitting diodes [J]. Electron Device Letters, IEEE,2002,23(9):535-537.
    [174] Wen Ten-Chin, Chang Shoou-Jinn, Wu Liang-Wen, et al. InGaN/GaN tunnel-injection bluelight-emitting diodes [J]. Electron Devices, IEEE Transactions on,2002,49(6):1093-1095.
    [175] Pope IA, Smowton PM, Blood P, et al. Carrier leakage in InGaN quantum welllight-emitting diodes emitting at480nm [J]. Applied Physics Letters,2003,82(17):2755-2757.
    [176] Casey Jr HC, Muth J, Krishnankutty S, et al. Dominance of tunneling current and bandfilling in InGaN/AlGaN double heterostructure blue light‐emitting diodes [J]. Applied PhysicsLetters,1996,68(20):2867-2869.
    [177] Eliseev Petr G, Perlin Piotr, Lee Jinhyun, et al.“Blue” temperature-induced shift andband-tail emission in InGaN-based light sources [J]. Applied Physics Letters,1997,71(5):569-571.
    [178] Wang Lei, Lu Cimang, Lu Jianing, et al. Influence of carrier screening and band fillingeffects on efficiency droop of InGaN light emitting diodes [J]. Optics express,2011,19(15):14182-14187.
    [179] Hammersley S, Watson-Parris D, Dawson P, et al. The consequences of high injectedcarrier densities on carrier localization and efficiency droop in InGaN/GaN quantum wellstructures [J]. Journal of Applied Physics,2012,111(8):083512.
    [180] Li Cheng, presented at the225th ECS Meeting (May11-15,2014),2014(unpublished).
    [181] Chichibu SF, Abare AC, Minsky MS, et al. Effective band gap inhomogeneity andpiezoelectric field in InGaN/GaN multiquantum well structures [J]. Applied Physics Letters,1998,73(14):2006-2008.
    [182] Chichibu S, Azuhata T, Sota T, et al. Spontaneous emission of localized excitons in InGaNsingle and multiquantum well structures [J]. Applied Physics Letters,1996,69(27):4188-4190.
    [183] Della Sala Fabio, Di Carlo Aldo, Lugli Paolo, et al. Free-carrier screening of polarizationfields in wurtzite GaN/InGaN laser structures [J]. Applied Physics Letters,1999,74(14):2002-2004.
    [184] Smith M, Chen GD, Lin J Yi, et al. Mechanisms of band‐edge emission in Mg‐doped p‐type GaN [J].Applied Physics Letters,1996,68(14):1883-1885.
    [185] Obloh H, Bachem KH, Kaufmann U, et al. Self-compensation in Mg doped p-type GaNgrown by MOCVD [J]. Journal of Crystal Growth,1998,195(1):270-273.
    [186] Kaufmann U, Kunzer M, Maier M, et al. Nature of the2.8eV photoluminescence band inMg doped GaN [J]. Applied Physics Letters,1998,72(11):1326-1328.
    [187] Charash R, Maaskant PP, Lewis L, et al. Carrier distribution in InGaN/GaN tricolormultiple quantum well light emitting diodes [J]. Applied Physics Letters,2009,95(15):151103.
    [188] Liu JP, Ryou J-H, Dupuis RD, et al. Barrier effect on hole transport and carrier distributionin InGaN/GaN multiple quantum well visible light-emitting diodes [J]. Applied Physics Letters,2008,93(2):021102-021102-3.
    [189] David Aurélien, Grundmann Michael J, Kaeding John F, et al. Carrier distribution in (0001)InGaN GaN multiple quantum well light-emitting diodes [J]. Applied Physics Letters,2008,92(5):053502.
    [190] Amano Hiroshi, Kitoh Masahiro, Hiramatsu Kazumasa, et al. Growth and LuminescenceProperties of Mg‐Doped GaN Prepared by MOVPE [J]. Journal of the Electrochemical Society,1990,137(5):1639-1641.
    [191] G tz W, Johnson NM, Chen C, et al. Activation energies of Si donors in GaN [J]. AppliedPhysics Letters,1996,68(22):3144-3146.
    [192] Ryu Han-Youl, Kim Hyun-Sung and Shim Jong-In. Rate equation analysis of efficiencydroop in InGaN light-emitting diodes [J]. Applied Physics Letters,2009,95(8):081114.
    [193] Gfroerer TH, Priestley LP, Fairley MF, et al. Temperature dependence of nonradiativerecombination in low-band gap InxGa1xAs/InAsyP1y double heterostructures grown on InPsubstrates [J]. Journal of Applied Physics,2003,94(3):1738-1743.
    [194] Wang CH, Chang SP, Ku PH, et al. Hole transport improvement in InGaN/GaNlight-emitting diodes by graded-composition multiple quantum barriers [J]. Applied PhysicsLetters,2011,99(17):171106.
    [195] Ni X, Li X, Lee J, et al. Hot electron effects on efficiency degradation in InGaN lightemitting diodes and designs to mitigate them [J]. Journal of Applied Physics,2010,108(3):033112.
    [196] Verzellesi Giovanni, Saguatti Davide, Meneghini Matteo, et al. Efficiency droop inInGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies [J]. Journal ofApplied Physics,2013,114(7):071101-14.
    [197] Arif Ronald A, Ee Yik-Khoon and Tansu Nelson. Polarization engineering via staggeredInGaN quantum wells for radiative efficiency enhancement of light emitting diodes [J]. AppliedPhysics Letters,2007,91(9):091110.
    [198] Mowbray DJ, Kowalski OP, Hopkinson M, et al. Electronic band structure of AlGaInPgrown by solid‐source molecular‐beam epitaxy [J]. Applied Physics Letters,1994,65(2):213-215.
    [199] Prins AD, Sly JL, Meney AT, et al. High pressure determination of AlGaInP band structure[J]. Journal of Physics and Chemistry of Solids,1995,56(3):349-352.
    [200] Huang KH, Yu JG, Kuo CP, et al. Twofold efficiency improvement in high performanceAlGaInP light‐emitting diodes in the555–620nm spectral region using a thick GaP windowlayer [J]. Applied Physics Letters,1992,61(9):1045-1047.
    [201] Gessmann Th and Schubert EF. High-efficiency AlGaInP light-emitting diodes forsolid-state lighting applications [J]. Journal of Applied Physics,2004,95(5):2203-2216.
    [202] Kuo CP, Fletcher RM, Osentowski TD, et al. High performance AlGaInP visible light‐emitting diodes [J]. Applied Physics Letters,1990,57(27):2937-2939.
    [203] Chen K-J, Kuo H-T, Chiang Y-C, et al. Efficiency and Droop Improvement in HybridWarm White LEDs Using InGaN and AlGaInP High-Voltage LEDs [J]. Display Technology,Journal of,2013,9(4):280-284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700