用户名: 密码: 验证码:
基于输电线路动态荷载的导线等值冰厚计算模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
架空线路覆冰是影响电网安全运行的重要问题之一,导线覆冰将引发舞动、断线、倒塔及绝缘子闪络等重大事故,严重威胁着电网的安全可靠运行。
     如何有效预测输电线路覆冰厚度及准确监测导线覆冰增长,成为国内外重要研究课题,对于电网覆冰后及时采取防冰、除冰措施,从而避免重大冰害事故的发生有重要意义。国内外学者提出了众多导线覆冰预测模型,然而由于覆冰影响因素复杂、模型参数测量不准确等原因,使得模型计算的精确性受到质疑,在工程中没有得到广泛应用。因此,建立准确的导线覆冰厚度预测模型、对导线覆冰增长过程进行准确地监测,不仅对电网防冰减灾设计和建设有着重要的理论参考价值和学术意义,还能为相关部门及时采取合理的防冰、除冰措施提供参考依据。
     本文依托国家重点基础研究计划973项目和南方电网超高压检修试验中心《输电线路覆冰预警方案与计算模型研究》项目,通过理论分析、仿真模拟、现场观测及实际运行线路验证等方法,开展了以下研究工作:
     在雪峰山自然覆冰试验站对导线自然覆冰进行长期现场观测,分析了导线自然覆冰增长及影响因素;基于传统量器具测量法和人工描绘导线覆冰截面形状换算法,提出了用于现场人工测量导线覆冰厚度的覆冰形状校正方法,并通过大量现场试验观测,得到了雪峰山试验站导线覆冰形状校正系数。
     分析了风荷载产生原理及其计算方法,研究了谐波合成法模拟脉动风的数值模拟方法;并研究了输电线路风荷载经验计算公式及气动力特性计算方法,基于导线荷载特性变化提出了等效计算风荷载的新方法,利用雪峰山试验站采集的数据计算了导线风荷载,通过与经验公式法计算结果的对比,验证了该方法的合理性。
     基于流体力学理论,建立了新月形和扇形截面覆冰导线空气动力参数仿真模型并提出了数值模拟方法,通过数值仿真分析了覆冰导线周围空气流场,研究了两种截面覆冰导线在不同迎风攻角、风速、覆冰厚度条件下的升力系数和阻力系数,得到了风速、覆冰厚度和覆冰截面形状对覆冰导线空气动力参数的影响规律。
     针对现有导线覆冰计算模型未考虑风荷载引起的导线荷载特性变化或考虑不当问题,运用力学原理并结合导线覆冰增长特性,以绝缘子串悬挂点拉力、倾角为基本参量,综合考虑冰风荷载影响因素,系统地建立了绝缘子串不同布置方式下(耐张串、I串及V串)输电线路综合荷载等值冰厚计算模型。
     根据雪峰山自然覆冰试验站长期大量的现场观测和数据采集,对建立的综合荷载等值冰厚计算模型进行了试验验证;同时应用C++开发相应实现程序,将等值冰厚计算模型挂网于南方电网实际运行线路进行工程应用,利用覆冰监测终端的监测数据和采集的现场覆冰数据对建立的模型进行了验证。
Transmission line icing is a serious problem that affects the safe operation ofpower systems. The accidents caused by icing, such as line disconnection, tower failure,and transmission lines galloping, seriously threaten the security and reliability ofelectric power networks.
     How to effectively predict the ice thickness and accurately monitor the icingprocess on the conductors has become an important research topic at home and abroad.It is very meaningful and vital for power grid to take timely anti-icing and de-icingmeasurement to avoid the occurrence of ice disaster. Many prediction models andmonitoring methods for transmission line icing have been proposed by many scholars.However, due to the complexity of the ice progress and inaccurate measurements of themodel parameters, the accuracy of the models has been questioned, and they are notwidely used in engineering. Therefore, to establish an accurate and efficient model forthe transmission line icing has important theoretical value for the power grid to designand construct anti-icing mitigation project. Additional, it can provide a reference for therelevant departments to take timely and reasonable anti-icing or de-icing measures.
     Supported by the National Basic Research Program of China (973program)(“transmission line icing failure forming mechanism and prediction model and controlmethods”) and the cooperation program (“early warning program and calculationmodel for transmission line icing”) with the EHV Maintenance Test Center of ChinaSouthern Power Grid, theoretical analysis and modeling, field observation andmeasurement and actual operation transmission lines tests are used to carry out theproject. The concrete research content is as follows:
     A long-term of observations and measurements are carried out in the XuefengMountain Natural Icing Stations (XMNIS) and the influence factors of the natural icingon the transmission lines are analyzed. Moreover, the typical section shape of glazeicing on conductors is studied and the correction coefficient of the actual non-uniformice is proposed as an accurate and convenient method for field icing measurement.Based on a lot of field measurement at XMNIS, the shape correction coefficient of thetypical glaze icing is analyzed and calculated.
     The wind load theory and the formula of the load calculation are analyzed. And theuse of harmonic synthesis simulation of fluctuating wind load in the time-domain method for modeling wind load is studied. The empirical formula and the aerodynamiccharacteristics calculation method of the trnansmission line wind load are studied andanalyzed. Moreover, a new method for wind load calculation is presented based on thechange of the transmission line load characteristics. Based on the data gathered atXMNIS, the wind load is calculated and compared with the results by empirical formulawhich verifies the correctness and feasibility of the proposed method.
     Based on the hydromechanical theory, the modeling method and the simulationmethod for the analysis of the aerodynamic properties of the crescent iced conductorand sector-shape iced conductor are put forward. The air flow map around the icedconductors is simulated. Besides, as to the iced conductors with different ice thicknessand wind speed, the lift coefficient and drag coefficient under different attack angles arecalculated. The influence law of ice thickness, wind speed and different cross sectionsof the iced conductor on the aerodynamic parameters of iced conductors can beobtained.
     The basic characteristics of the tension and tilt of the insulator string at the tangenttower after icing are analyzed. Based on the parameters of tilt and tension of theinsulator string at the tangent tower, a new mechanical calculation model is put forwardwhich considers the combined ice and wind loads.
     Based on a long-term observations and a great number of field experiments at theXMNIS, the proposed model is verified. Moreover, based on the implementing programby C++, the proposed model is applied to the actual transmission line. The on-linemonitoring data and field ice data obtained from the actual operation transmission linesof the China Southern Power Grid are used to verify the proposed ice thicknesscalculation model.
引文
[1]蒋兴良,易辉.架空线路覆冰及防护[M].北京:中国电力出版社,2002:1-9.
    [2]苑吉河,蒋兴良,易辉,等.架空线路导线覆冰的国内外研究现状[J].高电压技术,2004,30(1):6-9.
    [3]蒋兴良.贵州电网冰灾事故分析及预防措施[J].电力建设,2008,29(04):1-4.
    [4]胡毅.输电线路大范围病害事故分析及对策[J].高电压技术,2005,31(4):14-15.
    [5]胡毅.电网大面积冰灾分析及对策探讨[J].高电压技术,2008,34(2):215-219.
    [6]黄新波,刘家兵,蔡伟,等.电力架空线路覆冰雪的国内外研究现状[J].电网技术,2008,32(4):23-28.
    [7]李庆峰,范峥,吴穹,等.全国输电线路覆冰情况调研及事故分析[J].电网技术,2008,32(9):33-36.
    [8]李正,杨靖波,韩军科,等.2008年架空线路冰灾倒塔原因分析[J].电网技术,2009,33(02):31-35.
    [9] Farzaneh M. Atmospheric icing of power networks [M]. Berlin: Springer,2008:1-29.
    [10]中国南方电网公司.电网防冰融冰技术及应用[M].北京:中国电力出版社,2010:1-4.
    [11]李成榕,吕玉珍,崔翔,等.冰雪灾害条件下我国电网安全运行面临的问题[J].电网技术,2008,32(4):14-22.
    [12] Imai. Studies on Ice Accretion [J]. Researches on Snow and Ice,1953,3(1):35-34.
    [13] Daisuke Kuroiwa. Icing and Snow Accretion [J]. Monograph series of the Research Instituteof Applied Electricity,1958,6:1-30.
    [14] Ping Fu. Modeling and simulation of the ice accretion process on fixed or rotating cylindricalobjects by the boundary element method [D]. Canada, UNIVERSITE DU QUEBEC.2004.
    [15] MEMBERS OZARK BORDER ELECTRIC COMPANY JANUARY27,2009ICE STORM[OL],2009.
    [16] Engene L. Lecomte, Alan W. Pang and James W. Russell,"ICE STORM'98", Institute forCatastrophic Loss Reduction, Canada,1998.
    [17]蒋兴良.输电线路导线覆冰机理和三峡地区覆冰规律及影响因素研究[D].重庆大学博士学位论文,1997.
    [18]孙才新.重视和加强防止复杂气候环境及输变电设备故障导致电网大面积事故的安全技术研究[J].中国电力,2004,37(6):1-8.
    [19]周卫华,蒋兴良.输电线路绝缘子冰闪防治措施的研究[J].湖南电力,2008,1:1-5.
    [20]胡超凡,陈刚,朱伟江.2005年国家电网安全运行情况分析[J].中国电力,2005,39(5):1-4.
    [21]蒋兴良,马俊,王少华.输电线路冰害事故及原因分析[J].中国电力,2005,38(11):27-30.
    [22]李再华,白晓民,周子冠,等.电网覆冰防治方法和研究进展[J].电网技术,2008,32(4):7-14.
    [23]陆佳政,蒋正龙,雷红才,等.湖南电网2008年冰灾事故分析[J].电力系统自动化,2008,32(11):16-19.
    [24]张文亮,于永清,宿志一,等.湖南电网2008年冰雪灾害调研分析[J].电网技术,2008,32(8):1-5.
    [25]童军心,陈智.冰雪天气对江西电网造成的灾害分析及防治对策[J].江西电力,2008,32(增刊):18-20.
    [26]黄绍培,余伯平.220kV输电线路重冰区观冰综合分析[J].高电压技术,1993,19(1):54-57.
    [27]刘建西,刘渝,杨秀蓉,等.三峡中低海拔地区导线覆冰云雾及气象条件的观测研究[C].中国气象学会2003年年会,2003,355-360.
    [28]关志成,张增福,王国利等.我国特高压的特有技术问题[J].电力设备,2006,7(1):1-4.
    [29]蒋兴良,张丽华.架空线路除冰防冰技术综述[J].高电压技术,1997,23(1):73-76.
    [30] Farzaneh M, Kiernicki J. Flashover problems caused by ice build up on insulators [J]. IEEEElectrical Insulation Magazine,1995,11(2):5-17
    [31] CIGRE Task Force33.04.09. Influence of ice and snow on the flashover performance ofoutdoor insulators part I: effects of ice [J]. électra,1999,187:90-111
    [32] CIGRE Task Force33.04.09. Influence of ice and snow on the flashover performance ofoutdoor insulators part II: effects of snow [J]. électra,2000,188:55-69
    [33] Farzaneh M, Baker T, Bernstorf A, et al. Insulator icing test methods and procedures aposition paper prepared by the IEEE Task Force on insulator icing test methods [J]. IEEETransactions on Power Delivery,2003,18(4):1503-1515
    [34] Huneault M, Langheit C, Caron J. Combined models for glaze ice accretion and de-icing ofcurrent-carrying electrical conductors [J]. IEEE Trans on Power Delivery,2005,20(2):1611-1616.
    [35]张予.架空线路导线覆冰在线监测系统[J].高电压技术,2008,34(9):1992-1995.
    [36] Lenhard R.W. An Indirect Method for Estimating the Weight of Glaze on Wires [J]. BullAmer Meteor Soc,1955,36(3):1-5.
    [37] D. Kuroiwa. Icing and Snow Accretion on Electric Wires[R].U.S. Army Cold RegionsResearch and Engineering Laboratory, Research Report, pp.1-10,1965.
    [38] E. J. Goodwin, J. D. Mozer, A. M. D. Gioia. Predicting Ice and Snow Loads for TransmissionLine [R]. Proceedings of the First IWAIS,1983.
    [39] Makkonen, L. The growth of icicles [R]. In the Proceedings of the Fourth IWAIS,1988:236-242.
    [40] Makkonen, L. A Model of Icicle Growth [J]. Journal of Glaciology,1988,34(116):64–70.
    [41] Makkonen, L. The Origin of Spongy Ice [J]. In the Proceedings of the Tenth IAHRSymposium on Ice.1990,2:1022–1030.
    [42] Makkonen, L. Fujii, Y. Spacing of Icicles [J]. Cold Regions Science and Technology,1993,21:317-322.
    [43] Makkonen, L.&Oleskiw, M., Small-scale experiments on rime icing. Cold Regions Sci.Technol.1997,25,173-182.
    [44] Makkonen, L. Modeling power line icing in freezing precipitation, Atmospheric Research,1998.46,131-142
    [45] Makkonen, L. Models for the growth of rime, glaze, icicles and wet snow on structures, Phil.Trans. R. Soc. London.2000.358,2913-2939.
    [46] Yunhe Liu,“Theory and Application of icing and anti-icing in transmission lines,” Beijing:China Railway Publish House,2001.
    [47] P. McComber, J. W. Govoni,“An analysis of selected ice accretion measurements on a wireat mountain Washington,” Proceedings of the Forty-Second Annual Eastern SnowConference, Montreal, Canada,1985.
    [48]刘振亚.智能电网技术[M].北京:中国电力出版社,2010:220-224.
    [49]黄新波,陈荣贵,王孝敬,等.架空线路在线监测与故障诊断[M].北京:中国电力出版社,2008:157-196.
    [50] Maciej B. Digital image processing in measurement of ice thickness on power transmissionlines: arough set approach [D]. Winnipeg: University of Manitoba,2002.
    [51] Wang Xiaopeng, Hu Jianlin, Wu Bin, et al. Study on edge extraction methods for image-basedicingon-line monitoring on overhead transmission lines [J]. High Voltage Engineering,2008,34(12):2687-2693.
    [52]陆佳政,张红先,方针,等.自适应分割阈值在覆冰厚度识别中的应用[J].高电压技术,2009,35(3):563-567.
    [53]张成,盛戈皞,江秀臣,等.基于图像处理技术的绝缘子覆冰自动识别[J].华东电力,2009,37(1):146-149.
    [54]李昭廷,郝艳捧,李立浧,等.利用远程系统的架空线路覆冰厚度图像识别[J].高电压技术,2011,37(9):2288-2293.
    [55]邵天晓.架空送电线路的电线力学计算[M].北京:中国电力出版社,2003.
    [56]李博之.高压架空输电线路架线施工计算原理[M].北京:中国电力出版社,2008.
    [57]刘庆丰.输电线路不平衡张力分析和计算[J].电力自动化设备,2003,26(1):93-95.
    [58]黄新波,孙钦,程荣贵,张冠军,等.导线覆冰的力学分析与覆冰在线监测系统[J].电力系统自动化,2007,31(14):98-101.
    [59]徐青松,候炜,王孟龙.架空输电线路覆冰实时监测方案探讨[J].浙江电力,2007(3):9-13.
    [60]徐青松,劳建明,侯炜,等.输电线路非均匀覆冰的实时监测和计算模型[J].高电压技术,2009,35(11):2865-2869.
    [61]邢毅,曾奕,盛戈皞,等.基于力学测量的架空输电线路覆冰监测系统[J].电力系统自动化,2008,32(23):81-85.
    [62]李银华,韩郡业,王婷.架空电力线覆冰监测系统[J].电力自动化设备,2009,29(11):112-115.
    [63]阳林,郝艳捧,黎卫国,等.架空输电线路在线监测覆冰力学计算模型[J].中国电机工程学报.2010,30(19):100-105.
    [64]吕玉祥,占子飞,马维青,等.输电线路覆冰在线监测系统的设计和应用[J].电网技术,2010,34(10):196-200.
    [65]占子飞.输电线路覆冰在线监测系统的设计[D].太原理工大学硕士学位论文,2010.
    [66]吕玉祥,周瑜.输电线路导线覆冰冰重简单模型[J].华东电力,2009,37(3).
    [67]刘康.基于力学测量的输电线路覆冰厚度监测研究[D].重庆大学硕士学位论文,2010.
    [68]王少华.输电线路覆冰导线舞动及其对塔线体系力学特性影响的研究[D].重庆大学博士学位论文,2008.
    [69]罗晶,陆佳政,李波,等.输电线路杆塔不平衡张力及倾斜监测装置的研究[J].湖南电力,2011,31(4):1-3.
    [70]徐中年.输电线舞动的风洞试验研究.中国电力.1992,4:7-11.
    [71]李万平,杨新详,王海期.大跨越覆冰导线空气动力特性的测试.超高压输变电运行技术.1990,(8):95-107.
    [72]李万平,杨新详,张立志.覆冰导线群的静气动力特性.空气动力学报.1995,13(4):427-434.
    [73]李万平.覆冰导线群的动态气动力特性.空气动力学学报.2000,18(4):413-420.
    [74]李万平,黄河,何锃.特大覆冰导线气动力特性试验测试.华中科技大学学报.2001,29(8):84-86.
    [75]王侠.覆冰导线空气动力特性风洞试验及数值模拟[D].重庆大学硕士学位论文,2012.
    [76]孙琦.覆冰输电导线舞动的气动力特性数值模拟[D].辽宁工程技术大学硕士学位论文,2011.
    [77]黄钰期,邓见,任安禄.黏性非定常圆柱绕流的升阻力研究[J].浙江大学报.2003,37(5):596-601.
    [78]凌国灿.圆柱尾流中的二次分离及环量衰减问题[J].空气动力学报.1988,6(1):25-30.
    [79]黄河.覆冰导线气动力特性的数值模拟[D].华中科技大学硕士学位论文.2001:43-52.
    [80]黄河,刘建军,李万平.覆冰导线绕流的数值模拟[J].辽宁工程技术大学学报.2004,23(6):767-769.
    [81]姚育成,李万平,李良军.高雷诺数下钝体绕流的数值模拟[J].华中科技大学学报.2003,21(2):106-108.
    [82]姚育成.高雷诺数下覆冰导线气动力特性的数值模拟[D].华中科技大学硕士学位论文.2003:40~51.
    [83]滕二甫.新月形覆冰导线横风向驰振气动力参数的数值模拟[D].哈尔滨工业大学硕士学位论文.2007.
    [84]滕二甫,段忠东,张秀华.新月形覆冰导线气动力特性的数值模拟[J].低温建筑技术.2008,1:86-88.
    [85]张相庭.结构风压和风振计算[M].上海:同济大学出版社,1985.
    [86]贺德馨.我国风工程研究现状与展望[J].力学与实践,2002,24(4):10-19.
    [87]张相庭.国内外风荷载规范的评估和展望[J].同济大学学报,2002,30(5):539-543.
    [88]巢亚锋.分裂导线和多串并联绝缘子覆冰模型与影响因素的研究[D].重庆大学博士学位论文,2011.
    [89] Makkonen L. Modeling of ice accretion on wires [J]. Journal of climate and appliedmeteorology,1984,23(6):929-939.
    [90] Poots G, Skelton PLI. Simulation of wet-snow accretion by axial growth on a transmissionline conductor [J]. Applied Mathematical Modelling,1995,19(9):514-518.
    [91] Skelton PLI, Poots G. Snow accretion on overhead line conductors of finite torsional stiffness[J]. Cold Regions Science and Technology,1991,19(3):301-316.
    [92] Poots G, Skelton PLI. The effect of aerodynamic torque on the rotation of an overhead lineconductor during snow accretion [J]. Atmospheric Research,1995,36(3/4):251-260.
    [93]巢亚锋,蒋兴良,毕茂强.等.导线覆冰厚度的直径订正系数[J].高电压技术,2011,37(6):1391-1396.
    [94]谭冠日,严济远,朱瑞兆.应用气候[M].上海科学技术出版社,1997,2:114-115.
    [95] Mignolet M P, Spanos P D. Simulation of homogeneous two-dimensional random fields: partI-AR to ARMA models [J]. part II-MA to ARMA models. Journal of Applied Mechanics,Transactions of the ASME,1992,59, part I:260–269; part II:270-277.
    [96]国家电力公司东北电力设计院.电力工程高压送电线路设计手册[M].第二版,北京:中国电力出版社,2003.
    [97] Shinozuka M, Jan C M. Digital simulation of random process and its application [J]. Journalof sound and Vibration.1972,25(1):111-128.
    [98]赵臣,张小刚,吕伟平.具有空间相关性风场的计算机模拟[J].空间结构,1996,2(2):21-25.
    [99]汤志云.输电塔线体系在风荷载作用下的位移响应[D].广东工业大学硕士学位论文,2013.
    [100]楼文娟,孙炳楠,叶尹.高耸塔架横风向动力风效应[J].土木工程学报,1999,32(6):67-71.
    [101]黄河,刘建军,李万平.覆冰导线绕流的数值模拟[J].辽宁工程技术大学学报,2004,23(6):767-769.
    [102]李万平,黄河,何锃.特大覆冰导线气动力特性测试[J].华中科技大学学报,2001,29(8):84-86.
    [103]徐元利,徐元春,梁兴,等. FLUENT软件在圆柱绕流模拟中的应用[J].水利电力机械,2005,27(1):39-41.
    [104]王少华,蒋兴良,孙才新.输电线路导线舞动的国内外研究现状[J].高电压技术.2005,319(10):11~14.
    [105]张兆顺.湍流[M].北京:国防工业出版社.2002.
    [106]王新月.气体动力学基础[M].西安:西北工业大学出版社,2006.
    [107][美]W. F.休斯, J.布赖顿.流体动力学[M].北京:科学出版社,2002.
    [108] Fu, P., Modeling and simulation of the ice accretion process on fixed or rotating cylindricalobjects by the Boundary Element Method, PhD thesis, Collection des mémoires et thèses del'Université du Québec à Chicoutimi.
    [109] Ping Fu. Modeling and simulation of the ice accretion process on fixed or rotating cylindricalobjects by the boundary element method [D]. Canada, UNIVERSITE DU QUEBEC.2004.
    [110]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [111]张廷芳.计算流体力学[M].大连:大连理工大学出版社,1992.
    [112] H. K. Versteeg, W. Malalasekera. An Introduction to Computational Fluid Dynamics: TheFinite Volume Method [M]. Wiley, New York,1995
    [113] P. Bradshaw, T. Cebeci, J. H. Whitelaw, Engineering Calculation Methods for Turbulent Flow.Academic Press, London,1981.
    [114]黄克智,薛明德,陆明万.张量分析[M].北京:清华大学出版社,2003.
    [115] Fluent Inc., Fluent User’s Guide. Fluent Inc.,2003.
    [116]贺友多.传输过程的数值方法[M].北京:冶金工业出版社,1991.
    [117]窦国仁.紊流力学(上)[M].北京:高等教育出版社,1981.
    [118]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [119]帕坦尔著,张政译.传热与流体流动的数值模拟[M].北京:科学出版社,1984.
    [120] S. V. Patankar. Numerical Heat Transfer and Fluid Flow [M]. Washington: Hemisphere,1980.
    [121]李勇,刘志友,安亦然.介绍计算流体力学通用软件——FLUENT [J].水动力学研究与发展,2001(2):254-258.
    [122]陈旭.计及动态失速影响的水平轴风力机设计和性能预估[D].上海交通大学硕士学位论文,2003.
    [123]阳林.架空线路在线监测覆冰计算、评估和预测研究[D].华南理工大学博士学位论文,2012.
    [124]邵天晓.架空送电线路的电线力学计算(第二版)[M].北京:中国电力出版社,2003.
    [125]李博之.高压架空输电线路架线施工计算原理(第二版)[M].北京:中国电力出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700