用户名: 密码: 验证码:
短管道中气相及气固两相平均流速测量方法研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤粉锅炉是我国燃煤机组的主力设备。燃烧优化是提高煤粉锅炉性能的有效途径。燃烧系统测量的准确可靠是实现燃烧优化的基础。由于设备的限制,燃烧系统的测量条件比较恶劣,烟、风和煤粉管道可供测量的直管段很短,因此,研究短管道中气相及气固两相流体平均流速测量方法,并开发适用于煤粉锅炉燃烧系统的管道气体和气固两相流体高精度、低阻力平均流速在线测量装置具有重要的意义。
     本文详细分析了目前在锅炉燃烧调整中经常使用的一些测量装置的结构、功能、使用范围及其优缺点,根据煤粉锅炉燃烧系统管路的结构特点,提出了实现锅炉燃烧系统喷口平均风速准确测量的必要条件。通过对现有的各种形式、测量原理的流量测量装置的分析比较,提出了基于伯努利流体动压测量原理和附面层理论,采用格栅整流、感压孔管道全截面分布、多排孔取压、单元测量、大腔体均压、共同引压,流线型机翼优化技术降低阻力等测量实现方法。从数学上证明了可以利用平均压力进行流量计算,分析了引压的阻力条件及其对格栅数量的要求,采用数值计算的方法验证了格栅整流的效果和本文提出的测量方法的可靠性,确认了该方法中测点安装误差对测量结果影响很小,具有良好的应用前景。进而利用一次元件增大动静压差,开发了气体、气固两相流体管道平均气体流速测量装置。
     根据模化原理及相似条件设计搭建了冷态实验系统,在实验台上对本文提出的风速测量装置进行了相关性能的实验研究。
     通过冷态实验,确定了输出压差信号大、阻力小的直线型机翼(扩散角α=11°)。冷态实验研究表明,包括整流格栅在内的双、四翼体测量装置局部阻力系数的数值很小,为0.08-0.13。随着流通截面比m的减小,测量装置的输出压差信号增大。当Re>1×104时,测量装置的流量系数基本趋于一致,与Re数无关。m=0.4、0.5时,输出信号更为稳定,测量误差较小。加装整流装置与没有加装整流装置相比,测量信号稳定性好,测量误差较小。感压孔的数量和在测量管道截面上的不同划分方法对于短管道条件下不均匀流场的准确测量影响较大。通过加装整流装置,合理布置测量元件和感压孔的数量及位置,在直管段很短,甚至没有的条件下,测量装置的测量误差小于2%。
     气固两相的实验结果表明,本文开发的流量测量装置的局部阻力系数很小,对于流通截面比m在0.04-0.18范围内,局部阻力系数ξ在0.1-0.3之间。当Re大于1×105时,测量装置的流量系数趋于一致,不随Re数变化。当测量装置上游有2倍、下游有0.5倍当量直径长度的直管段时,可以保证测量误差小于2%。由于安装不当或气流偏斜造成角度不当,只要角度小于6°,引起的误差小于1%。两相流体浓度的变化对测量装置流量系数的影响非常小,现场应用可以忽略不计。
     工业应用实践表明,本文提出的测量系统可以实现锅炉燃烧系统喷口风速的实时准确测量,风速测量的误差小于3%。由于可以精确测量燃烧器喷口风速,为锅炉燃烧优化提供必要条件,可以提高锅炉热效率1%~2%,降低NOx排放30%左右。
Pulverized coal (PC) fired boiler is the main unit for electric power generation in China. Combustion optimization is very important to improve the performance of PC boiler, which depends strongly on the measurement accuracy and reliability of combustion system. However, the flow rate measurement of combustion system is very difficult due to the limitation of the combustion equipment. The straight pipe is normally short for measuring flow rate in the air duct. This requires a real-time and accurate measurement method of the average flow rate of gas as well as a gas-solid two-phase flow in a pipeline with a lower pressure drop.
     The up-to-date structure, function and principle of the update flow meters used in the combustion system in PC boiler were investigated in this thesis. On accordance with the structure of the pipeline in the combustion system in PC boiler, the necessary condition to real-time and accurately measure the flow rate was suggested. Based on the comparison and analysis of these meters with different structures and principles, a novel average flow meter was suggested in gas flow or gas-solid two-phase flow. Its principle is local different pressure of fractional unit with parallel wings with distributed pressure measurement holes for gas flow or parallel back pipes with different lengths, where the three dimensions flow caused by the short straight pipe was straighten out by screen grid, and the local pressure are introduced to a common vessel. The average pressure was suggested to predict the flow rate, which is reasonable mathematically. The pressure resistant condition for the average pressure measuring as well as the screen grid size was deduced. The flow rectification and the reliability of the suggested flow meter were confirmed by the numerical simulations. And it was found that it is very insensitivity for installation deviation for the measurement, which indicates it could be used in the industrials. With the enlarged the different pressure by the primary unit, the flow meter was developed for gas and gas-solid two-phase flow. In the meter, the screen grid is distributed fully in the meter section.
     To further understanding the performance of the meter and improve continuously its structure, a cold test facility was designed and set up based on the scaling law and similarity conditions. And the experimental investigations were conducted.
     According to the cold test, it was found that the straight line wing is better with larger different pressure and lower pressure drop. And straight line wing with expanding angle of11°was selected for the meter. The experimental results showed that the pressure coefficient of the gas flow meter including the screen grid and the wings is very low ranging from0.08to0.13. With the decreasing of sectional area ratio m, the output of different pressure increases. The flow rate coefficient of the meter tends to a constant independent from Reynolds number when Reynolds number is higher than1×104. When the sectional area ratio m=0.4and0.5, the measurement error is extraordinary lower with more stable different pressure. The screen grid for rectification stabilizes the different pressure output with lower measurement error compared that without screen grid. The pressure measuring holes number and its distribution affects the measurement results. When the straight pipe is very short even0, the measurement error is less than2%with screen grid and reasonable wing with pressure measuring holes number and its distribution.
     The experimental results of gas-solid two-phase flow showed that the pressure coefficient of the gas flow meter of gas-solid two-phase flow is also very low ranging from0.1to0.3when sectional area ratio m decreases from0.18to0.04. The flow rate coefficient of the meter tends to a constant independent from Reynolds number when Reynolds number is higher than1×105. When the sectional area ratio m=0.4and0.5, the measurement error is extraordinary lower with more stable different pressure. When the straight pipe is2.5times diameter, the measurement error is less than2%. The additional error is less than1%caused by the angle less than6°departure. And the effect of the solid density in the gas-solid two-phase flow on the measurement can be ignored because it is very small.
     The flow meter suggested in this thesis was applied in the boilers for real-time measuring. The practices proved its accuracy and reliability with error of less than3%. The flow meter provides a reliable equipment for automatic optimization of combustion, leading to the boiler thermal efficiency increases1%with30%NOx reduction.
引文
[1]Joseph G Singer. Combustion Fossil Power Systems [M]. Third edition. New York: Combustion Engineering Inc.,1981.
    [2]《中国电力年鉴》编辑委员会.2011年中国电力年鉴[M].北京:中国电力出版社,2011.
    [3]叶桂波.乏气送粉锅炉降低一次风速度减轻水冷壁结渣的实践[J].有色冶金节能,2007.
    [4]翁卫国,周俊虎,董若凌,等.一次风扩口角对旋流燃烧器影响的数值模拟[J].浙江大学学报(工学版),2006,40(10):1819-1822.
    [5]张孝勇,钱颖杰,孙先端,等.一次风速度和煤粉质量浓度对等离子燃烧器一级燃烧筒点火特性的影响[J].中国电力,2007,40(8):63-65.
    [6]潘卫国,林泉,孙坚荣,等.一次风喷口速度分布对四角切圆燃烧锅炉炉内空气动力场影响的数值研究[J].动力工程,2004,24(4):495-500.
    [7]张孝勇,纪少华,邓炜,等.一次风速度和煤粉浓度对等离子燃烧器一级燃烧筒点火特性的试验研究[J].锅炉技术,2010,41(4):41-46+50.
    [8]徐旭常,吕俊复,张海.燃烧理论与燃烧设备[M].北京:科学出版社,2012.
    [9]苏彦勋,梁国伟,盛健.流量计量与测试[M].第2版.北京:中国计量出版社,2007.
    [10]Johnson D. Differential flow meter [M]. Control Engineering.2000.
    [11]Xue Z. Development and realization of air flow on-line monitoring system in utility boiler based on AC induction [J]. Advanced Materials Research,2012, (383-390): 4831-4836.
    [12]玉翠欣,徐科军,刘家军.基于DFT的科里奥利质量流量计信号处理方法的改进[J].合肥工业大学学报,2000,23(6):935-939+943.
    [13]Anon. The hyperbo-electric flow meter [J]. Power,1923,57(26):1024-1025.
    [14]孙延祚.国际流量计量学术动态及发展趋势[J].天然气工业,2003(1):84-88.
    [15]赵静野,王文海,张玉娟.一种新型差压式流量计的研制[J].计量技术,2003,11:5-7.
    [16]Murdock J W. Two-phase flow measurements with orifices [J]. Basic Engineering, 1962,84(4):419-433.
    [17]Ishibash I M, Takamoto M. Methods to calibrate a critical nozzle and flow meter using reference critical nozzles [J]. Flow Measurement and Instrumentation,2000, 11:293-303.
    [18]Hufnagel H, Hartmann H K, Jitschin W. Novel gas flow meter [J]. Vacuum,1992, 43(5-7):773-775.
    [19]Beck S B M, Mazille J. A study of a pressure differential flow meter that is insensitive to inlet conditions [J]. Measurement and Instrumentation,2002,12: 379-384.
    [20]Beck M S, Plaskowski A. Cross Correlation Flow Meters-Their Design and Application [M]. Bristol:Adam Hilger,1987.
    [21]Cadena P R O, Rivera M E M, Herrera R G. Automatic volumetric gas flow meter for monitoring biogas production from laboratory-scale anaerobic digester [J]. Sensors and Actuators, B:Chemical,2010,147(1):10-14.
    [22]吴达科.智能涡街流量计的设计研究[D].[学位论文].重庆:西南农业大学,2003.
    [23]史风栋.新型数字涡街流量计的研究[D].[学位论文].天津:天津工业大学,2005.
    [24]吴蕾.旋进旋涡流量计的原理探讨和结构优化[D].[学位论文].天津:天津大学,2004.
    [25]姜仲霞,姜川涛,刘桂芳.涡街流量计[M].北京:中国石化出版社,2006.
    [26]Coulthard J. The principle of ultrasonic cross-correlation flow metering [J]. Measurement and Control,1975,8:65-70.
    [27]Park K, Kim J, Kauh S K, et al. Measurement of air flow rate by using an integration type ultrasonic flow meter applicable for spark ignition engine control [J]. Journal of Automobile Engineering,1997,211D2(2):129-135.
    [28]杨建昌,王萍,邓立三,等.气体超声波流量计在天然气计量中的应用[J].油气储运,2002,21(9):35-37.
    [29]姜勇.时差法超声波流量计设计与研发[D].[学位论文].杭州:浙江大学,2006.
    [30]Kan Zhe, Wang X L, Zhang S J. Study on spatial filtering and sensitivity characteristic of inserted electrostatic sensors for the measurement of gas-solid two phase flow parameters [J]. Flow Measurement and Instrumentation,2012,10: 1658-1679.
    [31]Popa N C, Potencz I, Vekas L. Magnetic fluid flow meter for gases [J]. IEEE Transactions on Magnetic,1994,30(2 pt 2):936-938.
    [32]Yan Y, Byrne B, Woodhead S, et al. Velocity measurement of pneumatically conveyed solids using electrodynamics sensors [J]. Measurement Science & Technology,1995,6:515-537.
    [33]刘鹏民.涡街电磁流量计机理的研究与开发[D].[学位论文].北京:北京化工大学,2000.
    [34]彭晓利,毛谦敏,梁国伟,等.基于电涡流的新型靶式流量计[J].中国计量学院学报,2009,20(2):113-117.
    [35]李开源,胡隆华,李元洲,等.靶式流量计在火灾烟气流速测量中的应用[J].火灾科学,2007,16(4):201-207.
    [36]Arai N S, Yoshihito N, Yutaka O, et al. Advanced design for bypass type of hot-wire air flow meter [J]. SAE Special Publications, Sensors and Actuators,1990, 805:7-13.
    [37]Ferrenal R P C, Ferrerial R C S, Deep G S, et al. Hot-wire anemometer with temperature compensation using only one sensor [J]. IEEE Transaction on Instrumentation and Measurement,2001,50(4):954-95.
    [38]Huijsing J H, van Dorp A L C, Loos P J G Thermal mass-flow meter [J]. Journal of Physics E:Scientific Instruments,1988,21(10):994-997.
    [39]Loureiro J B R, Monteiro A S, Laeerda A, et al. Experimental investigation of the dynamical response of a hot-wire anemo meter developed to industrial applications [J]. Digital Object Identifier,2006,4:2863-2868.
    [40]Roger C B. Flow Measurement Hand [M]. New York:Cambridge University Press* 2000:371-391.
    [41]左欢.新型热式气体质量流量计的研制[D].[学位论文].武汉:华中科技大学,2005.
    [42]Dobrowolski B, Kabacinski M, Polit A J P. A mathematical model of the self-averaging Pitot tube-A mathematical model of a flow sensor [J]. Flow Measurement Instrumentation,2005,16:251-265.
    [43]周宁宁,梁国伟.速度面积法中不同特征点位置选择法之比较[J].中国计量学院学报,2003,14(2):104-108.
    [44]Drenthen J G, Boer G. The manufacturing of ultrasonic gas flow meter [J]. Flow Measurements and Instrumentation,2001,12:89-99.
    [45]Singh S N, Seshadri V, Singh R K, et al. Effect of upstream flow disturbances on the performance characteristics of a Ⅴ-cone flow meter [J]. Flow Measurement and Instrumentation,2006,17:291-297.
    [46]张卫华.弯管流量计的工程应用[J].测控技术,2000,19(10):14-15.
    [47]Michalski A. Dry calibration procedure of electromagnetic flow meter for open channels. IEEE Transactions on Instrumentation and Measurement,2000,49: 434-438.
    [48]Butterfield M H, Bryant G F, Dowing J. A new method of strip speed measurement using random wave form correlation [J]. Trans. Soc. Instrum. Tech.,1962,13(2): 111-13.
    [49]He D, Bai B, Xu Y, et al. A new model for the Ⅴ-cone meter in low pressure wet gas metering [J]. Measurement Science and Technology,2012,23(12):125-135.
    [50]丛振超.V型内锥式流量计的优化设计[D].[学位论文].沈阳:东北大学,2008.
    [51]Berg R F. Simple flow meter and viscometer of high accuracy for gases [J]. Metrologia,2005,42(1):11-23.
    [52]刘杰.锥形流量计的研制[D].[学位论文].合肥:合肥工业大学,2007.
    [53]Berndt H. Correlation function estimation by a polarity method using stochastic reference signals [J]. IEEE Trans on Information Theory,1968,4(6):796-801.
    [54]徐科军,于翠欣,苏建徽,等.科里奥利质量流量计激振电路的研制[J].合肥工业大学学报,2000,23(1):37-40.
    [55]Huang J, Tong Q. Integrated multifunction sensor for flow velocity, temperature and vacuum measurements [J]. Sensor and Actuators,1989,19:3-11.
    [56]刘维娟.便携式智能流量计的研究开发[D].[学位论文].天津:河北工业大学,2006.
    [57]Edgar. Natural gas flow measurement in the 21st century [J]. Pipeline & Gas Journal,1999,26(7):18-21.
    [58]刘长峰.天然气流量计量方法的研究[D].[学位论文].成都:西南石油学院,2003.
    [59]Roosnek N. Novel digital signal processing techniques for ultrasonic gas flow measurements [J]. Flow Measurements and Instrumentation,2000,11:89-99.
    [60]Yang W Q, Beck M S. An intelligent cross correlator for pipeline flow velocity measurement [J]. Flow Measure and Instrument,1997,8(2):77-84.
    [61]张澄,赵秀英.JS型测速管的研究[J].同济大学学报,1995,23(6):706-711.
    [62]Park K, Oh Y, Choi, H, et al. Performance enhancement of wet gas flow meter [J]. American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED,2002,257(1 A):149-153.
    [63]苏艳茹.微小流量信号检测系统的研究及应用[D].[学位论文].哈尔滨:哈尔滨工程大学,2005.
    [64]贾云飞.涡街流量传感器不同流体条件下测量特性的研究[D].[学位论文].天津:天津大学,2007.
    [65]Zavorotnyi V F, Yakimenko Yu I. Wide-range flow meter for air and gases [C]. Proceedings of the International Spring Seminar on Electronics Technology,2012: 412-415.
    [66]毛新业.均速管流量计——一种简便、价廉、节能的流量仪表[J].工业自动化控制,2005,5:13-15.
    [67]Jitschin W, Ronzheimer M, Khodabakhshi S. Gas flow measurement by means of orifices and Ventura tubes [J]. Vacuum,1999,53(1-2):181-185.
    [68]李银培.电站锅炉二次风系统的数值模拟与测量[D].[学位论文].南京:南京理工大学,2006.
    [69]安国银,边疆,付刚,等.电厂锅炉含粉气流流速在线监测系统[J].中国电力,2003,36(10):16-49.
    [70]Mesch F, Kipphan H. Solid flow measurement by correlation method [J]. Optoelectronics,1972,4:451-462.
    [71]Beck M S. Recent developments and the future of cross correlation flow meters [C]. Proceeding of the International Conference on Advances in Flow Measurement Techniques. Warwick,1981:9211-9228.
    [72]Beck M S, Drane J, Plaskowski A, et al. Particle velocity and mass measurement in pneumatic conveyors [J]. Powder Technology,1968,2:269-277.
    [73]Beck M S. Correlation in instruments:cross correlation flow meter [J]. Phys. E:Sci. Instrument.,1981,14:7219-7225.
    [74]Chisholm D. Two-phase flow through sharp-edged orifices [J]. Mechanical Engineering Science,1977,19(3):128-130.
    [75]Smith R V, Leang J T. Evaluation of correlations for two-phase flow meters three current-one new [J]. Engineering for Power,1975,97(4):589-594.
    [76]Bentey B A, Dawson D G. Fluid flow measurement by transit time analysis of temperature fluctuations [J]. Trans. Soc. Instrument. Tech.,1966,18(3):183-192.
    [77]Braun H, Fug M, Schneider G. Theory and application of an alternative correlation flow meter [J]. Chem. Eng. Techno.,1987,10:353-360.
    [78]Ostrowski Piotr, Remiorz, Leszek. Measurement of gas flow in short ducts, also rectangular [J]. Flow Measurement and Instrumentation,2013,30:1-9.
    [79]Winters A, Johnson K. Properly measured duct flow [J]. Chemical Processing,2011, 74(10):39-42.
    [80]Jitschin W, Weber U, Hartmann H K. Convenient primary gas flow meter [J]. Vacuum,1995,46(8-10):821-824.
    [81]Carland C, Delsing J. Installation effect on an ultrasonic flow meter with implications for self diagnostics [J]. Flow Measurement and Instrumentation,2000, 112:109-122.
    [82]Shih T H, Liou W W, Shabbir A, et, al. A new k-eddy-viscosity model for high Reynolds number turbulent flows-model development and validation [J]. Computers Fluids,1995,24(3):227-238.
    [83]Tanaka M A, Ohshima H, Monji H.Numerical investigation of flow structure in pipe elbow with large eddy simulation approach [J]. American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication),2010, 3:449-458.
    [84]Wecel D, Chmielniak T, Kot Owicz J. Experimental and numerical investigations of the averaging Pitot tube and analysis of installation effect s on the flow coefficient [J]. Flow Measurement and Instrumentation,2008,5(19):301-306.
    [85]贾云飞,张涛,邢娟.基于FLUENT对涡街流量传感器流场仿真及特性研究[J].系统仿真学报,2007(6):2683-2689.
    [86]Holm M, Stang J, Delsing J. Simulation of flow meter calibration factors for various installation effects [J]. Measurement:Journal of the International Measurement Confederation,1995,15(4):235-244.
    [87]史晓妍,张洪军,张东飞,等.弯管后均速管流量计输出特性数值模拟[J].中国计量学院学报,2007,18(4):285-290.
    [88]徐英,郑建生,杨会峰,等.基于RNG κ-ε模型的内锥流量计气体流出系数预测[J].天津大学学报,2007,40(10):1227-123.
    [89]Ifft S A, Mikkelsen E D. Pipe elbow effects on the Ⅴ-cone flow meter [J]. American Society of Mechanical Engineers, Fluids Engineering Division (Publication) 1993, 161:37-41.
    [90]Zhang X Z. The 2D analysis for the virtual current distribution in an electromagnetic flow meter with a bubble at its different axis positions [J]. Measur. Sci. and Techn.,1998,9:1-5.
    [91]张东飞,苏中地,张成建.关于均速管流量计测量精度的仿真与实验研究[J].计量与测试技术,2008,6(35):36-38.
    [92]钟伟,明晓.纺锤体流量计的流场数值模拟[J].计量学报,2007,28(3):262-265.
    [93]Harvill L R, Harvill T L. Numerical study of flow through a Ⅴ-Cone [C]. ASME Fluids Eng Div, Forum on Industrial Applications of Fluid Mechanics-1988, Chicago,1988.
    [94]温良英,张正荣,陈登福,等.弯管内流体流动的模拟计算与实验研究[J].计量学报,2005,26(1):53-56.
    [95]Armando De O F, John R G. Numerically based design of an orifice plate flow metering system for human respiratory flow monitoring [J]. Annals of Biomedical Engineering,1999,27:356-365.
    [96]程勇,汪军,蔡小舒.低雷诺数的孔板计量数值模拟及其应用[J].计量学报,2005,26(1):57-59.
    [97]Ivar S E, Magnussen B F. The eddy dissipation turbulence energy cascade model [J]. Combustion Science and Technology,2000,159(1):213-235.
    [98]Stephen B P. Turbulent Flows [M]. Cambridge:Cambridge University Press,2000.
    [99]袁新,陈佐一.分析与计算流体力学[M].清华大学热能工程系,1999.
    [100]张师帅.计算流体动力学及其应用CFD软件的原理与应用[M].华中科技大学 出版社,2011.
    [101]温正,石良辰,任毅如.流体计算应用教程[M].清华大学出版社,2009.
    [102]Thierry Poinsot, Denis Veynante. Theoretical and numerical combustion[M].2nd edition. Philadelphia L Edwards,2005.
    [103]Hinze J O. Turbulence [M]. New York:McGraw-Hill Publishing Co.,1975.
    [104]Rogers M M, Moser R D. Direct simulation of a self-similar turbulent mixing layer [J]. Phys. Fluids,1998,10:246-265.
    [105]Kerstein A R, Ashurst W T, Wunsch S, et al. One-dimensional turbulence:Vector formulation and application to free shear flows [J]. J. Fluid Mech.,2001,447: 85-109.
    [106]Rawat R, Spini J P, Smith J. A new lespool fire simulation tool [C]. Proceedings of the Heat Transfer Division:Combustion and Energy Systems,2001:125-128.
    [107]Poinsot T, Vevnante D. Theoretical and Numerical Combustion [M]. Lundon: Edwards R T Inc,2001:132-135.
    [108]Launder B E, Spalding D B. Lectures in Mathematical Models of Turbulence [M]. London:Academic Press,1972.
    [109]周力行.湍流气粒两相流动和燃烧的理论与数值模拟.科学出版社,1994.
    [110]Leschziner M A, Rodi W. Computation of strongly swirling axisvmmertric free jets [J].AIAA Journal,1984,22:1742-1747.
    [111]Chang K C, Hsieh W D, Chen C S. A modified low-reynolds-number turbulence model applicable to recirculating flow in pipe expansion [J]. J. of Fluids Engineering,1995,117:417-423.
    [112]Yalhot O S A V. Renormalization group analysis of turbulence:I. Basic theory [J]. J. Sci. Comput,1986,1:3-13.
    [113]Shih T, Liou W W, Shabbir A, et al. A new k-ε eddy viscosity model for high Reynolds number turbulent flows [J]. Computers Fluids,1995,24:227-238.
    [114]Wysocki M, D robniak S. A comparative analysis of correction method for total head probes in large velocity gradient flows [J]. Journal of Wind Engineering and Industrial Aerodynamics,2001,89(1):31-43.
    [115]冯俊凯,岳光溪,吕俊复.循环流化床燃烧锅炉[M].北京:电力工业出版社,2003.
    [116]Morsi S A, Alexander A J. An investigation of particle trajectories in two-phase flow systems [J]. J. Fluid Mech.,1972,55(2):193-208.
    [117]Haider A, Levenspiel O. Drag coefficient and terminal velocity of spherical and nonspherical particles [J]. Powder Technology,1989,58:63-70.
    [118]Ounis H, Ahmadi G, McLaughlin J B. Brownian diffusion of submicrometer particles in the viscous sublayer [J], Journal of Colloid and Interface Science,1991, 143(1):266-277.
    [119]Budilarto S G. An experimental study on effects of fluid aerodynamics and particle size distribution in particle-laden jet flows [D]. [PhD Thesis], Department of Mechanical Engineering, Purdue University.2003.
    [120]Sharma M P, Crowe C T, Application of computer modeling in the design of a multiphase flow metering system [J]. Journal of Fluids Engineering,1989,111: 184-190.
    [121]徐旭常,周立行.燃烧工程手册[M].中国化工出版社,2008.
    [122]Elghobashi S E. On predicting particle-laden turbulent flows [C]. Proceeding of the 7th Workshop on Two-Phase Flow Predictions, Erlangen,1994.
    [123]周向阳,郑楚光,马毓义.大型炉膛燃烧过程的数值模拟[J].华中理工大学学报,1994,22:11-15.
    [124]Beck M. Correlation in instruments:cross correlation flow meters [J]. Journal Physical E:Science Instrument,1981,14:7-19.
    [125]Lansing J.4~inch ultrasonic meter for custody transfer application [J]. Pipeline Gas Journal,1999,226(7):34-35.
    [126]Wang J Z, Tian G Y, Lucas G P. Relationship between velocity profile and distribution of induced potential for an electromagnetic flow meter [J]. Flow Measurement and Instrumentation,2007,18(2):99-105.
    [127]唐松涛.非标准差压式流量仪表的研制[D].[学位论文].长沙:中南大学,2004.
    [128]靳海龙.多功能差压式流量积算仪的开发[D].[学位论文].杭州:浙江大学,2007.
    [129]吕崇德.热工参数测量与处理[D].北京:清华大学出版社,2001.
    [130]Mehrdadi B, Kaghazchi B, Beck M S. Non-contacting level measurement of irregular surfaces using coded ultrasound and cross correlation analysis. Phys. E: Sci. Instrument.,1982,15:367-372.
    [131]Xu L A, Green R Q Beck M S. The pulsed ultrasonic cross correlation flow meter for two-phase flow measurement [J]. Phys E:Sci. Instrument.,1988,21:406-414.
    [132]Carlo, Joseph P. Oscillating wing flow meter-a new concept in large line size gas flow measurements [R], SA,1981:235-261.
    [133]赵勇纲,薛立军,岳建华,等.电站锅炉燃烧系统一、二次风风速在线监测系统的研制[J].中国电力,2000,33(1):29-31.
    [134]赵勇纲,薛立军,岳建华,等.电站锅炉一、二次风风速在线监测系统的研制与开发[J].发电设备,2000,6(1):1-4+19.
    [135]Kim D K, Han I Y, Kim S J. Study on the steady-state characteristics of the sensor tube of a thermal mass flow meter [J]. International Journal of Heat and Mass Transfer,2007,50(5-6):1206-1211.
    [136]赵勇纲,岳建华,石维柱,等.电站锅炉一二次风风速在线监测系统的研制[J].华北电力技术,2000,10:8-10+30.
    [137]蔡武昌,孙淮清,纪纲.流量测量方法和仪表的选用[M].北京:化学工业出版社,2001.
    [138]王建英.流量计检定系统自动化开发研究[D].[学位论文].天津:河北工业大学,2005.
    [139]Silva F S, Velazquez M T, Hernandez J R. Experimental study for the use of elbows as flow meters [C]. Proceedings of American Society of Mechanical Engineers of Fluids Engineering Division on Fluid Flow Metering,1997,6(1):1210-1218.
    [140]Ostrowski P, Remiorz L. Standard ISO50001:2011. Energy management systems-requirements with guidance for use [J]. Flow Measurement and Instrumentation,2013,30:1-9.
    [141]Rup K, Malinowski L, Sarna P. Measurement of flow rate in square-sectioned duct bend [J]. Journal of Theoretical and Applied Mechanics 2011; 49(2):301-11.
    [142]Zeng X Y, Chi Z H, Zheng M G, et al. Experiment research on air flow rate measurement using tracer gas method [J]. Advanced Materials Research,2012, (374-377):520-3.
    [143]Wu H, Zou Z, Huang C, et al. Study on the inaccuracies of air velocity measured by pitots with different outer diameter in an air duct [C]. Proceedings of the international conference on computer distributed control and intelligent environmental monitoring,2011:1815-1818.
    [144]Irons G, Chang J. Particle fraction and velocity measurement in gas-power streams by capacitance transducers [J]. Multiphase Flow,1985,9:289-297.
    [145]Matsumoto S. Solid particle velocity in vertical gaseous suspension flows [J]. Multiphase Flow,1986,12:445-458.
    [146]Thorn R, Beck M S, Green R G. Non-intrusive methods of velocity measurement in pneumatic conveying [J]. Phys. E:Sci. Instrument,1982,15:1131-1139.
    [147]张东飞,苏中地,史晓妍,等.不同雷诺数下均速管流量计流量系数的确定[J].中国计量学院学报,2007,18(1):18-21.
    [148]Zhu X, Zhao Z, Zhang Q. Measuring and calibrating flow rate of primary air for medium speed mills by numerical simulation [C]. Proceedings of the 2nd international conference on mechanic automation and control engineering,2011: 1386-1389.
    [149]孙保民,赵勇纲,赵智勇,等.新型气-固两相流体平均流速测量仪的试验研究[J].热能动力工程,2012,27(6):670-675.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700