用户名: 密码: 验证码:
复杂边界条件下具有密度极值流体的热对流研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热对流过程广泛存在于各种自然现象和工程技术领域中,其中,封闭腔体内的热对流更是随处可见,因此,一直是学术界研究的热点问题。目前,关于热对流的研究主要是针对密度随温度线性减小的常规流体,对具有密度极值流体热对流的研究主要集中在水平环缝内,而对工程上常见的复杂边界条件下具有密度极值流体的热对流研究很少。本文以相变蓄冷装置中的热对流问题为研究背景,对复杂边界条件下具有密度极值冷水的热对流过程进行了系统研究,得到了不同Rayleigh(Ra)数、密度倒置参数和几何结构下复杂结构环形腔、矩形腔和圆柱形腔内热对流的各种流型结构及其演变规律,分析了各主要参数对复杂结构环形腔内冷水自然对流、矩形及圆柱形腔内冷水Rayleigh-Bénard(R-B)对流流动和传热的影响。本文研究结果对于发展具有密度极值流体自然对流传热理论、拓展R-B对流的研究领域具有重要的科学意义和学术价值,同时,也可以为相变蓄冷装置的工程设计及优化提供理论指导。
     首先,对椭圆环形腔内具有密度极值冷水的自然对流进行了数值模拟,得到了不同Ra数、密度倒置参数、椭圆曲率、半径比和旋转角等参数下的流场、温度场及传热特性,讨论了各参数对流动和传热的影响。结果表明,当Ra数较小时,传热以导热为主,随着Ra数的增大,对流传热逐渐占据主导地位,当Ra数超过某一临界值时,流动将转变为非稳态流动。密度倒置参数对流动结构和传热性能具有决定性影响,当密度倒置参数在接近0.5时,流动呈两相互抑制的双胞结构,此时传热能力最差。同时,平均Nusselt(Nu)数随半径比的减小及椭圆曲率的增加而增大;旋转角对流场和温度场影响较大,腔体倾斜时,流场中出现的次级流胞不再成对出现,而是单一地出现在腔体的某一侧,其可使内壁底部区域的局部Nu数增大,但对平均Nu数影响较小。
     然后,分析对比了具有不同几何结构的复杂异型腔内、具有密度极值冷水自然对流的流场和温度场的差异,讨论了各种参数对不同异型腔内传热的影响。结果发现,R-C、T-C、E-S和E-T结构环形腔上部或下部区域发生了R-B对流,在较大半径比时,R-C、D-C、T-C、E-S和E-T结构的环形腔内会出现流胞分裂现象。几何结构对传热性能有很大影响,对于外壁为不同几何结构的环形腔,当Ra数较小时,T-C结构传热能力最强,当Ra数较大时,R-C结构传热能力最强。对于内壁为不同几何结构的环形腔,当密度倒置参数较小时,E-D结构传热性能较好,随着密度倒置参数的增大,E-T结构和E-D结构传热能力增强。通过对计算结果的回归整理,得到了各环形腔内冷水自然对流传热关联式。
     另外,确定了矩形和圆柱形腔内具有密度极值冷水R-B对流流动的临界条件、可能存在的流型结构以及流型演变过程,结果表明,冷水的密度倒置特性对R-B对流有决定性影响。系统失稳的临界Ra数比常规流体大,且随密度倒置参数的增加而增大。不同密度倒置参数下,对流结构不同,传热能力随密度倒置参数的增大而减小。导热侧壁增强了系统的稳定性,两种热边界条件下流型结构以及分岔序列有很大差别。宽(径)深比的增大会降低系统稳定性,当宽(径)深比较小时,对流结构多为单涡卷和双涡卷结构,且圆柱形腔内R-B对流系统更加稳定;当宽(径)深比较大时,出现了复杂的多涡卷对流结构,圆柱形腔内R-B对流流动结构与矩形腔内的差异较大,在圆柱形腔内R-B对流还出现了中心对称流型。相同Ra数下,多种流型可以稳定共存,且各流型的对流传热能力也存在差异,但这种差异并不大。
     最后,对圆柱形腔内具有密度极值冷水R-B对流进行了实验研究,结果表明,实验结果与数值模拟结果吻合较好;壁面平均Nu数都随密度倒置参数的增大而减小,Ra数的增加能显著增强传热能力,径深比的增大也能在一定程度上强化传热。通过对实验结果的回归整理,得到了圆柱形腔内冷水R-B对流传热关联式。
Thermal convection exists widely in all kinds of natural phenomena andengineering technology fields. The natural convection in the closed cavity has become astudy hotspot due to its important applications in engineering. Up to now, many workshave been performed for common fluid that the density of which is considered as alinear function of temperature, and thermal convection of the fluid with the densitymaximum is mainly focused on horizontal annuli. However, research result on thermalconvection of the fluid near its density maximum with complex geometrical and thermalboundary conditions is lacked. In this thesis, a systematic study on thermal convectionof cold water near its density maximum with complex boundary conditions is performed,aiming at the thermal convection in the equipment of phase change cool-thermal energystorage system. The formation and evolution of the flow structures at different Rayleighnumber (Ra), density inversion parameter and geometrical configuration in annularenclosures with various complex configurations, rectangular and cylindrical cavities arepresented. The effect of the main parameters on the natural convection of cold water inannular enclosures with various complex configurations and the Rayleigh-Bénard (R-B)convection of cold water in rectangular and cylindrical cavities is analyzed anddiscussed. The study results can not only has important academic significance ondeveloping the theory of natural convection of the fluid with the density maximum withcomplex configuration and extending the research field of R-B convection, but alsoprovide a reference for design and optimization of phase change cool-thermal energystorage system.
     Firstly, a numerical investigation on the natural convection of cold water in ellipticannular enclosures is carried out to obtain the flow and thermal fields and heat transfercharacteristic along the inner wall at different Ra, density inversion parameter, aspectratio, elliptical ratio and inclination angle. Effects of various main parameters on thecharacteristic of flow and heat transfer are discussed. The results indicate thatconduction is the dominant mode of heat transfer at a small Ra, and the convection heattransfer becomes dominant with the increase of Ra. When Ra exceeds to a certain value,the flow is out of stability, but the mechanisms of flow instability are different forvarious density inversion parameters. The flow structure and heat transfer ability dependstrongly on the density inversion parameter. When the density inversion parameter is around0.5, there is a bi-cellular flow pattern consisting of two cells that suppressedeach other, which results in the weakest heat transfer ability. The average Nusseltnumber (Nu) increases with the decrease of the aspect ratio and the elliptical ratio. Theinclination angle modifies the flow and thermal field apparently. The secondary cells donot appear with a pair when the enclosure is tilted, which enhances the local heattransfer ability in the lower region while the overall heat transfer ability is nearlyunaffected.
     Secondly, the difference of flow and thermal field and heat transfer ability amongvarious annular enclosures with complex configurations is compared and discussed. Itshows that the R-B convection occurs in the top or bottom region for the R-C, T-C, E-Sand E-T configurations and the cell splitting phenomenon happens at a large aspect ratioin the R-C, D-C, T-C, E-S and E-T configurations. As expected, the wall configurationhas an importanr effect on the heat transfer on the inner wall. For the differentconfiguration of the outer wall, the heat transfer ability of the T-C configuration is thelargest among these configurations at a small Ra while R-C configuration becomes thelargest in heat transfer at a large Ra. For the different inner wall, the E-D configurationachieves the best heat transfer performance in the whole range of the Ra at small densityinversion parameter, and E-T and E-D configurations have the best heat transfer abilityat the large density inversion parameter. Furthermore, the heat transfer correlations forvarious configurations have been proposed by the multi-factor linear regression.
     In addition, the thresholds for the onset of convection, the formation and evolutionof complex flow pattern for the R-B convection of cold water with density maximum inrectangular and cylindrical cavities are assured. Results show that the density inversionplays a key role in the R-B convection. The critical Ra for the onset of convection islarger than that of the common fluid, and it increases with the increase of the densityinversion parameter. The flow structures are much more different from each other atdifferent inversion parameters. Conductive sidewall enhances the stability of the R-Bconvection, and the flow structures and bifurcation series are different with the twothermal boundary conditions of sidewalls. The increase of aspect ratio reduces thestability of the flow. When the aspect ratio is small, most of the flow patterns aresingle-roll or two-roll structure. The R-B convection in cylindrical cavity is more stablethan that in rectangular cavity. However, many multiple rolls flow patterns appear, andthe flow structures of cylindrical cavity are much more different from that ofrectangular cavity when the aspect ratio is large. Furthermore, center symmetric flow patterns exist for the R-B convection in cylindrical cavity. At the same Ra, thecoexistence of multiple stable states is observed and the heat transfer rates for thesestates are slightly different from each other.
     Finally, an experimental investigation on the heat transfer of the R-B convection ofcold water with the density maximum in the cylindrical cavity is carried out. The resultsof experiment are in good agreement with those of numerical simulation. The averageNu decreases with the increase of density inversion parameter. The increase of Ra canremarkably enhance the heat transfer on the wall while the increase of aspect ratio justenhances the heat transfer ability to a certain extent. Furthermore, the heat transfercorrelation for the R-B convection in the cylindrical cavity has been proposed by themulti-factor linear regression.
引文
[1] Zeng M, Xue S, Ma M, Zhu X L. New energy bases and sustainable development in China: Areview [J]. Renewable and Sustainable Energy Reviews,2013,20:169-185.
    [2] Donohue R J, Roderick M L, McVicar T R, Farquhar G D. Impact of CO2fertilization onmaximum foliage cover across the globe's warm, arid environments [J]. GeophysicalResearch Letters,2013,40(12):3031-3035.
    [3] Agyenim F, Hewitt N, Eames P, Smyth M. A review of materials, heat transfer and phasechange problem formulation for latent heat thermal energy storage systems (LHTESS)[J].Renewable and Sustainable Energy Reviews,2010,14(2):615-628.
    [4] Zalba B, Marin J M, Cabeza L F, Mehling H. Review on thermal energy storage with phasechange: materials, heat transfer analysis and applications [J]. Applied Thermal Engineering,2003,23(3):251-283.
    [5] Alawadhi E M. A solidification process with free convection of water in an ellipticalenclosure [J]. Energy Conversion and Management,2009,50(2):360-364.
    [6] Teertstra P, Yovanovich M M. Comprehensive review of natural convection in horizontalcircular annuli [C]. Proceedings of the19987th AIAA/ASME Joint Thermophysics and HeatTransfer Conference. Albuquerque: ASME,1998,357:141-152.
    [7] Kuehn T H, Goldstein R J. An experimental and theoretical study of natural convection in theannulus between horizontal concentric cylinders [J]. Journal of Fluid Mechanics,1976,74(4):695-719.
    [8] Kuehn T H, Goldstein R J. Experimental-study of natural-convection heat-transfer inconcentric and eccentric horizontal cylindrical annuli [J]. Journal of HeatTransfer-Transactions of the ASME,1978,100(4):635-640.
    [9] Kuehn T H, Goldstein R J. Correlating equations for natural convection heat transfer betweenhorizontal circular cylinders [J]. International Journal of Heat and Mass Transfer,1976,19(10):1127-1134.
    [10] Shi Y, Zhao T S, Guo Z L. Finite difference-based lattice Boltzmann simulation of naturalconvection heat transfer in a horizontal concentric annulus [J]. Computers and Fluids,2006,35(1):1-15.
    [11] Yoo J S. Dual steady solutions in natural convection between horizontal concentric cylinders[J]. International Journal of Heat and Fluid Flow,1996,17(6):587-593.
    [12] Yoo J S. Flow pattern transition of natural convection in a horizontal annulus with constantheat flux on the inner wall [J]. International Journal of Numerical Methods for Heat and FluidFlow,2005,15(7):698-709.
    [13] Mizushima J, Hayashi S, Adachi T. Transitions of natural convection in a horizontal annulus[J]. International Journal of Heat and Mass Transfer,2001,44(6):1249-1257.
    [14] Chung J D, Kim C J, Yoo H, Lee J S. Numerical investigation on the bifurcative naturalconvection in a horizontal concentric annulus [J]. Numerical Heat Transfer, PartA-Applications,1999,36(3):291-307.
    [15] Angeli D, Barozzi G S, Collins M W, Kamiyo O M. A critical review of buoyancy-inducedflow transitions in horizontal annuli [J]. International Journal of Thermal Sciences,2010,49(12):2231-2241.
    [16] Fant D B, Prusa J, Rothmayer A P. Unsteady multicellular natural-convection in a narrowhorizontal cylindrical annulus [J]. Journal of Heat Transfer-Transactions of the ASME,1990,112(2):379-387.
    [17] Labonia G, Guj G. Natural convection in a horizontal concentric cylindrical annulas:Oscillatory flow and transition to chaos [J]. Journal of Fluid Mechanics,1998,375:179-202.
    [18] Mahony D N, Kumar R, Bishop E H. Numerical investigation of variable property effects onlaminar natural convection of gases between two horizontal isothermal concentric cylinders[J]. Journal of Heat Transfer-Transactions of the ASME,1986,108(4):783-789.
    [19] Yoo J. Prandtl number effect on bifurcation and dual solutions in natural convection in ahorizontal annulus [J]. International Journal of Heat and Mass Transfer,1999,42(17):3279-3290.
    [20] Yoo J S. Natural convection in a narrow horizontal cylindrical annulus: Pr≤0.3[J].International Journal of Heat and Mass Transfer,1998,41(20):3055-3073.
    [21] Yoo J S, Han S M. Transitions and chaos in natural convection of a fluid with Pr=0.1in ahorizontal annulus [J]. Fluid Dynamics Research,2000,27(4):231-245.
    [22] Shahraki F. Modeling of buoyancy-driven flow and heat transfer for air in a horizontalannulus: effects of vertical eccentricity and temperature-dependent properties [J]. NumericalHeat Transfer, Part A-Applications,2002,42(6):603-621.
    [23] Fattahi E, Farhadi M, Sedighi K. Lattice Boltzmann simulation of natural convection heattransfer in eccentric annulus [J]. International Journal of Thermal Sciences,2010,49(12):2353-2362.
    [24] Cao Z H, Luo K, Yi H L, Tan H P. Energy conservative dissipative particle dynamicssimulation of natural convection in eccentric annulus [J]. International Journal of Heat andMass Transfer,2013,65:409-422.
    [25] Powe R E, Bishop E H, Carley C T. Free convective flow patterns in cylindrical annuli [J].Journal of Heat Transfer-Transactions of the ASME,1969,91(3):310-314.
    [26] Rao Y F, Miki Y, Fukuda K, Takata Y, Hasegawa S. Flow patterns of natural-convection inhorizontal cylindrical annuli [J]. International Journal of Heat and Mass Transfer,1985,28(3):705-714.
    [27] Vafai K, Ettefagh J. An investigation of transient3-dimensional buoyancy-driven flow andheat-transfer in a closed horizontal annulus [J]. International Journal of Heat and MassTransfer,1991,34(10):2555-2570.
    [28] Dyko M P, Vafai K. Three-dimensional natural convective states in a narrow-gap horizontalannulus [J]. Journal of Fluid Mechanics,2001,445:1-36.
    [29] Dyko M P, Vafai K. On the presence of odd transverse convective rolls in narrow-gaphorizontal annuli [J]. Physics of Fluids,2002,14(3):1291-1294.
    [30] Dyko M P, Vafai K. Effects of gravity modulation on convection in a horizontal annulus [J].International Journal of Heat and Mass Transfer,2007,50(1):348-360.
    [31] Petrone G, Chénier E, Lauriat G. Stability of free convection in air-filled horizontal annuli:Influence of the radius ratio [J]. International Journal of Heat and Mass Transfer,2004,47(17):3889-3907.
    [32] Petrone G, Chenier E, Lauriat G. Stability analysis of natural convective flows in horizontalannuli: Effects of the axial and radial aspect ratios [J]. Physics of Fluids,2006,18:10410710.
    [33] Takata Y, Iwashige K, Fukuda K, Hasegawa S. Three-dimensional natural-convection in aninclined cylindrical annulus [J]. International Journal of Heat and Mass Transfer,1984,27(5):747-754.
    [34] Hamad F A, Khan M K. Natural convection heat transfer in horizontal and inclined annuli ofdifferent diameter ratios [J]. Energy Conversion and Management,1998,39(8):797-807.
    [35] Nada S A. Experimental investigation of natural convection heat transfer in horizontal andinclined annular fluid layers [J]. Heat and Mass Transfer,2008,44(8):929-936.
    [36] Seki N, Fukusako S, Nakaoka M. Experimental study on natural convection heat transfer withdensity inversion of water between two horizontal concentric cylinders [J]. Journal of HeatTransfer-Transactions of the ASME,1975,97(4):556-561.
    [37] Seki N, Fukusako S, Nakaoka M. An analysis of free convective heat transfer with densityinversion of water between two horizontal concentric cylinders [J]. Journal of HeatTransfer-Transactions of the ASME,1976,98(4):670-672.
    [38] Nguyen T H, Vasseur P, Robillard L. Natural-convection between horizontal concentriccylinders with density inversion of water for low Rayleigh numbers [J]. International Journalof Heat and Mass Transfer,1982,25(10):1559-1568.
    [39] Vasseur P, Robillard L, ShekarB C. Natural-convection heat-transfer of water within ahorizontal cylindrical annulus with density inversion effects [J]. Journal of HeatTransfer-Transactions of the ASME,1983,105(1):117-123.
    [40] Raghavarao C V, Sanyasiraju Y V S S. Natural convection heat transfer of cold waterbetween concentric cylinders for high Rayleigh numbers-a numerical study [J]. InternationalJournal of Engineering Science,1994,32(9):1437-1450.
    [41] Raghavarao C V, Sanyasiraju Y V S S. Natural convection heat transfer of cold water in aneccentric horizontal cylindrical annulus-A numerical study [J]. Computational Mechanics,1996,18(6):464-470.
    [42] Funawatashi Y, Ohta S, Suzuki T. Three-dimensional structures of natural convection ofwater near the density extremum within a horizontal annulus [J]. Thermal Science andEngineering,2004,12(4):29-30.
    [43] Li Y R, Yuan X F, Wu C M, Hu Y P. Natural convection of water near its density maximumbetween horizontal cylinders [J]. International Journal of Heat and Mass Transfer,2011,54(11):2550-2559.
    [44] Yuan X F, Li Y R. Natural convective heat transfer of water near its density maximum in aneccentric horizontal annulus [J]. International Journal of Thermal Sciences,2012,60:85-93.
    [45] Lee J H, Lee T S. Natural-convection in the annuli between horizontal confocal ellipticcylinders [J]. International Journal of Heat and Mass Transfer,1981,24(10):1739-1742.
    [46] Elshamy M M, Ozisik M N, Coulter J P. Correlation for laminar natural-convection betweenconfocal horizontal elliptic cylinders [J]. Numerical Heat Transfer, Part A-Applications,1990,18(1):95-112.
    [47] Cheng C H, Chao C C. Numerical prediction of the buoyancy-driven flow in the annulusbetween horizontal eccentric elliptical cylinders [J]. Numerical Heat Transfer, PartA-Applications,1996,30(3):283-303.
    [48] Djezzar M, Daguenet M. Natural steady convection in a space annulus between two ellipticconfocal ducts: Influence of the slope angle [J]. Journal of Applied Mechanics-Transactionsof the ASME,2006,73(1):88-95.
    [49] Eid E I. Natural convection heat transfer in elliptic annuli with different aspect ratios [J].Alexandria Engineering Journal,2005,44(2):203-215.
    [50] Eid E I. Experimental study of free convection in an elliptical annular enclosure in blunt andslender orientations [J]. Heat and Mass Transfer,2011,47(1):81-91.
    [51] Mahfouz F M. Buoyancy driven flow within an inclined elliptic enclosure [J]. InternationalJournal of Thermal Sciences,2011,50(10):1887-1899.
    [52] House J M, Beckermann C, Smith T F. Effect of a centered conducting body on naturalconvection heat transfer in an enclosure [J]. Numerical Heat Transfer, Part A-Applications,1990,18(2):213-225.
    [53] Oh J Y, Ha M Y, Kim K C. Numerical study of heat transfer and flow of natural convection inan enclosure with a heat-generating conducting body [J]. Numerical Heat Transfer, Part A-Applications,1997,31(3):289-303.
    [54] Ha M Y, Jung M J, Kim Y S. Numerical study on transient heat transfer and fluid flow ofnatural convection in an enclosure with a heat-generating conducting body [J]. NumericalHeat Transfer, Part A-Applications,1999,35(4):415-433.
    [55] Famouri M, Hooman K. Entropy generation for natural convection by heated partitions in acavity [J]. International Communications in Heat and Mass Transfer,2008,35(4):492-502.
    [56] De A K, Dalal A. A numerical study of natural convection around a square, horizontal, heatedcylinder placed in an enclosure [J]. International Journal of Heat and Mass Transfer,2006,49(23):4608-4623.
    [57] Moraveji M K, Hejazian M. Natural convection in a rectangular enclosure containing anoval-shaped heat source and filled with Fe3O4/water nanofluid [J]. InternationalCommunications in Heat and Mass Transfer,2013,44:135-146.
    [58] Moukalled F, Diab H, Acharya S. Laminar Natural-convection in a horizontal rhombicannulus [J]. Numerical Heat Transfer, Part A-Applications,1993,24(1):89-107.
    [59] Moukalled F, Acharya S. Laminar natural-convection heat-transfer in an eccentric rhombicannulus [J]. Numerical Heat Transfer, Part A-Applications,1994,26(5):551-568.
    [60] Chmaissem W, Jik Suh S, Daguenet M. Numerical study of the Boussinesq model of naturalconvection in an annular space: having a horizontal axis bounded by circular and ellipticalisothermal cylinders [J]. Applied Thermal Engineering,2002,22(9):1013-1025.
    [61] Zhu Y D, Shu C, Qiu J, et al. Numerical simulation of natural convection between twoelliptical cylinders using DQ method [J]. International Journal of Heat and Mass Transfer,2004,47(4):797-808.
    [62] Moukalled F, Acharya S. Natural convection in the annulus between concentric horizontalcircular and square cylinders [J]. Journal of Thermophysics and Heat Transfer,1996,10(3):524-531.
    [63] Shu C, Zhu Y D. Efficient computation of natural convection in a concentric annulus betweenan outer square cylinder and an inner circular cylinder [J]. International Journal for NumericalMethods in Fluids,2002,38(5):429-445.
    [64] Saha S, Saha G, Islam M Q. Natural convection in square enclosure with adiabatic cylinder atcenter and discrete bottom heating [J]. Daffodil International University Journal of Scienceand Technology,2008,3(1):29-36.
    [65] Shu C, Xue H, Zhu Y D. Numerical study of natural convection in an eccentric annulusbetween a square outer cylinder and a circular inner cylinder using DQ method [J].International Journal of Heat and Mass Transfer,2001,44(17):3321-3333.
    [66] Ding H, Shu C, Yeo K S, Lu Z L. Simulation of natural convection in eccentric annulibetween a square outer cylinder and a circular inner cylinder using local MQ-DQ method [J].Numerical Heat Transfer, Part A-Applications,2005,47(3):291-313.
    [67] Lee J M, Ha M Y, Yoon H S. Natural convection in a square enclosure with a circularcylinder at different horizontal and diagonal locations [J]. International Journal of Heat andMass Transfer,2010,53(25):5905-5919.
    [68] Sheikholeslami M, Gorji-Bandpay M, Ganji D D. Magnetic field effects on naturalconvection around a horizontal circular cylinder inside a square enclosure filled withnanofluid [J]. International Communications in Heat and Mass Transfer,2012,39(7):978-986.
    [69] Cesini G, Paroncini M, Cortella G, et al. Natural convection from a horizontal cylinder in arectangular cavity [J]. International Journal of Heat and Mass Transfer,1999,42(10):1801-1811.
    [70] Kim B S, Lee D S, Ha M Y, Yoon H S. A numerical study of natural convection in a squareenclosure with a circular cylinder at different vertical locations [J]. International Journal ofHeat and Mass Transfer,2008,51(7):1888-1906.
    [71] Lacroix M, Joyeux A. Coupling of wall conduction with natural convection from heatedcylinders in a rectangular enclosure [J]. International Communications in Heat and MassTransfer,1996,23(1):143-151.
    [72] Xu X, Yu Z, Hu Y, Fan L W, Cen K F. A numerical study of laminar natural convective heattransfer around a horizontal cylinder inside a concentric air-filled triangular enclosure [J].International Journal of Heat and Mass Transfer,2010,53(1):345-355.
    [73] Yu Z T, Xu X, Hu Y C, Fan L W, Cen K F. Unsteady natural convection heat transfer from aheated horizontal circular cylinder to its air-filled coaxial triangular enclosure [J].International Journal of Heat and Mass Transfer,2011,54(7):1563-1571.
    [74] Yu Z T, Hu Y C, Fan L W, Cen K F. A parametric study of Prandtl number effects on laminarnatural convection heat transfer from a horizontal circular cylinder to its coaxial triangularenclosure [J]. Numerical Heat Transfer, Part A-Applications,2010,58(7):564-580.
    [75] Sambamurthy N B, Shaija A, Narasimham G S V L, Murthy K M V. Laminar conjugatenatural convection in horizontal annuli [J]. International Journal of Heat and Fluid Flow,2008,29(5):1347-1359.
    [76] Sakr R Y, Berbish N S, Abd-Aziz A A, Hanafi A S. Experimental and numerical investigationof natural convection heat transfer in horizontal elliptic annuli [J]. Journal of AppliedSciences Research,2008,4(2):138-155.
    [77] Xu X, Sun G G, Yu Z T, Hu Y C, Fan L W, Cen K F. Numerical investigation of laminarnatural convective heat transfer from a horizontal triangular cylinder to its concentriccylindrical enclosure [J]. International Journal of Heat and Mass Transfer,2009,52(13):3176-3186.
    [78] Yu Z T, Xu X, Hu Y C, Fan L W, Cen K F. Transient natural convective heat transfer from aheated triangular cylinder to its air-filled coaxial cylindrical enclosure [J]. InternationalJournal of Heat and Mass Transfer,2010,53(19):4296-4303.
    [79] Yu Z T, Xu X, Hu Y C, Fan L W, Cen K F. Transient natural convective heat transfer of alow-Prandtl-number fluid inside a horizontal circular cylinder with an inner coaxial triangularcylinder [J]. International Journal of Heat and Mass Transfer,2010,53(23):5102-5110.
    [80] Mehrizi A A, Farhadi M, Shayamehr S. Natural convection flow of Cu-Water nanofluid inhorizontal cylindrical annuli with inner triangular cylinder using lattice Boltzmann method [J].International Communications in Heat and Mass Transfer,2013,44:147-156.
    [81] Ghasemi E, Soleimani S, Bararnia H. Natural convection between a circular enclosure and anelliptic cylinder using control volume based finite element method [J]. InternationalCommunications in Heat and Mass Transfer,2012,39(8):1035-1044.
    [82] Sheikholeslami M, Gorji-Bandpy M, Ganji D D, Soleimani S, Seyyedi S M. Naturalconvection of nanofluids in an enclosure between a circular and a sinusoidal cylinder in thepresence of magnetic field [J]. International Communications in Heat and Mass Transfer,2012,39(9):1435-1443.
    [83] Sheikholeslami M, Gorji-Bandpy M, Pop I, Soleimani S. Numerical study of naturalconvection between a circular enclosure and a sinusoidal cylinder using control volume basedfinite element method [J]. International Journal of Thermal Sciences,2013,72:147-158.
    [84] Sasaguchi K, Kusano K, Kitagawa H, Kuwabara K. Effect of density inversion on cooling ofwater around a cylinder in a rectangular cavity [J]. Numerical Heat Transfer, PartA-Applications,1997,32(2):131-148.
    [85] Sasaguchi K, Kuwabara K, Kusano K, Kitagawa H. Transient cooling of water around acylinder in a rectangular cavity-a numerical analysis of the effect of the position of thecylinder [J]. International Journal of Heat and Mass Transfer,1998,41(20):3149-3156.
    [86] Clever R M, Busse F H. Low-Prandtl-number convection in a layer heated from below[J].Journal of Fluid Mechanics,1981,102:61-74.
    [87] Wanschura M, Kuhlmann H C, Rath H J. Three-dimensional instability of axisymmetricbuoyant convection in cylinders heated from below [J]. Journal of Fluid Mechanics,1996,326(1):399-415.
    [88] Lappa M. Review: Thermal convection and related instabilities in models of crystal growthfrom the melt on earth and in microgravity: Past history and current status [J]. CrystalResearch and Technology,2005,40(6):531-549.
    [89] Shrivastava S K, Sammakia B G. Thermal management of biomaterials in a rectangular cavitysurrounded by a phase change material [J]. IEEE Transactionson Advanced Packaging,2007,30(4):741-751.
    [90] Singh H, Eames P C. A review of natural convective heat transfer correlations in rectangularcross-section cavities and their potential applications to compound parabolic concentrating(CPC) solar collector cavities [J]. Applied Thermal Engineering,2011,31(14):2186-2196.
    [91] Zhang Y L, Rao Z H, Wang S F, Zhang Z, Li X P. Experimental evaluation on naturalconvection heat transfer of microencapsulated phase change materials slurry in a rectangularheat storage tank [J]. Energy Conversion and Management,2012,59:33-39.
    [92] Benard H. Les tourbillons cellulaires dans une nappe liquide [J]. Revue Générale DesSciences Pures et Appliquées,1900,11:679-686.
    [93] Rayleigh L. LIX. On convection currents in a horizontal layer of fluid, when the highertemperature is on the under side [J]. Philosophisical Magazine and Journal of Science,1916,32:529-546.
    [94] Bodenschatz E, Pesch W, Ahlers G. Recent developments in Rayleigh-Bénard convection [J].Annual Review of Fluid Mechanics,2000,32(1):709-778.
    [95] H hler G. Dynamics of Spatio-Temporal Cellular Structures [M]. New York: Springer,2006.
    [96] Jeffreys H. Some cases of instability in fluid motion [C]. Proceedings of the Royal Society ofLondon. London: Royal Soc London,1928,118(779):195-208.
    [97] Schlüter A, Lortz D, Busse F. On the stability of steady finite amplitude convection [J].Journal of Fluid Mechanics,1965,23(1):129-144.
    [98] Ahlers G, Cannell D S, Steinberg V. Time dependence of flow patterns near the convectivethreshold in a cylindrical container [J]. Physical Review Letters,1985,54:1373-1376.
    [99] Charlson G S, Sani R L. Thermoconvective instability in a bounded cylindrical fluid layer [J].International Journal of Heat and Mass Transfer,1970,13(9):1479-1496.
    [100] Mukutmoni D, Yang K T. Wave-number selection for Rayleigh-Bénard convection in a smallaspect ratio box [J]. International Journal of Heat and Mass Transfer,1992,35(9):2145-2159.
    [101] Stork K, Müller U. Convection in boxes: an experimental investigation in vertical cylindersand annuli [J]. Journal of Fluid Mechanics,1975,71(2):231-240.
    [102] Charlson G S, Sani R L. On thermoconvective instability in a bounded cylindrical fluid layer[J]. International Journal of Heat and Mass Transfer,1971,14(12):2157-2160.
    [103] Rosenblat S. Thermal convection in a vertical circular cylinder [J]. Journal of FluidMechanics,1982,122:395-410.
    [104] Buell J C, Catton I. The effect of wall conduction on the stability of a fluid in a rightcircular-cylinder heated from below [J]. Journal of Heat Transfer-Transactions of the ASME,1983,105(2):255-260.
    [105] Touihri R, Ben Hadid H, Henry D. On the onset of convective instabilities in cylindricalcavities heated from below. I. Pure thermal case [J]. Physics of Fluids,1999,11(8):2078-2088.
    [106] Touihri R, Ben Hadid H, Henry D. On the onset of convective instabilities in cylindricalcavities heated from below. II. Effect of a magnetic field [J]. Physics of Fluids,1999,11(8):2089-2100.
    [107] Hébert F, Hufschmid R, Scheel J, Ahlers G. Onset of Rayleigh-Bénard convection incylindrical containers [J]. Physical Review E,2010,81(4):046318.
    [108] Wanschura M, Kuhlmann H C, Rath H J. Three-dimensional instability of axisymmetricbuoyant convection in cylinders heated from below [J]. Journal of Fluid Mechanics,1996,326:399-415.
    [109] Siggers J H. Dynamics of target patterns in low-Prandtl-number convection [J]. Journal ofFluid Mechanics,2003,475:357-375.
    [110] Rudiger S, Feudel F. Pattern formation in Rayleigh-Bénard convection in a cylindricalcontainer [J]. Physical Review E,2000,62(4):4927-4931.
    [111] Paul M R, Chiam K H, Cross M C, Fischer P F, Greenside H S. Pattern formation anddynamics in Rayleigh-Bénard convection: numerical simulations of experimentally realisticgeometries [J]. Physica D: Nonlinear Phenomena,2003,184(1):114-126.
    [112] Hardin G R, Sani R L, Henry D, Roux B. Buoyancy-driven instability in a vertical cylinder-binary fluids with soret effect. Part I: General-theory and stationary stability results [J].International Journal for Numerical Methods in Fluids,1990,10(1):79-117.
    [113] Hardin G R, Sani R L. Buoyancy-driven instability in a vertical cylinder-binary fluids withsoret effect. Part II: Weakly non-linear solutions [J]. International Journal for NumericalMethods in Fluids,1993,17(9):755-786.
    [114] D'Orazio M C, Cianfrini C, Corcione M. Rayleigh-Bénard convection in tall rectangularenclosures [J]. International Journal of Thermal Sciences,2004,43(2):135-144.
    [115] Mukutmoni D, Yang K T. Thermal convection in small enclosures: an atypical bifurcationsequence [J]. International Journal of Heat and Mass Transfer,1995,38(1):113-126.
    [116] Gollub J P, Benson S V. Many routes to turbulent convection [J]. Journal of Fluid Mechanics,1980,100(10):449-470.
    [117] Davis S H. Convection in a box-linear theory [J]. Journal of Fluid Mechanics,1967,30(3):465.
    [118] Mishra D, Muralidhar K, Munshi P. Experimental study of Rayleigh-Bénard convection atintermediate Rayleigh numbers using interferometric tomography [J]. Fluid DynamicsResearch,1999,25(5):231-255.
    [119] Lir J T, Lin T F. Visualization of roll patterns in Rayleigh-Bénard convection of air in arectangular shallow cavity [J]. International Journal of Heat and Mass Transfer,2001,44(15):2889-2902.
    [120] Zhan N, Xu P W, Sun S M, Yang M, Liu J. Study on the stability and3-dimensional characterfor natural convection in a rectangular cavity heated from below [J]. ScienceChina-Technological Sciences,2010,53(6):1647-1654.
    [121] Zhan N Y, Gao Q, Bai L, Yang M. Experimental research on nonlinear characteristics ofnatural convection in a3-D shallow cavity [J]. Science China-Technological Sciences,2011,54(12):3304-3310.
    [122] Pallarès J, Arroyo M P, Grau F X, Giralt F. Experimental laminar Rayleigh-Bénardconvection in a cubical cavity at moderate Rayleigh and Prandtl numbers [J]. Experiments inFluids,2001,31(2):208-218.
    [123] Mishra P K, Wahi P, Verma M K. Patterns and bifurcations in low-Prandtl-number Rayleigh-Bénard convection [J]. Europhysics Letters,2010,89:440034.
    [124] Soong C Y, Tzeng P Y, Hsieh C D. Numerical study of bottom-wall temperature modulationeffects on thermal instability and oscillatory cellular convection in a rectangular enclosure [J].International Journal of Heat and Mass Transfer,2001,44(20):3855-3868.
    [125] Pallarès J, Cuesta I, Grau F X, Giralt F. Natural convection in a cubical cavity heated frombelow at low Rayleigh numbers [J]. International Journal of Heat and Mass Transfer,1996,39(15):3233-3247.
    [126] Venturi D, Wan X, Karniadakis G E. Stochastic bifurcation analysis of Rayleigh-Bénardconvection [J]. Journal of Fluid Mechanics,2010,650(1):391-413.
    [127] Borońska K, Tuckerman L S. Standing and travelling waves in cylindrical Rayleigh-Bénardconvection [J]. Journal of Fluid Mechanics,2006,559:279-298.
    [128] Mukutmoni D, Yang K T. Rayleigh-Bénard convection in a small aspect ratio enclosure: Part1-Bifurcation to oscillatory convection [J]. Journal of Heat Transfer-Transactions of theASME,1993,115(2):360-366.
    [129] Mukutmoni D, Yang K T. Rayleigh-Bénard convection in a small aspect ratio enclosure: PartII-Bifurcation to chaos [J]. Journal of Heat Transfer-Transactions of the ASME,1993,115(2):367-376.
    [130] Hof B, Lucas P, Mullin T. Flow state multiplicity in convection [J]. Physics of Fluids,1999,11(10):2815-2817.
    [131] Ma D J, Sun D J, Yin X Y. Multiplicity of steady states in cylindrical Rayleigh-Bénardconvection [J]. Physical Review E,2006,74:037302.
    [132] Leong S S. Numerical study of Rayleigh-Bénard convection in a cylinder [J]. Numerical HeatTransfer Part A-Applications,2002,41(6-7):673-683.
    [133] Borońska K, Tuckerman L S. Extreme multiplicity in cylindrical Rayleigh-Bénard convection.I. Time dependence and oscillations [J]. Physical Review E,2010,81:036320.
    [134] Borońska K, Tuckerman L S. Extreme multiplicity in cylindrical Rayleigh-Benard convection.II. Bifurcation diagram and symmetry classification [J]. Physical Review E,2010,81:036321.
    [135] Li Y R, Ouyang Y Q, Peng L, Wu S Y. Direct numerical simulation of Rayleigh-Bénardconvection in a cylindrical container of aspect ratio1for moderate Prandtl number fluid [J].Physics of Fluids,2012,24:074103.
    [136] Wang B F, Ma D J, Chen C, Sun D J. Linear stability analysis of cylindrical Rayleigh-Bénardconvection [J]. Journal of Fluid Mechanics,2012,711:27-29.
    [137] Puigjaner D, Herrero J, Giralt F, Simó C. Stability analysis of the flow in a cubical cavityheated from below [J]. Physics of Fluids,2004,16(10):3639-3655.
    [138] Sezai I, Mohamad A A. Natural convection in a rectangular cavity heated from below andcooled from top as well as the sides [J]. Physics of Fluids,2000,12(2):432-443.
    [139] Bousset F, Lyubimov D V, Sedel'Nikov G A. Three-dimensional convection regimes in acubical cavity [J]. Fluid Dynamics,2008,43(1):1-8.
    [140] Puigjaner D, Herrero J, Simó C, Giralt F. Bifurcation analysis of steady Rayleigh-Bénardconvection in a cubical cavity with conducting sidewalls [J]. Journal of Fluid Mechanics,2008,598:393-427.
    [141] Zubkov P T, Kalabin E V. Numerical investigation of the natural convection of water in theneighborhood of the density inversion point for Grashof numbers up to106[J]. FluidDynamics,2001,36(6):944-951.
    [142] Zubkov P T, Kalabin E V, Yakovlev A V. Investigation of natural convection in a cubiccavity near4°C [J]. Fluid dynamics,2002,37(6):847-853.
    [143] Li Y R, Ouyang Y Q, Hu Y P. Pattern formation of Rayleigh-Bénard convection of cold waternear its density maximum in a vertical cylindrical container [J]. Physical Review E,2012,86:046323.
    [144]袁晓凤.水平环缝内具有密度极值流体的自然对流流型演变及传热特性研究[D].重庆:重庆大学,2011.
    [145] Gebhart B, Mollendorf J C. New density relation for pure and saline water [J]. Deep-SeaResearch,1977,24(9):831-848.
    [146] Ho C J, Tu F J. Transition to oscillatory natural convection of water near its density maximumin a tall enclosure-Assessment of three-dimensional effects [J]. International Journal ofNumerical Methods for Heat and Fluid Flow,2001,11(7):626-641.
    [147] Li Y R, Yuan X F, Hu Y P, Tang J Y. Experimental research on natural convective heattransfer of water near its density maximum in a horizontal annulus [J]. Experimental Thermaland Fluid Science,2013,44:544-549.
    [148]过增元.对流换热的物理机制及其控制:速度场与热流场的协同[J].科学通报,2000,45(19):2118-2122.
    [149] Tao W Q, He Y L, Wang Q W, Q Z W, Song F Q. A unified analysis on enhancing singlephase convective heat transfer with field synergy principle [J]. International Journal of Heatand Mass Transfer,2002,45(24):4871-4879.
    [150] Guo Z Y, Tao W Q, Shah R K. The field synergy (coordination) principle and its applicationsin enhancing single phase convective heat transfer [J]. International Journal of Heat and MassTransfer,2005,48(9):1797-1807.
    [151] He Y L, Tao W Q, Song F Q, Zhang W. Three-dimensional numerical study of heat transfercharacteristics of plain plate fin-and-tube heat exchangers from view point of field synergyprinciple [J]. International Journal of Heat and Fluid Flow,2005,26(3):459-473.
    [152] Xu X, Yu Z T, Hu Y C, Fan L W, Cen K F. Transient natural convective heat transfer of alow-Prandtl-number fluid from a heated horizontal circular cylinder to its coaxial triangularenclosure [J]. International Journal of Heat and Mass Transfer,2012,55:995-1003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700