用户名: 密码: 验证码:
含运动边界钝体绕流风场的大涡模拟数值算法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄膜屋盖结构与风场之间的流固耦合作用是影响结构风振响应的重要因素。数值模拟是流固耦合研究的重要手段,准确模拟流体域的时变特性是掌握流固耦合效应产生机理和发展规律的前提。风与薄膜结构流固耦合运动中的流体域是含动边界的钝体绕流近地风场,在采用计算流体动力学(Computational Fluid Dynamics,CFD)技术对其进行大涡模拟(Large-eddy Simulation, LES)数值近似计算时,仍存在一些亟待解决的问题。
     建立适于大型工程应用的亚格子模型是大涡模拟方法理论研究中的热点问题之一。在求解近地风场大涡模拟控制方程时,投影法是一种高效的压力速度解耦算法。目前大多数投影格式对压力的计算在时间方向上比速度的计算至少低一阶精度,而压力场的时间精度将直接影响流固耦合效应的计算精度。因此,投影法的压力时问精度还有待提高。此外,动边界绕流模拟适宜在任意拉格朗日欧拉(Arbitrary Lagrangian Eulerian, ALE)动态网格框架下进行。模拟过程中网格更新频繁,其几何品质和更新前后的一致性是影响模拟精度的重要因素。目前大部分动网格更新算法仅关注更新后网格的几何品质,对更新前后网格一致性的测试不够;而动网格更新算法的计算耗时也是需要考虑的一个课题。
     针对上述问题,本文对亚格子模型、投影法及其在ALE动态网格下的应用以及动网格更新技术等内容进行了理论和数值研究,开展的研究工作和提出的解决方案主要包括:
     1、亚格子模型的测试和对比。在阐述近地风场的大涡模拟无量纲控制方程以及多种亚格子模型的构造过程后,在笛卡尔静态网格下编制了方程求解程序。以该程序为计算平台,对多种亚格子模型的适用性、准确性和计算效率进行了测试。结果表明,钝体绕流风场的大涡模拟工程应用中可以采用阻尼修正的标准S模型。
     2、动态网格下数值求解方法的建立。以ALE描述为基础,在动态网格下建立了大涡模拟控制方程(下文简称ALE-LES方程),并对方程中的网格运动参数和流动参数进行解耦,建立了交错求解方程的数值计算方法。期间,为提高数值方法的时间计算精度,构造了压力和速度能达到同一高阶时间精度的全精度连续投影方法,并将其与求解网格运动的二阶预测校正格式相结合,得到了ALE-LES方程的全二阶精度投影格式。将建立的数值求解方法进行坐标转换,在贴体坐标系下编制了ALE-LES方程求解程序的核心模块。
     3、动网格更新算法的对比研究。归纳整理出网格质量评价模型,并据此在两种畸变网格算例中,为适用于结构网格的多种动网格更新算法对网格几何品质的改善力度进行了对比;同时,对不同算法在更新前后网格的一致性和计算效率方面进行了测试,指出九点网格重构法综合性能最为优异。将九点网格重构法扩展到三维研究领域并更名为距离加权法,据此编制了网格动态更新子程序模块。
     4、数值模拟程序的开发和验证。将亚格子模型子程序模块和网格动态更新子程序模块与求解ALE-LES方程的核心程序相结合,开发了适用于模拟含运动边界钝体绕流风场的CFD计算程序。分别以二维方腔驱动流和Taylor涡列问题验证了程序的稳定性和时间计算精度。
     5、振动屋盖绕流特性的数值分析。以下部封闭式大跨度平屋盖结构为研究对象,应用本文开发程序,对屋盖以二阶谐波模态振动时的结构绕流场进行了数值模拟,通过与相同尺寸刚性屋盖结构绕流模拟结果的对比分析,研究了屋盖的振动对模型表面风压系数分布和绕流场流动结构的影响。结果表明,屋盖振动是影响建筑结构表面平均、脉动风压系数的重要因素;屋盖振动导致绕流场旋涡结构复杂化,特征湍流度增加;屋盖的振动对绕流场瞬时风压分布的影响明显,二阶谐波模态的振动形式容易引发脉动风与屋盖的共振,不利于屋盖的抗风稳定。自主开发程序的成功应用表明了该程序可作为薄膜结构流固耦合效应数值模拟计算平台的流体域求解器。
The fluid-structure interaction (FSI) between membrane structures and atmospheric wind is a very important factor for the wind-induced response of membrane. Numerical simulation is an effective research tool for the FSI. Accurately simulating the time-dependent feature of flow field is one precondition to figure out the formation mechanism and development pattern of the FSI. The flow field in the FSI between wind and membrane is a near ground wind field around a bluff body involving moving boundaries. There are some problems to be solved in the Large-eddy Simulation (LES) of the wind field using the Computational Fluid Dynamics (CFD) technique.
     Firstly, Sub-grid Scale (SGS) model that suit for large project is one of the hotspot problems in the theoretical research of LES. Secondly, the projection method is an effective algorithm for decoupling the velocities and pressure in governing equations of the near-ground wind which is treated as incompressible flow. The time accuracy of pressure is lower than that of velocity in most existing projection algorithms. The time accuracy of pressure is a direct influence factor in FSI simulation. Therefore, pressure accuracy of projection method should be improved. Furthermore, an appropriate grid system for simulating the flow field involving moving boundaries is the Arbitrary Lagrangian Eulerian (ALE) dynamic grid. Mesh updating is quite frequent in the simulation. Geometric quality of grid and the grid conformance during update are two key factors for the accuracy of the simulation. Grid quality is the only concern in most existing mesh updating strategies, and their grid conformance is not tested. Likewise, the computational time of mesh updating strategies needs to be considered.
     To respond to the above problems, theoretical investigations and numerical researches about the SGS model, a projection method and its implement in ALE dynamic grid system, dynamic mesh updating strategy are conducted. The corresponding solution and main works of this thesis could be summarized as follows:
     1. Test and comparison of SGS models. Non-dimensional LES governing equations that describe near ground wind field and the construction processes of some SGS models were elaborated. A CFD code that solves the equations above was compiled on Cartesian static grid system using finite differencing method. The applicability, accuracy and efficiency of various SGS models were tested. An efficient and relatively accurate SGS model was selected for the LES of the wind field around a bluff body and was compiled as a subprogram module.
     2. Establishment of numerical method in dynamic grid framework. LES governing equations in ALE dynamic grid system (ALE-LES equations) were expounded. By decoupling the grid motion and the physical parameters of the wind field, a staggered ALE (SALE) strategy was established. Meanwhile, a Fully high-order accurate continuous Projection algorithm (FP) by which the time-accuracy of pressure could reach the same order of velocity was constructed. By combination with a second-order accurate predictor-corrector scheme for grid velocity, a fully second-order accurate projection method for solving ALE-LES equations was proposed. Then, a coordinates transformation from Cartesian grid system to Body-Fitted curvilinear Structured (BFS) grid system was performed on the proposed numerical method, and the main program module based on the transformed method was compiled.
     3. Comparison of analyses for mesh updating strategies. A grid quality evaluation model was concluded and used for testing the grid quality improvement of various mesh updating strategies in two skewed meshes. The grid conformance during updating and the efficiency are also tested and compared. The comparison of results showed that Nine-point rezone strategy was an optimum from comprehensive performance. Then, Nine-point rezone strategy was extended from two-dimension into three-dimension, and was renamed to be a distance weighting strategy according to the basic idea. A dynamic mesh updating subprogram module was compiled.
     4. Development and validation of the numerical simulation program. A CFD program called (BFS\SALE-D\FP)LES for simulating the near-ground wind field around a bluff body involving moving boundaries was developed by combining the chosen SGS model and the chosen mesh updating strategy with the main program module described above. The two dimensional lid-driven flow and the Taylor vortex streets were used to validate the stability and accuracy of this CFD program respectively.
     5. Application of the numerical simulation program. The near-ground wind field around an enclosed building of which the flat roof vibrating in second-order harmonic mode was simulated by (BFS\SALE-D\FP)LES program. By comparison with the wind field around the same building with a rigid roof, the effect of roof vibration on the pressure coefficient at the building surface and on the flow phenomenon nearby building was investigated. The comparison shows that the roof vibration is a key factor that influences the mean and rms pressure coefficient on the building. The roof vibration complicates the vortex structure, and increases the characteristic turbulence intensity of the wind field around the building. The roof vibration has notable influence on the instantaneous pressure distribution and value. The second-order harmonic vibration mode may induce resonance of fluctuating wind and roof, and is not conducive for the wind-resistant of building.
     The successful application of the (BFS\SALE-D\FP)LES program indicated that this program could used as an effective fluid solver for the FSI numerical simulation platform of membrane structures.
引文
ABBA A, Cercignani C, Valdettaro L. Analysis of subgrid scale models. International Journal of Computers and mathematics.2003,46:521-535
    Almgren A S, Bell J B, Szymczak W G. A numerical method for the incompressible Navier-Stokes equations based on an approximate projection. SIAM Journal on Scientific Computing.1996,17(2): 358-369
    Anderson JR J D,姚朝晖,周强.计算流体力学入门.北京,清华大学出版社.2010
    Armfield A W, Street R. Fractional step methods for the Navier-Stokes equations on non-staggered grids. Australia and New Zealand Industrial and Applied Mathematics Journal.2000,42(E):134-156
    Bardina J, Ferziger J H, Reynolds W C. Improved subgrid model for large-eddy simulation. AIAA, 13rd Fluid and Plasma Dynamics Conference. Snowmass, Colo.1980,1:14-16
    Bardina J, Ferziger J H, Reynolds W C. Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows. Report TF-19, Thermo sciences Division. Department of Mechanical Engineering, Stanford University.1983
    Batina T. Unsteady euler airfoil solutions using unstructured dynamic meshes. AIAA Journal.1990, 28(8):1381-1388
    Bell J B, Colella P, Glaz H M. A second order projection method for the incompressible Navier-Stokes equations. Journal of Computational Physics.1989,85:257-283
    Blom F. Considerations on the spring analogy. International Journal of Numerical Methods in Fluids. 2000,32(6):647-668
    Brackbill J U, Saltzman J S. Adaptive zoning for singular problems in two dimensions, Journal of Computational Physics.1982,46(3):342-368
    Breuer M. A challenging test case for large eddy simulation:high Reynolds number circular cylinder flow. International Journal of Heat and Fluid Flow.2000,21:648-654
    Breuer M, Gluck M, Jovivcc N, Bartels C. High-Performance Computing:Applications to the Numerical Simulation of Turbulent Flows. Thermal Science.2001,5(1):47-74
    Brown D L, Cortez R, Minion M L. Accurate Projection Methods for the Incompressible Navier-Stokes Equations. Journal of Computational Physics.2001,168:464-499
    Bouffanais R. Advances and challenges of applied large-eddy simulation, Computers & Fluids.2010, 39:735-738
    Box G E P, Draper N R. Empirical model-building and response surfaces, wiley series in probability and mathematical statistics. Applied Probability and Statistics. New York. John Wiley& Sons. 1987.
    Chorin A J. A numerical method for solving incompressible viscous flow problems. Journal of Computational Physics.1967,2(1):12-26
    Chorin A J. Numerical solution of the Navier-Stokes equations. Mathematics of Computation.1968, 22:745-762
    Connell S D, Stow P. A discussion and comparison of numerical techniques used to solve the Navier-Stokes and Euler equations. International Journal for Numerical Methods in Fluids.1986,6: 155-163
    Darlington R M, Mcabee T L, Rodrigue G. A study of ALE simulations of Rayleigh-Taylor instability. Computer Physics Communications.2001,135:58-73
    Deardorff J W. A numerical study of three-dimensional turbulent channel flow at large Reynoldsnumbers. Journal of Fluid Mechanism.1970,41:453-480
    Donea J, Giuliani S, Halleux J P. An Arbitrary Lagrangian-Eulerian Finite Element Method for Transient Dynamic Fluid-Structure Interactions. Computer Methods in Applied Mechanics and Engineering.1982,33(1-3):689-723
    Dukowicz J K, Cline M C, Addessio F L. A general topology Godunov method, Journal of Computational Physics.1989,82:29-63
    Dukowicz J, Baumgardener J. Incremental remapping as a transport/advection algorithm. Journal of Computational Physics.2000,160:318-335
    Farhat C, Degand C. Torsional springs for two-dimensional dynamic unstructured fluid mesh. Computer Methods in Applied Mechanics and Engineering.1998,163 (1-4):231-245
    Germano M, Piomelli U, Moin P, Cabot W H. A Dynamic Subgrid-Scale Eddy Viscosity Model. Physics of Fluids.1991,3(7):1760-1765
    Ghia U, Ghia K N, Shin C T. High-Re solutions for incompressible flow using the Navier-Stokes equation and a multigrid method. Journal of Computational Physics.1982,48(3):387-411
    Gliick M, Breuer M, Durst F, Halfmann A, Rank E. Computation of fluid-structure interaction on lightweight structures. Journal of Wind Engineering and Industrial Aerodynamics.2001,89(14-15): 1351-1368
    Guermond J L, Shen J. On the error estimates for the rotational pressure-correction projection method. Mathematics of Computation.2003,73(248):1719-1737
    Halfmann A, Rank E, Gliick M, Breuer M, Durst F. A Partitioned Solution Approach for the Fluid-Structure Interaction of Wind and Thin-Walled Structures. IKM 2000 Conference, Weimar, Germany,2000:22-24
    Harlow F H, Amsden A A. The SMAC method:a numerical technique for calculation incompressible fluid flows. Los Alamos Scientific Laboratory Rept. LA-4370,1970,1-50
    Harlow F H, Welch J E. Numerical calculation of time dependent viscous incompressible flow of fluid with free surface. Physics of Fluids.1965,8:2182-2189
    Henriksen M O, Holmen J H. Algebraic splitting for incompressible Navier-Stokes equations. Journal of Computational Physics.2002,175:438-453
    Hinze J O. Turbulence. McGraw-Hill, New York.1975
    Hirt C W, Amsden A A, Cook H K. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of Computational Physics.1974,14:227-253
    Hubner B, Walhorn E, Dinkier D. Simultaneous solution to the interaction of wind flow and lightweight membrane structures. The Proceeding of International Conference On Lightweight Structures in Civil Engineering. Warsaw.2002:519-523
    Hughes T J R, Liu W K, Zimmermann T K. Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering.1981,29: 329-349
    lannellii P, Denaro F M. Analysis of the local truncation error in the pressure-free projection method for incompressible flows:a new accurate expression of the intermediate boundary conditions. International Journal for Numerical Methods in Fluids.2003,42:399-437
    Iizuka S, Kondo H. Large-eddy simulations of turbulent flow over complex terrain using modified static eddy viscosity models. Atmospheric Environment.2006,40:925-935
    Irwin H P A H, Wardlaw R L. A wind tunnel investigation of a retractable fabric roof for the montreal olympic stadium. The Proceeding of the Fifth International Conference on Wind Engineering. Pergamon.1981:925-938
    Ivovich V A, Pokrovskii L N. Dynamic analysis of suspended roof systems. A. A. Balkema Rotterdam.1991:11-17
    Jones W T, Samareh-Abolhassani J. A grid generation system for multi-isciplinary design optimization. AIAA-95-1689-CP.1995
    Kim J, Moin P. Application of a fractional-step method to incompressible Navier-Stokes equations. Journal of Computational Physics.1985,59:308-323
    Kim W W, Menon S. Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows. AIAA-97-0210. American Institute of Aeronautics and Astronautics,35th Aerospace Sciences Meeting. Reno, NV.1997
    Knupp P, Margolin L G, Shashakov M. Reference Jacobian Optimization-Based Rezone Strategies for Arbitrary Lagrangian Eulerian Methods. Computational Physics.2002,176:93-128
    Kogaki T, Kobayashi T, Tanguchi N. Large eddy simulation of flow around a rectangular cylinder. Fluid Dynamics Research.1997,20:11-24
    Kovalev K, Delanaye M, Hirsch Ch. Untangling and optimization of unstructured hexahedral meshes. Proceedings of Workshop on Grid Generation:Theory and Applications. Russian.2002. http://www.ccas.ru/gridgen/ggta02/papers/Kovalev.pdf
    Kucharik M, Shashkov M, Wendroff B. An efficient linearity-and-bound-preserving remapping method. Journal of Computational Physics.2003,188:462-471
    Kuhl E. An arbitrary Lagrangian-Eulerian finite element approach for fluid-stucture interaction phenomena. International Journal for Numerical Methods in Engineering.2003,57(1):117-142 Kunieda H. Flutter of hanging roofs and curved membrane roofs. International Journal of Solids Structures.1975,11:477-492
    Lai, Bell J B, Colella P. A projection method for combustion in the zero Mach number limit. Proceeding of AIAA 11th Computational Fluid Dynamics Conference, AIAA Paper 93-3369.1993: 776-783
    Leonard A. Energy cascade in large-eddy simulations of turbulent flow. Advances in Geophysics. 1974,18:237-248
    Lesieur M, Metais O. New trends in large eddy simulations of turbulence. Annual Review of Fluid Mechanics.1996,28:45-82
    Lilly D K. On the application of eddy viscosity concept in the inertial sub-range of turbulence. National Center for Atmospheric Research.1966. SCAR Manuscript,123
    Liu S, Meneveau C, Katz J. On the properties of similarity subgridscale models as deduced from measurements in a turbulent jet. Journal of Fluid Mechanics.1994,275:83-119
    Liu S, Katz J, Meneveau C. Evolution and modeling of subgrid scales during rapid straining of turbulence. Journal of Fluid Mechanics.1999,387:281-320
    Lubcke H, Schmidt St, Rung T, Thiele F. Comparison of LES and RANS in bluff-body flows, Journal of Wind Engineering and Industrial Aerodynamics.2001,89(14-15):1471-1485
    Lund T S, Novikov E A. Parametrization of subgrid-scale stress by the velocity gradient tensor. Annual Research Briefs-Center for Turbulence Research.1992:27-43
    Margolin L G, Shashkov M. Second-order sign-preserving conservative interpolation (remapping) on general grids. Journal of Computational Physics.2003.184:266-298
    Matsumoto T. Self-excited oscillation of a pretensioned cable roof with single curvature in smooth flow. Journal of Wind Engineering and Industrial Aerodynamics.1990,34:303-318
    Meneveau C, Lund T, Cabot W. A lagrangian dynamic subgrid-scale model of turbulence. Journal of Fluid Mechanics.1996,319:353-385
    Minami H, Okuda Y, Kawamura S. Experimental studies on the flutter behaviour of membranes in a wind tunnel. Space Structures 4. Thomas Telford. London.1993:935-945
    Miyake A, Yoshimura T, Makino M. Separated shear layer instability and vortex excitation of bluff bodies with elongated cross-sections. Journal of Wind Engineering and Industrial Aerodynamics. 1988,37:349-354
    Murakami S. Current status and future trends in computational wind engineering. Journal of Wind Engineering and Industrial Aerodynamics.1997,67-68:3-34
    Murakami S, Iizuka S. CFD analysis of turbulent flow past square cylinder using dynamic LES. Journal of Fluids and Structures.1999,13:1097-1112
    Nicoud F, Ducros F. Subgrid-scale modelling based on the square of the velocity gradient tensor. Turbulence and Combustion.1999,62:183-200
    Noh W F. CEL:A time-dependent, two-space dimensional, coupled Eulerian-Lagrangian code. Methods in Computational Physics.1964,3:117-179
    Park N, Mahesh K. A velocity-estimation subgrid model constrained by subgrid scale dissipation. Journal of Computational Physics.2008,227(8):4190-4206
    Patankar S V, Spalding D B. A calculation procedure for heat, mass and momentum transfer in three dimensional parabolic flows. International Journal for Heat and Mass Transfer.1972,15:1787-1806
    Piomelli U, Zang T A, Speziale C G, Hussaini M Y. On the large-eddy simulation of transitional wall-bounded flows. Physics of Fluids.1990,2(2):257-265
    Piomelli U, Liu J. Large-eddy simulation of rotating channel flows using a localized dynamic model. Physics of Fluids.1995,7(4):839-848
    Porte-Agel F, Meneveau C, Parlange M B. A scale-dependent dynamic model for large-eddy simulation:application to a neutral atmospheric boundary layer. Journal of Fluid Mechanics.2000, 415:261-284
    Potsdam M A, Guruswamy G P. A parallel multiblock mesh movement scheme for complex aeroelastic applications, American Institute of Aeronautics and Astronautics-2001-0716.2001
    Pramila A. Sheet flutter and the interaction between sheet and air. TAPPI-Journal.1986,69:70-74 Rhie C M, Chow W L. Numerical study of the turbulent flow past an airfoil with trailing edges separation. AIAA Journal.1983,21(11):1525-1532
    Sagaut P. Numerical simulations of separated flows with subgrid models, Recherche Aerospatiale (English edition).1996,1:51-63
    Sagaut P, Montreuil E, Labbe O. Assessment of some self-adaptive SGS models for wall bounded flows. Aerospace Science and Technology.1999,3 (6):335-344
    Sagaut P. Large Eddy Simulation for Incompressible flows. Third edition. Springer.2006
    Singh S, You D. A dynamic global-coefficient mixed subgrid-scale model for large-eddy simulation of turbulent flows. International Journal of Heat and Fluid Flow.2013,42:94-104
    Smagorinsky J. General circulation experiments with the primitive equations, I, The basic experiment. Monthly Weather Review.1963,91:99-164
    Souli M, Ouahsine A, Lewin L. ALE formulation for fluid-structure interaction problems. Computer Methods in Applied Mechanics and Engineering.2000,190:659-675
    Spekreijse S P. Elliptic grid generation based on Laplace equations and algebraic transformations. Journal of Computational Physics.1995,118:38-61
    Sygulski R. Numerical analysis of membrane stability in air flow. Journal of Sound and Vibration. 1997,207(3):281-292
    Sylvain B, Florent C, Jean-Marc H(2000), A finite volume method to solve the Navier-Stokes equations for incompressible flows on unstructured meshes, International Journal of Thermal Science,39:806-825
    Tejada-Martinez A E, Jansen K E.A parameter-free dynamic subgrid-scale model for large-eddy simulation. Computer Methods in Applied Mechanics and Engineering.2006,195:2919-2938 Temmerman L, Leschziner M A, Mellen C P, Frohlich J. Investigation of wall-function
    approximations and subgrid-scale models in large eddy simulation of separated flow in a channel with streamwise periodic constrictions. International Journal of Heat and Fluid Flow.2003,24: 157-180
    Tessicini F, Temmerman L, Leschziner M A. Approximate near-wall treatments based on zonal and hybrid RANS-LES methods for LES at high Reynolds numbers. International Journal of Heat and Fluid Flow.2006,27:789-799
    Tezduyar T E, Behr M, Mittal S, Johnson A A. Computation of unsteady incompressible flows with the finite element methods-space-time formulations. Iterative strategies and massively parallel implementations. New Methods in Transient Analysis.1992,143:7-24
    Thomas P D, Middlecoff J F. Direct control of the grid point distribution in meshes generated by elliptic equations. AIAA Journal.1980,18:652-656
    Thompson J F, Warsi Z U, Mastine C W. Numerical grid generation:foundation and Application. North-Holland, New York.1985
    Tucker P G, Lardeau S. Introduction:applied large eddy simulation. Philosophy Transaction Royal Society of London series A-Mathematical Physical and Engineering Sciences.2009,367: 2809-2827
    Uematsu Y, Uchiyama K. Aeroelastic behavior of an H.P. shaped suspended roof. Shells, Membrane and Space Frames, Proceedings of IASS Symposium. Osaka.1986,2:241-248
    Van Driest E R. On turbulent flow near a wall. Journal of the Aeronautical Sciences.1956,23(11): 1007-1011
    Van Kan J. A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM Journal on Scientific and Statistic Computing.1986,7(3):870-891
    Volker J. An assessment of two models for the subgrid scale tensor in the rational LES model. Journal of Computational and Applied Mathematics.2005,173:57-80
    Vreman A W. An eddy-viscosity subgrid-scale model for turbulent shear flow:Algebraic theory and application. Physics of Fluids.2004,16(10):3670-3681
    Wan F, Porte-Agel F, Stoll R. Evaluation of dynamic subgrid-scale models in large-eddy simulations of neutral turbulent flow over a two-dimensional sinusoidal hill. Atmospheric Environment.2007, 41 (13):2719-2728
    Winslow A M. Equipotential zoning of the interior of a three-dimensional mesh. Lawrence Radiation Laboratory, UCRL-7312.1990.
    Yakhot A, Orzag S A, Yakhot V, Israeli M. Renormalization group formulation of large-eddy simulation. Journal on Scientific Computing.1989,4:139-158
    You D, Moin P. A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries. Physics of Fluids.2007,19(6):065110-1-8
    Zang Y, Street R L, Koseff J R. A dynamic mixed subgrid-scale model and its applications to turbulent recirculating flow. Physics of Fluids.1993,5(12):3186-3196
    Zhang Y, He Y N. Assessment of subgrid-scale models for the incompressible Navier-Stokes equations. Journal of Computational and Applied Mathematics.2010,234(2):593-604
    崔桂香,周海兵,张兆顺,ShaoL.新型大涡数值模拟亚格子模型及应用.计算物理.2004,21(3):289-293
    黄筑平.连续介质力学基础.北京,高等教育出版社.2006,
    李海峰,吴冀川,刘建波,梁宇兵.有限元网格剖分与网格质量判定指标.中国机械工程.2012,23(3):368-377
    李启,杨庆山,朱伟亮.湍流入口条件下建筑非定常风场的大涡模拟.工程力学.2012,29(12):274-280
    李玉学.大跨屋盖结构风振响应和等效静力风荷载关键性问题研究.博士学位论文.北京,北京交通大学.2010
    刘长运,赵学增,陈芳,褚巍,王伟杰.运动边界问题流场仿真技术的发展.液压与启动.2005,10:4-8
    刘淼儿.数值求解不可压缩流动的投影方法.博士学位论文.北京,清华大学.2004
    刘淼儿,任玉新,张涵信.数值求解不可压缩流动的投影方法研究进展.力学进展.2006,36(4):591-598
    刘瑞霞.薄膜结构气弹动力稳定性研究的解决方法,博士学位论文.北京.北京交通大学.2004
    刘振华.膜结构流体-结构耦合作用风致动力响应数值模拟研究.博士学位论文.上海.同济大学.2006
    沈世钊.中国空间结构理论研究20年进展.第十届空间结构会议论文集.北京.2002:38-52
    沈世钊,武岳.大跨空间结构抗风研究现状与展望.中国结构风工程研究30周年纪念大会论文集.上海.2010:89-98
    孙芳锦,殷志祥,顾明.强耦合法在膜结构风振流固耦合分析中的程序实现与应用.振动与冲击.2011,30(6):213-217,264
    孙晓颖.薄膜结构风振响应中的流固耦合效应研究.博士学位论文.黑龙江.哈尔滨工业大学.2007
    孙晓颖,许伟,武岳.钝体绕流中的计算域设置研究.第十三届全国结构风工程学术会议论文集.辽宁,大连.2007:1036-1041
    陶文铨.数值传热学.陕西,西安交通大学出版社.2000
    陶文铨.传热与流动问题的多尺度数值模拟方法与应用.北京,科学出版社.2009
    王彬.流固耦合作用的弱耦合算法及风与薄膜结构的耦合分析.博士学位论文.北京.北京交通大学.2008
    王兵,张会强,王希麟,郭印诚,林文漪.不同亚格子模式在后台阶湍流流动大涡模拟中的应用.工程热物理学报.2003,24(1):157-160
    王兵,张会强.大涡模拟中颗粒拉格朗日轨道方法的亚格子尺度脉动速度封闭模型.中国工程热物理学会多相流学术会议论文摘要.大庆.2007
    王福军.计算流体动力学分析.北京,清华大学出版社.2004
    王汉青,汤广发.室内气流大涡模拟的基础性问题研究.株洲工学院学报.2004,18(5):1-7
    王坪,田振夫.基于投影法求解不可压缩流的高精度紧致格式.工程数学学报.2010,27(2):225-232.
    王跃,任玉新.求解不可压流动近似投影方法的精度分析.清华大学学报(自然科学版).2008,48(2):280-284
    武岳.考虑流固耦合作用的索膜结构风致动力响应研究.博士学位论文.黑龙江.哈尔滨工业大学.2003
    肖红林,罗纪生.大涡模拟中亚格子模型的改进及其在槽道湍流中的应用.航空动力学报.2007,22(4):583-587
    徐天茂,王煜,钱晓,曾云.贴体曲线坐标系中的非交错网格的SIMPLE算法.云南工业大学学报.1999,15(4):42-46,74
    杨庆山,王基盛,王莉.薄膜结构与风环境的流固耦合作用.空间结构.2003,9(1):20-24
    杨庆山,王基盛,朱伟亮.薄膜结构与空气环境静力耦合作用的试验研究.土木工程学报.2008,41(5):19-25
    姚彦忠,袁光伟,倪国喜.推进方式的参考雅各比矩阵网格优化方法.计算物理.2007.24(3):253-260
    勇珩,袁国兴,成娟,王政.自适应于流场变化的网格重构方法.计算物理.2007,24(5):505-511
    岳宝增,刘延柱.带自由液面NS流动问题的ALE分步有限元方法.水动力学研究与进展(A辑).2003,18(4):463-469
    岳宝增,彭武,王照林.ALE迎风有限元研究进展.力学进展.2005,35(1):21-29
    张海涛,曹曙阳.基于动态亚格子模型的方柱绕流大涡模拟.沈阳建筑大学学报(自然科学版).2013,29(3):434-439
    张建.采用修正来流条件和粗糙壁面处理方法的绕流问题研究.博士学位论文.北京.北京交通大学.2011
    张来平,王振亚,杨永健.复杂外形的动态混合网格生成方法.空气动力学学报.2004,22(2):231-236
    张万剑.膜结构风致破坏现象浅析.科协论坛(下半月).2010,6:74-76
    张兆顺,崔桂香,许春晓.湍流大涡数值模拟的理论和应用.北京,清华大学出版社.2008
    周兵,崔桂香,陈乃祥.基于尺度相似假设的大涡模拟动力方法.清华大学学报(自然科学版).2006,46(8):1438-1441,1446
    周宏,李俊峰,王天舒.用于ALE有限元模拟的网格更新方法.力学学报.2008,40(2):267-273
    周红梅,于胜春,高劫,等.动网格技术在具有摆动喷管发动机流畅数值模拟中的应用.海军航空工程学院学报.2009,24(1):17-23
    朱伟亮,杨庆山.薄膜结构风致耦合作用数值初探.计算力学学报.2010,27(3):422-427
    朱伟亮.基于大涡模拟的CFD入口条件及脉动风压模拟研究.博士学位论文.北京.北京交通大学.2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700