用户名: 密码: 验证码:
钢纤维轻骨料混凝土性能与叠浇梁受弯性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轻骨料混凝土具有轻质、高强、抗震性能和耐久性能好等优点,越来越多地被应用于土木工程中。在轻骨料混凝土中掺入钢纤维配制的钢纤维轻骨料混凝土(简称SFRLC),不仅具有轻骨料混凝土的各种优点,而且能显著提高轻骨料混凝土的抗拉、抗裂性能和韧性,改善混凝土结构的延性、抗疲劳性能和耐久性能。因此,开展钢纤维轻骨料混凝土材料与构件性能试验与理论研究具有重要的应用价值与理论意义。为充分利用钢纤维轻骨料混凝土和普通混凝土的优点,作者提出了一种新型结构形式:在下部一定高度的钢纤维轻骨料混凝土上同期现浇普通混凝土组成的叠浇梁。本文采用不同配合比方法进行钢纤维轻骨料混凝土配合比设计,通过系列试验研究了不同参数对钢纤维轻骨料混凝土基本性能的影响,对所提出的新型钢纤维轻骨料混凝土叠浇梁(简称SFRLCB)开展了系统试验研究和理论分析,所完成的主要工作和取得的结论:
     (1)采用松散体积法对钢纤维机制砂轻混凝土和钢纤维全轻混凝土(简称SFRFLC)进行配合比设计,系统研究了水灰比、水泥用量、砂率及钢纤维体积率等参数对混凝土性能的影响。结果表明:机制砂轻混凝土的抗压强度及弹性模量、劈裂抗拉强度和轴心抗拉强度均随水灰比的增大而减小,但抗弯强度受水灰比的影响不明显;当水泥用量较高时,砂率对混凝土轴心抗拉强度和抗弯强度的影响较小;当水泥用量较低时,混凝土的轴心抗拉强度和抗弯强度受砂率和水泥用量的关联影响,砂率对混凝土劈裂抗拉强度的影响不明显。全轻混凝土的强度受砂率、水灰比及水泥用量的关联影响,其强度值主要取决于水泥砂浆及陶粒强度的强弱;存在使混凝土各强度指标达到最佳值的水泥用量、水灰比及砂率。掺加钢纤维显著增强了机制砂轻混凝土的劈裂抗拉强度和轴心抗拉强度,明显提高了全轻混凝土的抗弯强度。
     (2)采用考虑钢纤维裹浆厚度的直接设计方法进行高强钢纤维全轻混凝土配合比设计,系统研究了钢纤维体积率、水灰比、钢纤维裹浆厚度及砂率对高强钢纤维全轻混凝土性能的影响。结果表明:按考虑裹浆厚度的直接设计方法配制的高强钢纤维全轻混凝土,能满足拌合物工作性能、干表观密度和强度的要求。随着钢纤维体积率的增加,高强钢纤维全轻混凝土立方体抗压强度、轴心抗压强度和轴心抗拉强度均有所提高,劈裂抗拉强度显著提高。经综合分析,确定钢纤维全轻混凝土最佳钢纤维裹浆厚度为1.0mm。
     (3)对试验中采用不同配合比方法的钢纤维轻骨料混凝土的劈裂抗拉强度和轴心抗拉强度的关系进行了分析研究,结果表明:该类轻骨料混凝土劈裂抗拉强度与轴心抗拉强度的比值随轻骨料性质和钢纤维特征含量的变化而变化,建议轻骨料混凝土和钢纤维轻骨料混凝土抗拉强度采用轴心抗拉强度法测定。
     (4)考虑水泥用量、水灰比及钢纤维体积率变化,进行了钢纤维全轻混凝土抗冻性能试验研究。结果表明:钢纤维全轻混凝土的抗冻性能受水泥用量及水灰比的影响,掺入钢纤维可显著提高全轻混凝土的抗冻性能。与相对动弹性模量相比,抗弯强度损失率对冻融循环更为敏感。建议对承受弯曲作用为主的钢纤维轻骨料混凝土构件,采用抗弯强度损失率作为抗冻性能的1个评价指标。
     (5)系统进行了42根钢筋钢纤维全轻混凝土叠浇梁、12根钢筋混凝土梁和4根钢筋钢纤维全轻混凝土梁的受弯性能试验。结果表明:3类试验梁的破坏形态基本相似,均为适筋破坏;钢纤维掺量、叠浇高度对试验梁极限承载力具有较大影响,且变化规律与配筋率相关;纵筋配筋率显著影响试验梁的极限承载力,受压区混凝土强度等级对叠浇梁的极限承载力影响较小。根据理论分析和试验结果,建立了钢筋钢纤维全轻混凝土叠浇梁受弯承载力的计算模型和计算方法,提出了叠浇梁钢纤维全轻混凝土最小高度和最佳高度计算公式。
     (6)结合试验梁的研究成果,分析了钢纤维体积率、普通混凝土强度等级、纵向受拉钢筋配筋率和钢纤维全轻混凝土截面高度等参数对叠浇梁正截面抗裂弯矩的影响规律。结果表明:叠浇梁受压区混凝土与受拉区钢纤维全轻混凝土的截面高度存在较优值,受压区高强混凝土保障了叠浇梁正截面的较高抗裂弯矩;适当的纵向受拉钢筋配筋率有利于提高叠浇梁的正截面抗裂弯矩;钢纤维对叠浇梁正截面抗裂弯矩的提高与其对全轻混凝土抗拉强度的提高是一致的。结合理论计算分析,提出了钢筋钢纤维全轻混凝土叠浇梁正截面抗裂计算方法以及充分发挥钢纤维全轻混凝土抗拉能力的截面高度计算公式。
     (7)根据叠浇梁在正常使用荷载作用下的裂缝分布情况,明确了叠浇梁裂缝分类统计原则,进行了各类裂缝数量、平均裂缝间距、平均裂缝宽度及最大裂缝宽度分布规律的统计分析,建立了叠浇梁纵向受力钢筋重心水平位置处平均裂缝间距、平均裂缝宽度和最大裂缝宽度的计算模型和计算方法。
Structural lightweight concrete has the advantages of lightweight, high-strength,anti-seismic and good durability, it has been widely used in civil engineering. Steelfiber reinforced lightweight concrete (SFRLC) made by lightweight concrete mixingsteel fiber has not only the advantages of lightweight concrete, but also theremarkable tensile strength and cracking resistance as well as toughness, which canimprove the ductility, fatigue resistance and durability. Therefore, the experimentaland theoretical researches on performance of materials and members for SFRLC haveimportant practical value and theoretical significance. The new type superposingcomposite beam, i.e. SFRLC beam superposing with partial ordinary concrete, is thecast-in-place composite beam formed by ordinary concrete superposed on steel fiberlightweight concrete casted firstly in certain height (SFRLCB), which combines thegood performances of steel fiber lightweight concrete in lightweight and tensileresistance, and ordinary concrete in compression. This paper carried out the mixdesign of SFRLC by different method and studied the influences of differentparameters on the basic properties of SFRLC by a series of experiments, andconducted systematically experimental study and theoretical analysis on the SFRLCB.The main contents and conclusions are as follows:
     (1) the loose volume method was used to do mix design of the SFRLC withmachine-made sand and expanded-shale, and the steel fiber reinforced fulllightweight concrete (SFRFLC). The effects of water to cement ratio, cement dosage,sand ratio and fraction of steel fiber by volume on the properties of these two kinds ofSFRLC were systematically studied. The results show that for SFRLC withmachine-made sand and expanded-shale, the compressive strength, elastic modulus,splitting tensile strength and axial tensile strength increase with the increase of waterto cement ratio, but the flexural strength has no obvious change; the axial tensilestrength and flexural strength are affected in some extent by the sand ratio while thecement dosage is greater; when the cement dosage is lower, the axial tensile strengthand flexural strength are jointly affected by the sand ratio and cement dosage, the splitting tensile strength is not obviously affected by the sand ratio. The strengths ofSFRFLC are affected jointly by the sand ratio, water to cement ratio and cementdosage, and controlled by the strength of cement mortar and expanded-shale; theoptimum values are there for the sand ratio, water to cement ratio and cement dosage;the splitting tensile strength, the axial tensile strength and the flexural strength areobviously enhanced by the adding of steel fiber.
     (2) the mix design of high-strength SFRFLC was made by the direct designmethod considering the cement paste wrapping steel fibers, the properties ofhigh-strength SFRFLC were systematically experimental studied with the view ofinfluencing parameters of the fraction of steel fiber by volume, the water to cementratio, the thickness of cement paste wrapping steel fiber and the sand ratio. the resultsshow that the high-strength SFRFLC satisfies the requirements of workability of freshconcrete, dry apparent density and strength; with the increase of fraction of steel fiberby volume, the cubic compressive strength, axial compressive strength and axialtensile strength are all improved in some extent, while the splitting tensile strengthincreases obviously. After comprehensively analysis, the optimum thickness ofcement paste wrapping steel fibers is determined as1.0mm.
     (3) the relationship of splitting tensile strength and axial tensile strength forSFRLC on different mix proportion method was analysed. Results showed that theconversion coefficient of splitting tensile strength to axial tensile strength changewith the lightweight aggregate and characteristic value of steel fiber. It isrecommended that the testing method of axial tensile strength is suit to determine thetensile strength of lightweight concrete.
     (4) considering the changes of cement dosage, water to cement ratio and fractionof steel fiber by volume, experimental study was carried out on the freeze-thawresistance of SFRFLC. The results show that the freeze-thaw resistance of SFRFLC isaffected by the cement dosage and water to cement ratio, which can be obviouslyenhanced by the steel fibers. Compared with the relative dynamic elastic-modulus,the loss rate of flexural strength has more sensitivity to the freeze-thaw cycle.Therefore, it is suggested that for the member mainly subjecting to flexural actions,the loss rate of flexural strength of SFRFLC may be better as one of the evaluation indexes to the freeze-thaw resistance.
     (5) systematical experimental study was carried out on42SFRFLC beamssuperposed with ordinary concrete,12reinforced concrete beams and4reinforcedSFRFLC beams. The results show that the failure states of these three kinds of beamswere similar with the yield of proper reinforcement and compressive crush ofconcrete; larger influences of fraction of steel fiber by volume and depth of SFRFLCare on the ultimate resistance, which are related to the reinforcement ratio; thereinforcement ratio obviously affects to the ultimate resistance of beams; thesuperposed concrete strength has a little effect on the ultimate resistance of SFRFLCbeams superposed with ordinary concrete. Based on the theoretical analysis and withthe comparison of experimental results, the calculation model and computationmethod of bending resistance are established for the SFRFLC beams superposed withordinary concrete, the formulas for calculating the minimum and optimum depths ofSFRFLC are proposed.
     (6) combined with the experimental results of42SFRLC comparing with12reinforced concrete beams and4SFRFLC beams, the effects of such parameters asthe fraction of steel fiber by volume, the strength grade of ordinary concrete, thereinforcement ratio of longitudinal tensile rebar and the sectional depth of SFRFLCon the anti-cracking moment of normal section of SFRLCBs are analyzed. The resultsshow that the optimal value is there for the section depths of ordinary concrete incompressive zone and SFRFLC in tensile zone, the high-strength ordinary concreteprovides the larger anti-cracking moment of SFRLCB, the proper reinforcement ratioof longitudinal tensile rebar benefits to improve the anti-cracking moment ofSFRLCB, the enhancement of steel fiber to the anti-cracking moment of SFRLCBcoincides with the strengthening to the tensile strength of SFRFLC. Combining withthe theoretical analysis, the method for calculating the anti-cracking moment ofnormal section of SFRLCB is proposed, the formula is suggested to determine thesectional depth of SFRFLC giving full play to resisting tension.
     (7) based on the crack distribution of SFRFLC beams superposed with ordinaryconcrete under normal service load, the principle of classified statistical analysis forthe cracks is determined. The statistical analyses are carried out on the number of cracks, the average crack space, the average crack width and the distribution ofmaximum crack width. The calculation models and computation method are proposedfor the average crack space, average crack width and maximum crack width at thehorizontal level of longitudinal reinforcements of the SFRLCBs.
引文
[1]董祥.纤维增强高性能轻骨料混凝土物理力学性能、抗冻性及微观结构研究[D].[硕士学位论文].南京:东南大学,2005
    [2]曹刚.高强轻骨料混凝土试验研究[D].[硕士学位论文].西安:西北工业大学,2004
    [3] JGJ51—2002,轻骨料混凝土技术规程[S].北京:中国建筑工业出版社,2002
    [4]龚洛书,柳春圃.轻集料混凝土[M].北京:中国铁道出版社,1996
    [5]徐锦平,陈建华,周绍豪.轻骨料混凝土的应用研究及展望[J].国外建材科技,2007,28(5):11~13
    [6]曹诚,杨玉强.高强轻集料混凝土在桥梁工程中应用的效益和性能特点分析[J].混凝土,2000,(9):27~29
    [7]任志刚,王发洲.高强轻骨料混凝土大跨径桥梁结构设计参数分析[J].国外建材科技,2005,26(3):105~108
    [8]龚洛书.高强陶粒和高性能轻集料混凝土[J].混凝土,2000,(2):7~11
    [9]叶列平,孙海林,陆新征,等.高强轻骨料混凝土结构—性能、分析与计算[M].北京:科学出版社,2009
    [10]王立成,刘汉勇,HIWADA K.硅灰对轻骨料混凝土抗海水冻融性能的影响[J].建筑材料学报,2005,8(4):349~355
    [11] Haque M N,Al-Khaiat H,Kayali O. Strength and durability of lightweight concrete [J].Cement and Concrete Composites,2004,26(4):307~314
    [12]高建明,董祥,朱亚菲,等.活性矿物掺合料对高性能轻集料混凝土物理力学性能的影响[C].2004“第七届全国轻骨料混凝土学术讨论会”暨“第一届海峡两岸轻骨料混凝土产制与应用技术研讨会”论文集,2004.279~283
    [13] Gao J M,Sun W,Morino K.Mechanical Properties of Steel Fiber Reinforced High-StrengthLightweight Concrete[J].Cement and Concrete Composites,1997,(19):307~313
    [14]董祥,高建明,吉伯海.纤维增强高性能混凝土的力学性能研究[J].工业建筑,2005,(S):680~683
    [15] Zhou F P,Barr B I G,Lydon F D.Fracture mechanical properties of high strength concretewith varying silica fume contents and aggregates[J].Cement and Concrete Research,1994,25(3):543~552
    [16] FIP. FIP manual of lightweight aggregate concrete[M].2nd edition. London:SurreyUniversity Press,1983
    [17]杨秋玲,马克栓.轻骨料混凝土的现状与发展[J].铁道建筑,2006,(6):51~54
    [18] Collins M P. In search of elegance, In: Steiner Helland, Ivar Holand, Sverre Smeplass,Proceedings2nd international symposium on Structural lightweight aggregate concrete.Kristiansand, Norway,2000.1~15
    [19] Sveindottir E L, et al. State-of-the-Art report on LWAC Material properties, EuropeanUnion.Brite EuramIII,1998.9~14
    [20]洪雷.混凝土性能及新型混凝土技术[M].大连:大连理工大学出版社,2005.
    [21] Swamy R N, Jojagha A H. Impact resistance of steel fiber reinforced lightweight Concrete[J].International Journal of Cement Composites and Lightweight Concrete,1982,4(4):209~220
    [22] Swamy R N, Jojagha A H. Workability of steel fiber reinforced lightweight aggregateConcrete[J]. International Journal of Cement Composites and Lightweight Concrete,1982,4(2):103~109
    [23] Kayali O, Haque M N, Zhu B. Drying shrinkage of fiber-reinforced lightweight aggregateconcrete containing fly ash[J].Cement and Concrete Research,1999,29(11):1835~1840
    [24] Higashiyama H, Banthia N. Correlating flexural and shear toughness of lightweightfiber-reinforced concrete[J]. ACI Materials Journal,105-M29,251~257
    [25] LEE H K, Song S Y. Influence of fiber volume fraction and fiber type on mechanicalproperties of FRLACC[J]. Journal of Reinforced Plastics and Composites,2010,7(29):1089~1098
    [26] Campione G, Miraglia N, Papia M. Mechanical properties of steel fiber reinforcedlightweight concrete with pumice stone or expanded clay aggregates[J]. Materials andStructures/Mat~riaux et Constructions, Vol.34, May2001:201~210
    [27] Shafigh P, Mahmud H, Jumaat M Z. Effect of steel fiber on the mechanical properties of oilpalm shell lightweight concrete[J]. Materials and Design,2011,(32):3926~3932
    [28]张松榆.半干硬性钢纤维陶粒混凝土性能研究[J].哈尔滨建筑工程学院学报,1994,27(5):64~68
    [29]徐新生,邓宗才,徐善华.陶粒钢纤维混凝土的力学性能研究[J].房材与应用,1998,(4):40~41
    [30]朱亚菲,高建明,王边.钢纤维高强轻集料混凝土的试验研究[J].混凝土与水泥制品,2001,(5):38~40
    [31]邓宗才.轻骨料高强度钢纤维混凝土的力学特性[J].山东建材学报,1997,11(1):55~58
    [32]曾志兴,胡云昌.钢纤维轻骨料混凝土的力学性能试验研究[J].建筑结构学报,2003,24(5):78~81
    [33]孙艳秋.钢纤维轻骨料混凝土基本力学性能的试验研究[D].[硕士学位论文].厦门:华侨大学,2006
    [34]吴晓斌.Experimental Research on Carbonation of Steel Fiber Reinforced LightweightAggregate Concrete [D].[硕士学位论文].厦门:华侨大学,2008
    [35]王起才.陶粒钢纤维混凝土性能研究[J].混凝土,1994,(5):29~33
    [36]张爱军.钢纤维轻骨料混凝土物理力学性能及韧性的试验研究[D].[硕士学位论文].呼和浩特:内蒙古农业大学,2008
    [37]霍俊芳,申向东,崔琪.钢纤维对轻骨料混凝土力学性能的影响[J].混凝土与水泥制品,2007(3):43~46
    [38]霍俊芳,申向东,崔琪.纤维增强轻骨料混凝土力学性能试验研究[J].混凝土,2007,(1):37~39
    [39]霍俊芳,申向东,崔琪.混杂纤维增强轻骨料混凝土物理力学性能研究[J].新型建筑材料,2007,(3):80~83
    [40]霍俊芳.纤维轻骨料混凝土力学性能及抗冻性能试验研究[D].[博士学位论文].呼和浩特:内蒙古农业大学,2007.
    [41]伍勇华,杨俊芳,李国新,等.钢纤维对高强轻骨料混凝土的增强效果研究[J].混凝土,2006,(6):42~48
    [42]王海涛,王立成.钢纤维改善轻骨料混凝土力学性能的试验研究[J].建筑材料学报,2007,10(2):188~194.
    [43]刘汉勇,王立成,宋玉普,等.钢纤维高强轻骨料混凝土力学性能的试验研究[J].建筑结构学报,2007,28(5):110~117.
    [44] Campione G,La Mendola L. Behavior in compression of lightweight fiber reinforcedconcrete confined with transverse steel reinforcement[J]. Cement&Concrete Composites,2004,(26):645~656
    [45] Campione G, Cucchiara C, La Mendola L, Papia M. Steel–concrete bond in lightweight fiberreinforced concrete under monotonic and cyclic actions[J]. Engineering Structures,2005,(27):881~890
    [46]宋宏伟,郭玉顺.高性能轻骨料混凝土的力学和抗冻性能研究[J].混凝土与水泥制品,2005,(5):17~20
    [47]陈岩.高强轻骨料混凝土配合比设计及性能研究[D].[硕士学位论文].长春:吉林大学,2007
    [48]周晖,李勇.钢纤维高强轻骨料混凝土的配比试验研究[J].建材技术与应用,2006(4):1~3,24
    [49]傅秀岱,杨永哲,靳维平.自应力陶粒钢纤维混凝土配合比试验研究[J].天津建设科技,2001,(3):38~40
    [50]曾志兴.钢纤维轻骨料混凝土力学性能的试验研究及损伤断裂分析[D].[博士学位论文].天津:天津大学,2002
    [51] Chen B, Liu J Y. Contribution of hybrid fibers on the properties of the high-strengthlightweight concrete having good workability[J]. Cement and Concrete Research,2005,(35):913~917
    [52] Mannan M A, Ganapathy C. Engineering properties of concrete with oil palm shell as coarseaggregate[J]. Construction and Building Materials,2002,(16):29~34
    [53] Og uz A Du¨zgu¨n, Ru¨stem Gu¨l, Abdulkadir Cu¨neyt Aydin. Effect of steel fibers on themechanical properties of natural lightweight aggregate concrete[J]. Materials Letters,2005,(59):3357~3363
    [54] Balendran R V, Zhou F P, Nadeem A, Leung A Y T. Influence of steel fibres on strength andductility of normal and lightweight high strength concrete [J]. Building and Environment,2002,(37):1361~1367
    [55] Libre N A, Shekarchi M, Mahoutian M, Soroushian P. Mechanical properties of hybrid fiberreinforced lightweight aggregate concrete made with natural pumice.[J] Construction andBuilding Materials,2011,(25):2458~2464
    [56] Kayali O, Haque M N, Zhu B. Some characteristics of high strength fiber reinforcedlightweight aggregate concrete[J]. Cement&Concrete Composites,2003,(25):207~213
    [57] CECS38:2004,纤维混凝土结构技术规程[S].北京:中国计划出版社,2004
    [58] JGJT221-2010,纤维混凝土应用技术规程[S].北京:中国建筑工业出版社,2010
    [59]林小松,杨果林.钢纤维高强与超高强混凝土[M].北京:科学出版社,2002
    [60]林小松.钢纤维混凝土配合比设计的二次合成法[J].混凝土,1996,(5):34~37
    [61]林小松.钢纤维混凝土的配合比设计方法[J].煤炭学报,1997,22(3):300~303
    [62]郑娟荣,杨果林,曹国娥.影响高性能混凝土工作性和抗压强度的主要因素的正交验研究[J].湘潭矿业学院学报,1998,13(3):84~88
    [63]林小松,杨果林,曹国娥.钢纤维高强混凝土薄型下水井盖板的材料研究[J].湘潭矿业学院学报,2001,16(1):50~52
    [64]林小松,曹国娥.钢纤维外形对高强混凝土增强作用的影响研究[J].湘潭矿业学院学报,2002,17(3):63~66
    [65]林小松,曹国娥.低含量异型钢纤维超高强矿渣混凝土[J].国外建材科技,2003(6):44~45
    [66] CECS38:92,钢纤维混凝土结构设计与施工规程[S].北京:中国计划出版社,1993
    [67]赵顺波,杜晖,钱晓军,等.钢纤维高强混凝土配合比直接设计方法研究[J].土木工程学报,2008,41(7):1~6
    [68]杜晖.钢纤维高强混凝土配合比的直接设计方法试验研究[D].[硕士学位论文].郑州:华北水利水电学院,2007
    [69]代洪伟,赵燕茹.钢纤维混凝土配合比设计及抗压性能研究[J].内蒙古工业大学学报,2010,29(2):143~148
    [70]沈荣熹,王璋水,崔玉忠.纤维增强水泥与纤维增强混凝土[M].北京:化学工业出版社,2006
    [71]高丹盈,赵军,朱海堂.钢纤维混凝土设计与应用[M].北京:中国建筑工业出版社,2002
    [72]高丹盈,汤寄予,朱海堂.钢纤维高强混凝土的配合比及基本性能研究[J].郑州大学学报,2004,25(3):46~51
    [73] Swamy V, Lambert G H. Flexura1behavior of reinforced concrete beams made with fly ashcoarse aggregates[J]. The International Journal of Cement Composites and LightweightConcrete,1984,6(3):189~200
    [74] Ahmad S H, Barker R. Flexural Behavior of Reinforced High-Strength Lightweight ConcreteBeams[J]. ACI Structural Journal,1991,88(1):69~77
    [75] Ahmad S H, Batts J. Flexural Behavior of Doubly Reinforced High-Strength LightweightConcrete Beams with Web Reinforcement[J]. ACI Structural Journal,1991,88(3):351~358
    [76] Birjandi F K, Clarke J L. Deflection of lightweight aggregate concrete beams[J]. Magazineof Concrete Research,1993,45(162):43~49
    [77]龙辉元.低配筋轻骨料混凝土梁裂缝宽度计算方法的研究[D].[硕士学位论文].天津:天津大学,1991
    [78]唐兴荣.低配筋轻骨料混凝土梁裂缝宽度的试验研究[J].华中科技大学学报(城市科学版),2002,19(3):28~32
    [79]蔡华,朱晓济,许佳修.高强轻骨料混凝土梁的弯曲试验研究[J].苏州科技学院学报(工程技术版),2004,17(4):38~41
    [80]刘沐宇,李鸥,丁庆军,等.高强轻集料钢筋混凝土梁抗弯性能试验[J],华中科技大学学报(自然科学版),2006,34(10):100~103
    [81]秦福华,邵永健,许佳修,等.高强轻骨料混凝土梁裂缝和刚度的试验与分析[J].工业建筑,2006,36(8):82~85
    [82]归强.轻骨料混凝土受弯梁力学性能试验研究[D].[硕士学位论文].天津:天津大学,2008
    [83]林长春,彭少民.钢纤维钢筋混凝土梁正截面承载能力分析[J].重庆交通学院学报,1992,(2):36~41
    [84]关战伟.钢纤维增强部分截面混凝土梁抗弯性能研究[J].工程建设,2009,(3):7~10
    [85]赵军,高丹盈.钢纤维增强钢筋混凝土梁裂缝宽度的统一计算方法[J].混凝土,2005,(5):91~94
    [86]赵军,朱海棠,高丹盈.钢筋钢纤维增强部分混凝土梁正截面抗裂计算方法研究[J].工业建筑,2001,(3):31~34
    [87]赵军.钢筋钢纤维混凝土梁的界限钢纤维混凝土层厚[J].河南科学,2001,(3):304~306
    [88]杨绍明,周双喜.混凝土抗冻性试验方法及其评价参数的探讨[J].混凝土,2008,(4):27~28
    [89]潘书云.混凝土抗冻耐久性标准及评价[J].河南建材,2009,(2):72~73
    [90]陈爱玖,王静,章青.再生粗骨料混凝土抗冻耐久性试验研究[J].新型建筑材料,2008,(12):1~5
    [91]高蕾,陈拴发.配合比设计参数对高性能混凝土抗冻性敏感特性的影响[J].交通运输工程学报,2006,(4):27~31
    [92]程红强,张雷顺,李平先.冻融对混凝土强度的影响[J].河南科学,2003,(2):214~216
    [93]王海龙,申向东,霍俊芳,等.冻融环境下钢纤维对轻骨料混凝土力学性能的影响[J].混凝土,2008,(8):65~68
    [94]翟红侠,廖绍锋.高强轻混凝土高强机理分析[J].粉煤灰,1999,(5):19~24
    [95]程智清,刘宝举,杨元霞,等.高强轻集料混凝土力学性能试验研究[J].粉煤灰,2006,18(4):7~9
    [96]王树和,甄飞,熊小群,等.高强轻集料混凝土力学性能影响因素研究[J].武汉理工大学学报,2007,29(9):104~107
    [97]夏铭,李长永,赵顺波,等.人工砂粉煤灰混凝土试验研究与配合比设计[J].粉煤灰综合利用,2005,(4):32~34
    [98]赵顺波,夏铭,刘春杰.人工砂粉煤灰混凝土基本力学性能试验研究[J].铁道科学与工程学报,2006,(2):15~20
    [99]詹镇峰,张传镁,刘启华.高强轻集料混凝土组成与性能的试验研究[J].混凝土,2005,(2):32~35,42
    [100]“轻骨料混凝土技术性能”专题协作小组.轻骨料混凝土抗压强度取值问题的探讨.见:中国建筑科学研究院建筑结构研究所编.轻骨料混凝土的研究和应用文集[C].北京:中国建筑工业出版社,1981:172~177
    [101]郭佳宁,卫纪德.轻集料混凝土力学特性及其对集料的要求[J].低温建筑技术,2008,(1):91~92
    [102]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003
    [103]赵顺波.混凝土结构设计原理(第二版).[M].上海:同济大学出版社,2013
    [104]韩嵘,赵顺波,曲福来.钢纤维混凝土抗拉性能试验研究[J].土木工程学报,2006,39(11):63~67
    [105] Comite Euro-International du Beton. Bulletin D’information No.213/214CEB-FIP ModelCode1990(Concrete Structures). Lausanne, May1993
    [106]汪澜.水泥混凝土组成、性能、应用[M].北京:中国建材工业出版社,2005:614~616
    [107]刘大鹏,霍俊芳.纤维轻骨料混凝土冻融损伤模型研究[J].硅酸盐通报,2009,28(3):568~571
    [108] JGJ12-2006,轻骨料混凝土结构技术规程[S].北京:中国建筑工业出版社,2006.
    [109] GB50010-2010,混凝土结构设计规范[S].北京:中国建筑工业出版社,2011.
    [110]霍洪媛,曹晨杰,孙丽,等.Experimental study on full stress-strain curve of SFRC in axialtension[J]. Applied Mechanics and Materials,2012,(238):41~45
    [111]赵国藩,李树瑶.钢筋混凝土结构的裂缝控制[M].北京:海洋出版社,1991
    [112]赵顺波,管俊峰,李晓克.钢筋混凝土结构模型试验与优化设计[M].北京:中国水利水电出版社,2011
    [113]李凤兰,潘丽云.配筋钢纤维混凝土梁正截面抗裂计算[J].建筑技术开发,2003,30(6):4-5
    [114]管俊峰.钢筋混凝土结构仿真模型试验理论与应用研究[D].[博士学位论文].大连:大连理工大学,2010
    [115]赵顺波,管俊峰,张学朋,等.钢筋混凝土梁裂缝分型试验研究及统计分析[J].工程力学,2008,25(12):141~146,152
    [116]赵顺波,管俊峰,张学朋,等.截面高度对钢筋混凝土梁裂缝分布影响的试验研究[J].水利学报,2009,40(1):88~93,100
    [117] DL/T5057-2009水工混凝土结构设计规范[S].北京:中国水利水电出版社,2009.
    [118] JTJ267-98港口工程混凝土结构设计规范[S].北京:人民交通出版社,1998.
    [119] TB10002.3-2005铁路桥涵钢筋混凝土和预应力混凝土结构设计规范[S].北京:中国铁道出版社,2005.
    [120] JTG D62-2004公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700