用户名: 密码: 验证码:
超高层建筑风重耦合效应及等效静力风荷载研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化进程的加快,越来越多的超高层建筑往轻柔方向发展,结构设计也出现许多急需解决的问题,风重耦合效应就是其中之一。风重耦合效应是指高柔结构在风荷载作用下产生的水平位移,重力的存在,使结构弯矩增大,从而进一步增大水平位移,这样的作用机理在静力方面表现为结构水平位移的增大,在动力上表现为结构固有频率的改变和和结构响应的变化。在实际工程中,超高层建筑的风重耦合效应已有报道,进一步细化分析风重耦合效应的影响显得十分必要。
     本文主要目的是为了分析风重耦合效应的影响因素,发现高柔结构由于重力影响在风振中的特性改变,同时给出一般超高层结构分析计算方法。总体而言主要做了以下几个方面的工作。
     利用悬臂梁模型,推导出计入结构大变形和重力的作用的风重耦合的动力方程,利用差分法可以求解风振时程响应,时程计算表明风重耦合效应使脉动风的幅值比传统计算的结果要大。
     结构顺风向随机风振计算可以按平均风荷载和脉动风荷载将方程分解成平均风方程和脉动风方程,其中平均风方程相当于静力非线性方程,求解容易;另一个脉动风方程是非线性动力方程,通过振型分解和等效线性化处理可以得到结构响应的解。参数分析表明,重刚比是影响风重耦合效应最重要的参数,其值越大,结构振动固有频率越小,结构响应越大。当结构重刚比较小时,地面粗糙度、结构固有阻尼和平均风速对风重耦合效应影响不大,但当重刚比较大时,风重耦合效应随着结构固有阻尼和平均风速的增大而减小。
     等效静力风荷载是工程设计中常用的方法。本文采用结构恢复力等价的原则,经推导可以得到沿高度分布的荷载。结果表明,计入风重耦合效应的等效风荷载表达式比常规高层建筑风荷载多了附加重力等效风荷载项。加入各分项的峰值系数可以得到设计等效静力风荷载。计入风重耦合效应后的顺风向风振系数与规范给出的风振系数存在着差异,风重耦合效应引起在建筑物中风振系数中下部分布值减小和上部分布值增大,结构的重刚比是影响风振系数的重要因素,其他因素影响不大。
     横风向风重耦合效应与顺风向类似,对横风向风重耦合效应来说重刚比仍旧是一个决定性因素,但横风向作用机理与顺风向不同,其风重耦合效应与顺风向存在一定的差异,特别是平均风速的影响有所不同,当平均风速较小时,结构响应随着重刚比增长而增长,当平均风速加大时,结构响应先是随着重刚比增长而增长,达到峰值后随着重刚比增长而下降。风重耦合效应使整条响应对重刚比曲线左偏。对于矩形截面的超高层结构,风重耦合与截面深宽比有关,当在深宽比小于2时,风重耦合效应先是减小再是增大,当深宽比大于2时,没有确切的规律。横风向静力等效荷载的变化规律和顺风向类似。
     对于一般超高层建筑的风重耦合的计算除了考虑顺风向和横风向的风荷载还必须考虑扭转向的风荷载。为了实现频域分析一般结构的方法,本文以每层的三个自由度为未知数建立计入风重耦合效应的有限元方程。分析表明,在质量偏心率较小情况下固有频率随着重刚比增大而减小,但当结构质量偏心率较大时,固有频率反而随着重刚比增大而增大,对于刚心偏位的情况也有类似结论。对于偏心结构,风重耦合效应使顺风向和横风向响应增大,但对于扭转向是减小的。不同角度对风重耦合的影响是发生周期性变化,偏心率较小时,偏心位置的角度对风重耦合效应影响不大,而随着偏心率的增大,角度影响就很明显。
     本文以LCVA作为实例分析调谐减振器在超高层建筑中减振规律。各参数分析表明质量比是减振中一个重要参数,质量比加大能明显起到减振作用,实际上只要水体质量达到建筑物质量1%-2%时就可以起到较好的减振效果。水管截面比、长度比以及水头损失系数亦是关系减振率的重要参数。在优化设计中要使减振器达到较好的减振效果,必须使减振器的振动频率接近或等于主结构的固有基频。当主结构计入风重耦合效应后,计算结果会与传统计算方法产生较大的差异,一般规律是主结构重刚比较小时计入风重耦合效应的结构减振率大,而主结构重刚比较大时风重耦合计算结果就比传统结果要小。对高柔结构减振设计必须考虑风重耦合效应,才能正确分析减振效果。
     在顺风向和横风向计算结果的对比分析中,本文提出了比规范更为严格的刚度限制要求,供设计者借鉴。
     超高层结构风重耦合效应研究是一个新的方向,本文只做了部分工作,建议今后进一步深入这一领域相关问题研究。
Structures of tall-buildings are becoming light and slender with urbanization developing rapidly recent year. Wind-gravity coupling effect (WGCE) is one of problems which should be to solve in structural designing. WGCE is a phenomenon that horizontal displacement of the high flexible structure induced by wind load is enlarged by gravity. Performance of WGCE in statics is larger displacement. That in dynamics is natural frequencies reduced and response of structure changed. It was reported in engineering that WGCE of extra-tall buildings is notable, so studying on WGCE is necessary.
     The ambition of thesis is to determine influential factor of WGCE, to find different dynamic characteristics under the influence of gravity and to present a method to calculate WGCE of general extra-tall buildings. In general, works listed below had been finished.
     The dynamic equation including large deformation and WGCE is concluded using cantilever model. Response of structures can be calculated at any point of time by differential equations. Schedule calculation about the tall-building acted by wind shows amplitude produced by pulse wind is changed. The result including WGCE is larger than traditional result.
     The along-wind dynamics equation can be written as two equations by average wind load and pulse wind load. Average wind load equation is just as nonlinear static equation which is easy to solve. Pulse wind load equation is nonlinear dynamic equation which can be solve through mode superposition and equivalent linearization. Calculated result indicates gravity-rigidity ratio is an important parameter for WGCE. Natural frequency of structure decreases and response of structure increases with gravity-rigidity ratio of structure. Ground roughness, natural damping and average wind speed little impact on WGCE as value of gravity-rigidity ratio is small. While value of gravity-rigidity ratio is large, WGCE decreases with natural damping and average wind speed.
     Equivalent static wind load (ESWL) is a general method in structural design. Mean square deviation of restoring force is taken as ESWL by equivalent principle and distributed ESWL along height direction can also be concluded. It is shown that ESWL expression including WGCE contain gravity equivalent wind load that does not exist in common ESWL expression. The designing ESWL can be obtained after crest factors are added to every item of ESWL expression. Wind load factor are different between WGCE's method and traditional method. WGCE makes distribution of wind load factor reduction in middle and lower part of structures and increasing at top part of structures. Gravity-rigidity ratio is an important factor for WGCE expressed in ESWL and other factors are not evident.
     Across-wind WGCE is similar to along-wind one. Gravity-rigidity ratio is also a decisive factor for across-wind WGCE. Because mechanism of across-wind is different from that of along-wind, across-wind WGCE have some differences to along-wind WGCE. Response of structures increases with Gravity-rigidity ratio as lower average wind load. While average wind load become strong, responses of structures increases with gravity-rigidity ratio at first, then decreasing after reaching peak point. WGCE makes curve of responses to gravity-rigidity ratio turn to left. WGCE of across-wind associates to section aspect ratio for tall buildings with rectangular cross-section. Influence of WGCE first decreases then increases as aspect ratio is less than2and it is no law as aspect ratio is more than2. ESWL of across-wind is similar to that of along-wind.
     There is torsional wind load besides along-wind load and across-wind load in calculation of general extra-high building including WGCE. In order to obtain general analysis method in frequency domain, FEM equations with WGCE are concluded from3degrees of freedom in every storey. It is shown that natural frequency decreases with gravity-rigidity ratio increasing as mass eccentricity is small. The opposite is the case as mass eccentricity is large. The same conclusion is for rigidity eccentricity. WGCE makes response of eccentric structure increasing in along-wind direction and across-wind direction, but decreasing in torsional direction. Influence of WGCE takes place periodic changes at different angles. As eccentricity is small, eccentric angle have little impact on WGCE. While eccentricity is large, eccentric angle is an important factor to WGCE.
     Liquid column vibration absorber(LCVA) is used as an example to explain what change of structure with vibration absorber including WGCE. The result is shown that mass ratio is an important parameter that can reduce vibration effectively when it increases. In fact, vibration is decreased very quickly as mass of vibration absorber up to1%~2%of main structure. Section ratio, length ratio and head loss coefficient are also key parameters relative to damping rate. If we want to reach optimal damping rate, natural frequency of LCVA should equal to or near to that of main structure. There is some different about calculating result between WGCE method and tradition method. The general law is that value of WGCE about damping rate shows large as gravity-rigidity ratio is small while it is small as gravity-rigidity ratio increases. In order to get correct result, it should be taken into account WGCE for tall slender structure damping design.
     It is proposed to use restrict stiffness instead of the code from results of along-wind and across-wind in the paper. That provides experience for engineering design.
     WGCE is an new research area in wind engineering. Some parts of work are done in the paper. It is suggested to go a step to new research direction about WGCE.
引文
[1.1]戴复东,高层超高层建筑的产生与发展及今后趋势预计[R].中国工程科学,1999,1(2):6-18.
    [1.2]Davenport A.G. The relationship of wind structure to wind loading[C].Proceeding of the symposium on wind effect on building and structures,London,1965,(1):54-102.
    [1.3]刘鹏,殷超,刘旭宇等.天津高银117大厦结构体系设计研究[J].建筑结构,2012,42(3):1-9.
    [1.4]Holmes,J.D. Mean and fluctuating internal pressures induced by wind[R]. James Cook Unversity of North queensland, Wind Engineering Report,1978,5-78.
    [1.5]Davenport, A. G. Gust loading factors[J]. Journal of the Structural Division, ASCE,1967, 93(3),11-34.
    [1.6]Davenport, A. G. How can we simplify and generalize wind loads? [J]. Journal of Wind Engineering and Industrial Aerodynamics,1995,54-55:657-669.
    [1.7]Kasperski M. Extreme wind load distributions for linear and nonlinear design[J]. Engineering Structures,1992,14(1):27-34.
    [1.8]Kasperski M, Niemann H.J. The L.R.C. (load-response-correlation)-method a general method of estimating unfavourable wind load distributions for linear and non-linear structural behavior[J]. Journal of Wind Engineering and Industrial Aerodynamics,1992,43(1-3):1753-1763.
    [1.9]Kasperski M. Design wind loads for low-rise buildings:A critical review of wind load specifications for industrial buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,61(2-3):169-179.
    [1.10]Holmes J. D. Effective static load distributions in wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics,2002,90:91-109.
    [1.11]]Holmes J. D. Along-wind response of lattice towers:part I-derivation of expressions for gust response factors[J]. Engineering Structures,1996,16(4):287-292.
    [1.12]]Holmes J. D. Along-wind response of lattice towers-Ⅱ. Aerodynamic damping and deflections[J]. Engineering Structures,1996,18(7):483-488.
    [1.13]Holmes J. D. Along wind response of lattice towers-Ⅱ. Effective load distributions,1996, 18(7):489-494.
    [1.14]Zhou Y, Gu M, and Xiang, H. F. Along-wind static equivalent wind loads and response of tall buildings. Ⅰ:Unfavorable distributions of static equivalent wind loads. Journal of Wind Engineering and Industrial Aerodynamic,1999a,79(1-2),135-150.
    [1.15]Zhou Y,Kareem A. Gust loading factor:new model[J],Journal of the Structural Engineering, ASCE,2001,127(2):168-175.
    [1.16]Chen X, Kareem A. Equivalent static wind loads on tall buildings:new model[J]. Journal of Structural Engineering,2004,130(10),1425-1435.
    [1.17]GB50009-2012建筑结构荷载规范[S].北京:中国建筑科学研究院,2012.
    [1.18]GB50009-2001建筑结构荷载规范[S].北京:中国建筑科学研究院,2001.
    [1.19]陈绍番.钢结构稳定设计指南(第二版)[M].北京:中国建筑工业出版社,2004.
    [1.20]魏巍.考虑非弹性及二阶效应特征的钢筋混凝土框架柱强度问题与稳定问题[D].重庆:重庆大学,2004.
    [1.21]张小连.高层建筑钢结构体系中竖向荷载的P—△效应研究[D]杭州:浙江大学,2011.
    [1.22]Wilson E. L, EERI M.and Habibullah, A. Static and Dynamic Analysis of Multi-Story Buildings including P-△Effects[J]. Earthquake Spectra,1987,3(2):289-298.
    [1.23]Gupta A, Krawinkler H. Dynamic P-△ effects for flexible inelastic steel structuresfJ]. Journal of Structural Engineering, ASCE,2000,126(1):145-154.
    [1.24]Williamson E. B. Evaluation of damage and P-△ effects for system under earthquake excitation[J]. Journal of Structural Engineering, ASCE,2003,129(8):1036-1046.
    [1.25]陈兰,杨海波,梁启智.高层钢框架—支撑结构二阶随机风振响应分析[J].华南理工大学学报(自然科学版),2002,30(6):86-30.
    [1.26]Baji, H., Ronagh, H., Shayanfar, M., Barkhordari, M. Effect of second order analysis on the drift reliability of steel buildings[J]. Advances in Structural Engineering,2012,
    [1.27]李云贵,黄吉锋.钢筋混凝土结构重力二阶效应分析[J].建筑结构学报,2009,30(S 1):208-212+217.
    [1.28]郑凌云.对现行规范结构p—△效应分析方法有效性的识别及改进建议[D].重庆:重庆大学,2012.
    [1.29]Rosenblueth E. Slenderness effects in buildings[J]. Journal of Structures Division, ASCE, 1965,91(1):229-252.
    [1.30]Jennings P. C, Husid R. Collapse of yielding structures during earthquakes[J]. Journal of Engineering Mechanic,1968,94(5):1045-1065.
    [1.31]Nixon D, Beaulieu D, Adams P. F. Simplified Second-order Frame Analysis[J] Canadan Journal of Civil Engineering,1975,2(4):602-605.
    [1.32]Kalkan E, Graizer V. Coupled tilt and translational ground motion response spectra[J]. Journal of Structural Engineering, ASCE,2007,133(5):605-619.
    [1.33]翟长海,孙亚民,谢礼立.考虑P-△效应的等延性位移比谱[J].哈尔滨工业大学学报,2007,39(10):1513-1516.
    [1.34]包世华,龚耀清,超高层建筑空间巨型框架的水平力和重力二级效应分析的新方法[J].计算力学学报,2010,27(1):40-46.
    [1.35]Adam, C., Jager, C.Simplified collapse capacity assessment of earthquake excited regular frame structures vulnerable to P-delta[J]. Engineering Structures,2012,44:159-173.
    [1.36]Adam, C., Jager, C. Seismic collapse capacity of basic inelastic structures vulnerable to the P-delta effect[J]. Earthquake Engineering and Structural Dynamics,2012,41 (4):775-793.
    [1.37]Adam, C., Jager, C. A rough collapse assessment of earthquake excited structural systems vulnerable to the P-delta effect[C]. COMPDYN 2011:3rd International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering:An IACM Special Interest Conference, Programme,17 p.
    [1.38]Naji, A., Irani, F.P-△ effects in steel structures using yield point spectra.[J] Advanced Materials Research,2011,255-260:477-481.
    [1.39]朱杰江,吕西林,荣柏生.高程混凝土结构重力二阶效应的影响与分析[J].建筑结构学报,2003,24(6):38-43.
    [1.40]侯小美,宋宝东.复杂高程的稳定性分析[J].结构工程师,2008,24(6):51-56.
    [1.41]梁仁杰,吴京,何婧等.P-△效应对结构动力特性的影响[J].土木工程学报,2013,46(S2):68-72.
    [1.42]陆天天,赵昕,丁吉民等.上海中心大厦结构整体稳定性分析及巨型柱计算长度研究[J].建筑结构学报,2011,32(7):8-14.
    [1.43]马晓董,吴建华,何锦江,虞祝帅.变截面单管塔考虑风荷载、重力—位移(P-△)二阶效应的半解析法[J].电力机械,2008,121(29):84-87.15(11):1989-1999.
    [1.44]GB 50135-2006,高耸结构设计规范[S].上海:上海市交通与建设委员会,2006.
    [1.45]JGJ99-98,高程民用建筑钢结构技术规程[S].北京:中国建筑科学研究院,1998.
    [1.46]GB50010-2010,建筑抗震设计规范[S].北京:中国建筑科学研究院,2010.
    [1.47]JGJ3-2010高层建筑混凝土结构技术规程[S].北京:中国建筑科学研究院,2010.
    [1.48]刘建新.高层建筑自振周期考虑P-△效应的实用计算方法[J].工程抗震,1997,2:15-17.
    [1.49]肖从真,王翠坤等.高层建筑的重力二阶效应分析方法与主要影响因素[J].建筑科学,2003,19(4):14-16.
    [2.1]Clough C. W. and Penzien J. Dynamics of structure[M]. second edition, McGram-Hill Inc., 1993.
    [2.2]Rice S.O. Mathematical analysis of random noices[C].in:wax N, editor. Selected Papers on Noices and Stochastic Processes. New York:Dover.1954.133-294.
    [2.3]Yang J.N. Simulation of random envelope processes[J]. Journal of Sound and Vibration,1972,21(1):73-85.
    [2.4]Schinozuka M. Simulation of multivariate and multidimensional random processes[J]. Journal of the Acoustical Society of America,1971,49(l,part2):357-368.
    [2.5]Schinozuka M, Jam C.M. Digital simulation of random processes and its applications Journal of Sound and Vibration,1972,25(1):111-128.
    [2.6]Varicaitis R, Shinozuka M, Takeno M. Response analysis of tall buildings to wind loading[J]. Journal of Structural Engineering, ASCE,197,103(4):583-600.
    [2.7]Schinozuka M, Levy R. Digital generation of along wind velocity-field[J]. Journal of Structural Engineering, ASCE,1975,101(3):689-700.
    [2.8]KASPERSKI M, NIEMANN H J. The LRC(load-response-correlation) method-a general method of estimating unfavourable wind load distributions for linear and non-linear structural behaviour[J]. Journal of Wind Engineering and Industrial Aerodynamics,1992, 43(1-3):1753-1763.
    [2.9]DAVENPORT A G. Gust loading factors[J]. Journal of Structure Division(ASCE),1967, 93(ST3):11-34.
    [2.10]Kaimal J. C, Wyngaard J. C, Izumi Y., Cote O. R. Spectral characteristics of surface-layer turbulence[J]. Quarterly Journal of the Royal Meteorological Society,1972,98(417):563-589.
    [3.1]Lindstedt A. Ueder die integration einer fur die storungstheorie wichtigen differentialgleichung[J]. Astron Naqch.,1882,103:211-222.
    [3.2]Poincare H. Les Methods nouvelles de la mecanique celeste. Paris:Gauthier-Villars(new method of celestial mechanics, Vol. I-III(English transl.), NASA, TTF-450,1967.
    [3.3]Duffing G. Erzwungene Schwingungen bei vernderlicher eigenfrequenz[M]. F. Viewegu. Sohn.,1918, Braunschweig.
    [3.4]Van der Pol B. On oscillation hysteresis in a simple triode generator[J]. Phil. Mag., 43:700-719.
    [3.5]Krylove N, Bogoliubov N N. Introduction to nonlinear mechanics[M]. Prinston, N. J: Princeton University Press,1947.
    [3.6]Mitropolski Y. A. Problems of the asymptotic theory of non-stationary vibrations[M]. New York:Daniel Davey,1965.
    [3.7]徐兆.非线性力学中一种新的渐近方法[J].力学学报,1985,17(3):266-271.
    [3.8]Cheung Y. K, Chen S. H. Analysis of strong non-linear conservative oscillators by a modified Lindstedt-Poincare method[J].Applied Mathematics and Mechanics,1993, Wei-Zang Chien Eightieth Anniversary Volume:34-44.
    [3.9]Chen S. H, Cheung Y. K. A modified Lindstedt-Poincare method for Strong non -linear two degree of freedom system[J]. Journal of Sound and Vibration,1996c,193(4):751-762.
    [3.10]叶辉.不同外激励作用下杜芬系统的全局动力学模拟和分析[D].浙江大学,2008.
    [3.11]何勇.随机荷载作用下海洋柔性结构非线性振动响应分析方法[D].浙江大学,2007.
    [3.12]Lutes L. D. Approximate technique for treating random vibration of hysteretic system[J]. J. Acoust. Soc. AQm.,1970,48(l):299-306.
    [3.13]Caughey, T. K. On the response of nonlinear oscillators to stochastic excitation[J]. Prob. Engrg. Mech.,1986,1(1)2-4.
    [3.14]Zhu W. Q, Yu J. S. The equivalent nonlinear system method. Journal of Sound and Vibration[J],1989,129(3):385-395.
    [3.15]朱位秋,余金寿.预测非线性系统响应的等效非详细系统法[J].固体力学学报,1989,10(1):34-44.
    [3.16]Cai G. Q, Lin Y. K. Anew approximate solution technique for randomly excited nonlinear oscillators[J]. Journal of Non-Linear Mechanics,1988,23:409-420.
    [3.17]JGJ3-2010高层建筑混凝土结构技术规程[S].北京:中国建筑科学研究院.2010.
    [3.18]Liang Shuguo, Liu Shenchu, Zhang Liangliang, et al. Mathematical model of across wind dynamic loads on rectangular tall buildings[J]. Journal of Wind Engineering and Industrial Aerodynamic 2002,90(12-15):1757-1770.
    [3.19]全涌.超高层建筑气动弹性模型风洞实验研究[D].上海:同济大学,1999.
    [3.20]汪大海.高层建筑顺风向静力等效风荷载及响应研究[D].武汉大学硕士论文,2005.
    [4.1]DAVENPORT A G. Gust loading factors[J]. Journal of Structure Division(ASCE),1967, 93(ST3):11-34.
    [4.2]Kasperski M, Niemann H J. The LRC(load-response-correlation) method-a general method of estimating unfavourable wind load distributions for linear and non-linear structural behaviour[J]. Journal of Wind Engineering and Industrial Aerodynamics,1992,43(1-3):1753-1763.
    [4.3]Zhou, Y., Gu, M., and Xiang, H. F. Along-wind static equivalent wind loads and response of tall buildings Part Ⅱ:effects of mode shapes. Journal of Wind Engineering and Industrial Aerodynamics,1999,Vol.79(1,2):151-158.
    [4.4]Yin Zhou, Ahsan Kareem, Ming Gu. Equivalent static buffeting loads on structures[J],2000, Journal of Structural Engineering, Vol.126(8):989-992.
    [4.5]叶丰,顾明.高层建筑顺风向背景响应及其等效风荷载的计算方法[J].建筑结构学报,2002,23(1):58-63.
    [4.6]叶丰,顾明..估算高层建筑结构顺风向等效风荷载和响应简化方法[J].工程力学,2003,20(1):93-98.
    [4.7]Xinzhong Chen, Ahsan Kareem. Equivalent Static Wind Loads on Buildings:New Model[J], Journal of Structural Engineering,2004, Vol.130(10):1425-1435.
    [4.8]Yin Zhou, Ahsan Kareem, Ming Gu. Mode Shape Corrections for Wind Load Effects[J], Journal of Engineering Mechanics,2002, Vol.128(1):15-23.
    [4.9]李寿英,陈政清.超高层建筑风致响应及其等效风荷载研究[J].建筑结构学报,2010,Vo1.31(3):33-37.
    [4.10]张建国,顾明.高层建筑背景静力等效风荷载分布[J].同济大学学报(自然科学版),2008,Vo1.36(3):285-290.
    [4.11]洪小健,顾明.顺风向等效风荷载及响应-主要国家建筑风荷载规范比较[J].建筑结构,2004,34(7):39-43.
    [4.12]黄东梅,朱乐东.超高层建筑层风力空间相关性数学模型-综合分析法[J].土木工程学报,2009,Vo1.42(8):26-36.
    [4.13]Dae-Kun Kwon, Tracy Kijewski-Correa, Ahsan Kareem. Analysis of High-rise buildings subjected to wind loads. Journal of Structural Engineering,2008,Vol.134(7):1139-1153.
    [4.14]GB50009-2012建筑结构荷载规范[S].北京:中国建筑科学研究院,2012.
    [4.15]汪大海.高层建筑顺风向静力等效风荷载及响应研究[D].武汉大学硕士论文,2005.
    [4.16]埃米尔.希缪等著,刘尚培等译.风对结构作用—风工程导论[B].同济大学出版社,1992,上海.
    [5.1]Kwok K.C.S, Melbourne W. H. Cross wind response of structures due to displacement dependent lock in excitation[J]. Journal of Wind Engineering,1979,2:458.
    [5.2]Solari G Mathematical model to predict 3-D wind loading on buildings[J]. Journal of Engineering Mechanics,1985,111(2):245.
    [5.3]Islam S. M, Ellingwood B, Corotis R. B. Dynamic response of tall buildings to stochastic wind load[J]. Journal of Wind Engineering,1990,116(11):2982.
    [5.4]Kareem A. Dynamic response of high-rise buildings to stochastic wind loads [J]. Journal of Wind Engineering and Industrial Aerodynamics,1992,42(1/2/3):1101.
    [5.5]Cheng C. M, Lu P. C, Tsai M. S.Across-wind aerodynamic damping of isolated square-shaped buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002,90(12/13/14/15):1743.
    [5.6]Kwok K. C. S, Melbourne W. H. Wind -induced lock in excitation of tall structures[J]. ASCE J Struct. Div.,1981,107(1):57.
    [5.7]Steckly A. Motion-induced wind forces on chimneys and tall buildings [D]. Ontario:The University of Western Ontario,1989.
    [5.8]全涌,顾明.超高层建筑横风向气动力谱[J].同济大学学报(自然科学版),2002,30(5):627.
    [5.9]Cheng C. M, Lu P. C, Chen R. H. wind loads on square cylinder in homogenous turbulent flows[J]. Journal of Wind Engineering and Industrial Aerodynamics,1992,41(1/2/3):739.
    [5.10]Yeh H, Wakahara T. Wind-induced forces on a slender rectangular column structure[C]. Proceedings of the 2nd European & African Conference on Wind Engineering Genova:[s.n.],1997:312-326.
    [5.11]梁枢果,刘胜春,张亮亮等.矩形高层建筑横风向动力风荷载解析模型[J].空气动力学学报,2002,20(1):32.
    [5.12]张建国,叶丰,顾明.典型超高层建筑横风向气动力谱的构成分析[J].北京工业大学学报,2006,32(2):104.
    [5.13]Marukawa H, Ohkuma T, Momomura Y. Across-wind and torsional acceleration of prismatic high rise building[J]. Journal of Wind Engineering and Industrial Aerodynamics,1992, 42(1/2/3):1139.
    [5.14]Kanda J, Choi H. Correlating dynamic wind force components on 3-D cylinders[J]. Journal of Wind Engineering and Industrial Aerodynamic,1992,41(1/2/3):785.
    [5.15]Isyumov N, Fediw A. A, Colaco J.et al. Performance of a tall building under wind action[J]. Journal of Wind Engineering and Industrial Aerodynamic,1992,42(1/2/3):1053.
    [5.16]Kareem A. wind excited motion of building[D]. Fort Collin:Colorado University,1978.
    [5.17]Steckley A, Vickery B. j, Isyumov N. On the measurement of motion induced forces on models in turbulent shear flow[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990,36(1/2/3):339.
    [5.18]Vickery B.J, Steckley A. Aerodynamic damping and vortex excitation on an oscillating prism in turbulent shear flow[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993,49(1/2/3):121.
    [5.19]Watanabe Y, Isyumov N, Davenport A. G. Empirical aerodynamic damping function for tall buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics,1997,72(1/2/3):313.
    [5.20]Jeary A. P. Establishing non-linear damping characteristics of structures from non-stationary response time history[J]. Struct. Eng.,1992,70(4):61.
    [5.21]Jeary A. P. The Description and measurement of nonlinear damping in structure[J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,59(2/3):103.
    [5.22]Tamura Y, Suganuma S. Y. Evaluation of amplitude-dependent damping and natural frequency of buildings during strong winds[J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,59(2/3):115.
    [5.23]Architectural Institute of Japan-AIJ. AIJ 2004 Recommendations for loads on building[S]. Tokyo:Architectural Institute of Japan,2004.
    [5.24]GB50009-2012建筑结构荷载规范[S].北京:中国建筑科学研究院,2012.
    [5.25]全涌.超高层建筑气动弹性模型风洞试验研究[D].上海:同济大学,1999.
    [5.26]梁枢果,夏法宝,邹良浩等.矩形高层建筑横风向风振响应简化计算[J].建筑结构学报,2004,25(5):48-54.
    [5.27]鞠红梅,田玉基.矩形截面高层建筑横风向等效静力荷载分析[J].武汉理工大学学报,2010,32(9):170-173.
    [5.28]邹垚,梁枢果,彭德喜等.考虑二阶振型的矩形高层建筑横风向风振响应简化计算[J].建筑结构学报,2011,32(4):39-45.
    [6.1]Simiu E.,Scanlan R.H. Wind effects on structures-fundamentals and applications to design[M]. John wiley & Sons, New York,1996.
    [6.2]Hart G.C.,M., R.sJr.,D.,Lew,M. Torsional response of high-rise buildings. Journal of the Structural Division,1975,101:397-415.
    [6.3]Balendra T., Nathan GK., Kang, K. H. Deterministic model for wind-induced oscillations of buildings[J] Journal of Engineering Mechanics,1987,115(1):179-199.
    [6.4]Katagiri J., Marukawa H., Katsumura A., Fujii K. Effects of structural damping and eccentricity on wind responses of high-rise buildings[J]. Journal of Wind Engineering and Indusrial Aerodynamics,1988 74-76:731-740.
    [6.4]Kareem A. Wind induced torsional loads on structures[J]. Engineering Structures,3:85-86.
    [6.5]Kareem A. Across-wind response of buildings. Journal of the structural Division,1982, 108:869-887.
    [6.6]Islam M. S. Modal coupling and wind-induced vibration of tall buildings[D]. PhD thesis, The Johns Hopkins University, Baltimore,1988.
    [6.7]Islam M. S., Ellingwood B., Corotis R.B. Dynamic response of tall buildings to stochastic wind load[J]. Journal of Structural Engineering,1989,116(11):2982-3002.
    [6.8]Caughey T. K. and O'Kelly M. E. J. Classical normal modes in damped linear dynamic systems[J]. Journal of Applied Mechanics, ASME,1965,32:583-588.
    [6.9]Templin J. T., Cooper K. R. Design and performance of a multi-degree-of-freedom aeroelastic building model[J], Journal of Wind Engineering and Industrial Aerodynamics,1981, 8:157-175.
    [6.10]Katsumaura A., Katagiri J., Marukawa H. Effects of side ratio on characteristics of across-wind and torsional responses of high-rise buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics,2001,89:1433-1444.
    [6.11]Zhou Y.,Kareem A. Gu M. Mode shape corrections for wind load effects[J]. Journal of Engineering Mechanics,2002,128(1):15-23.
    [6.12]Liang S., Li Q. S. Liu S., Zhang L., Gu M. Torsional dynamic wind loads on rectangular tall buildings[J]. Engineering Structures,2004,26:129-137.
    [6.13]Lin N., Letchford C., Tamura Y., Liang B., Nakamura O. Characteristics of wind forces acting on tall buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics,2005, 93:217-242.
    [6.14]Xinzhong Chen, Ahsan Kareem. Coupled dynamic analysis and equivalent static wind loads on buildings with three-dimensional modes[J]. Journal of Structural Engineering,2005, 131(7):1071-1082.
    [6.15]Liang B., Tamura Y., Suganuma S. Simulation of wind-induced lateral-torsional motion of tall buildings[J]. Computer & Structures,1997,63(3):601-606.
    [6.16]章李刚,楼文娟,申屠团兵.不规则结构扭转荷载[J].浙江大学学报(工学版),2011,45(6):1094-1098.
    [6.17]李春祥,李锦华,顾新花.非同轴质量偏心结构平扭耦合风振响应的研究[J].振动与冲击,2011,30(4):68-80.
    [6.18]Islam M. S., Ellingwood B., Corotis R.B. Wind-induced response of structurally asymmetric high-rise buildings[J]. Journal of Structural Engineering,1992,118:207-222.
    [6.19]Kan C.L., Chopra A.K. Elastic earthquake analysis of a class of torsionally coupled buildings[J]. Journal of the Structural Division,1977a,103:821-837.
    [6.20]Kan C.L., Chopra A.K. Elastic earthquake analysis of torsionally coupled multistorey buildings[J]. Earthquake Engineering and Structural Dynamics,1977b,5:821-837.
    [6.21]张效松.开口薄壁杆件横截面几何性质计算[J].力学与实践,2010,32(4):87-90.
    [6.22]包世华,周坚.薄壁杆件结构力学[M].中国建筑工业出版社,北京,2006.
    [6.23]唐意.高层建筑弯扭耦合风致振动及静力等效风荷载研究[D].同济大学博士学位论文,上海,2006.
    [7.1]Vandiver J. K. et Effect of Liquid Storage Tanks on Dynamic Response of Offshore Platform[J]. Applied Ocean Research.1979,1(2):67-74.
    [7.2]Tamura Y., Fujii K., Ohtsuki T., Wakahara T., Kohsaka R. Effectiveness of tuned liquid damper under wind excitation[J]. Engineering Structures,1995,17:609-21.
    [7.3]Fediw AA., Isyumov N., Vickery BJ. Performance of a tuned sloshing water damper[J]. Journal of Wind Engineering and Industrial Aerodynamics,1995,56: 237-247.
    [7.4]Tait MJ., E1 Damatty AA., Isyumov N. Siddique MR. Numerical flow models to simulate tuned liquid dampers(TLD) with slat screens[J]. Journal of Fluids and Structures,2005,20:1007-1023.
    [7.5]Yu YK., Yoon SW., Kim SD. Experimental evaluation of a tuned liquid damper system. Structure and Buildings,2004,157:251-261.
    [7.6]Tait MJ. Modelling and preliminary design of a structure-TLD system[J]. Engineering Structures,2008,30:2644-2655.
    [7.7]Kaream A. and Sun W. J. Stochastic response of structures with fluid-containing appendages[J]. Journal of Sound and Vibration,1987,119(3):389-408.
    [7.8]Shimizu T. and Hayama S. Nonlinear responses of sloshing based on the shallow water wave theory[J]. JSME International Journal,1987,30(263):806-813.
    [7.9]Tamura Y., Kohsaka R., Nakamura O. et al. Wind-induced response of an airport tower-efficiency of tuned liquid damper[J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,65(1-3):121-131.
    [7.10]Won A. J. J., Pires J. A. and Haroun M. A. Stochastic seismic performance evaluation of tuned liquid column dampers [J]. Earthquake Engineering and Structural Dynamics,1996,25(11)-.1259-1274.
    [7.11]Li H. N. and Ma B. C. Seismic response reduction for fixed offshore platform by tuned liquid damper[J]. China Ocean Engineering,1997,11(2):119-125.
    [7.12]Armenio V. and Rocca M. L. On the analysis of sloshing of water in rectangular containers:numerical study and experimental validation [J]. Ocean Engineering,1996, 23 (8):705-739.
    [7.13]Warnitchai P. and Pinkaew T. Modelling of liquid sloshing in rectangular tanks with flow-dampening devices[J]. Engineering Structures,1998,20(7):593-600.
    [7.14]Li H. N., Jia Y. and Lu J. Simulation of dynamic liquid pressure for tuned liquid damper [J]. Journal of Engineering Mechanics, ASCE,2000,126(12):1303-1305.
    [7.15]Reed D., Yeh H., Yu J. et al. Tuned liquid dampers under large amplitude excitation[J]. Journal of Wind Engineering and Industrial Aerodynamics,1998, 74-76:923-930.
    [7.16]Reed D., Yu J., Yeh H. et al. Investigation of tuned liquid damper under large amplitude excitation[J]. Journal of Engineering Mechanics, ASCE,1998,124(4): 405-413.
    [7.17]Yu J. K. Nonlinear characteristics of tuned liquid dampers[D]. Ph.D. Thesis, Department of Civil Engineering, University of Washington, Seattle,1997.
    [7.18]Banerji P, Murudi M, Shah A. H. et al. Tuned liquid dampers for controlling earthquake response of structures[J]. Earthquake Engineering and Structural Dynamics,2000,29 (5):587-602.
    [7.19]Shankar K. and Balendra T. Application of energy flow method to vibration control of buildings with multiple tuned liquid dampers[J]. Journal of Wind engineering and Industrial Aerodynamics,2002,90(12-15):1893-1906.
    [7.20]Frandsen J. B. Numerical predictions of tuned liquid tank structural system[J]. Joural of Fluids and Structures,2005,20(3):309-329.
    [7.21]Lee S. K., Park E. C., Min K. W. et al. Real-time hybrid shaking table testing method for the performance evaluation of a tuned liquid column damper controlling seismic response of building structures[J]. Journal of Sound and Vibration,2007, 302(3):596-612.
    [7.22]Sakai, F., Takaeda, S. and Tamaki, T., Tuned Liquid Column Damper-New Type Device for Suppression of Building Vibration[C]. Proc. International Conference on High-rise Building, Nanjing, China,1989, p.926-931.
    [7.23]瞿伟廉,高层建筑和高耸结构的风振控制设计[M].武汉测绘科技大学出版社,武汉,1991.
    [7.24]I. E. Idelchik, Handbook of Hydraulic Resistance(3rd Edn. ISBN 0-8493-9908-4)[M]. Begell House,1994.
    [7.25]P. Chaiviyawong, W. C. Webster, T. Pinkaew and P. Lukkunnaprasit Simulation of Characteristics of tuned liquid column using a potential-flow method[J]. Engineering Structures,2007,29:132-144.
    [7.26]P. Chaiviyawong, S. Limkatanyu, T. Pinkaew, Simulation of Characteristics of tuned liquid column using a elliptical flow path estimation method[C]. The 14th World Conference on Earthquake Engineering, Beijing, China, October 12-17,2008,p.
    [7.27]Jong-Cheng Wu, Cheng-Hsing Chang, Yuh-Yi Lin. Optimal designs for non-uniform tuned liquid column dampers in horizontal motion[J], Journal of Sound and Vibration, 2009,329:104-122.
    [7.28]K. M. Shum, Closed form optimal solution of a tuned liquid column damper for suppressing harmonic vibration of structures, Engineering Structures,2009, 31:94-92.
    [7.29]Gao H., Kwok K. C. S. and Samali B. Optimization of tuned liquid column dampers. Engineering Structures,1997,19(6):476-486.
    [7.30]Swaroop K. Yalla, Ahsan Kareem, et al. Optimum absorber parameters for tuned liquid column dampers[J]. Journal of Structural Engineering,2000,126(8):906-915.
    [7.31]Rama Debarma, Subrata Chakraborty, Saibal Kumar Ghosh, Optimum design of tuned liquid column dampers under stochastic earthquake load considering uncertain bounded system parameters, International Journal of Mechanical Sciences,2010,25: 1385-1393.
    [7.32]Kyung-Won min, Hyoung-Seop Kim, Sang-Hyun Lee, et al. Performance evaluation of tuned liquid column dampers for reponse control of a 76-story benchmark building[J]. Engineering Structures,2005,27:1101-1112.
    [7.33]Balendra T., Wang C. M. and Cheong H. F. Effectiveness of tuned liquid column dampers for vibration control of towers[J]. Engineering Structures,1995, 17(9):668-675.
    [7.34]Balendra T., Wang C. M. and Rakesh G. Vibration control of tapered buildings using TLCD[J]. Journal of Wind Engineering and Industrial Aerodynamics,1998, 77-78(1):245-257.
    [7.35]Balendra T., Wang C. M. and Rakesh G. Vibration control of various types of buildings using TLCD[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999,83(1-3):197-208.
    [7.36]Swaroop K. Yalla and S. M. Ahsan Kareem. Beat phenomenon in combined structure-liquid damper system[J]. Engineering Structure,2001,23:622-630.
    [7.37]Swaroop K. Yalla and S. M. Ahsan Kareem. Semiactive tuned liquid column dampers: experiment study[J]. Journal of Structural Engineering,2003,129(7):962-971.
    [7.38]Jong-Cheng Wu, Experimental calibration and head loss prediction of tuned liquid column damper[J], Tamkang Journal of Science and Engineering,2005,8: 319-325.
    [7.39]晏辉.液柱式振动吸振器(LCVA)在结构振动中的研究[D].华中科技大学硕士学位论文,2006.
    [7.40]Sung-Kyung Lee, Sang-Hyun Lee, Kyung-Won Min. et al. Experimental Implementation of a Building Structure with a Tuned Liquid Column Damper based on the Real-Time Hybrid Testing Method[C]. The 8th International Conference on Motion and Vibration Control(MOVIC2006),2006, p.50-55.
    [7.41]Chang C. C. and Hsu C. T. Control performance of liquid column vibration absorbers[J]. Engineering Structure,1998,20(7):580-586.
    [7.42]Sadek F., Mohraz B. and Lew H. S. Single and multiple tuned liquid column dampers for seismic application[j]. Earthquake Engineering and Structural Dynamics,1998,27(5):439-463.
    [7.43]Gao H., Kwok K. S. C. and Samali B. Characteristics of multiple tuned liquid column dampers in suppressing structural control[J]. Engineering Structures, 1999,21 (4):316-331.
    [7.44]Hochrainer M. J. Investigation of active and passive tuned liquid column dampers for structural control [C]. Proceedings of 8th International Congress on Sound and Vibration, Hong Kong, China, July 2001.
    [7.45]Hochrainer M. J. Tuned liquid column damper for structural control [J]. Acta Mechanic,2005,175:57-76.
    [7.46]K. A. Al-Saif, K. A. Aldakkan and M. A. Foda. Vibration suppression of a structure using a liquid column Ball damper[J]. Canadian Journal on Environmental, Construction and Civil Engineering,2010, 1(2):20-41.
    [7.47]Hochrainer M. J., Adam C. and Zieggler F. Application of tuned liquid column dampers for passive structural control [C]. Proceedings of 7th International Congress on Sound and Vibration, Garmisch-Partenkirchen, Germany, July 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700