用户名: 密码: 验证码:
周期性结构及周期性隔震基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隔震技术是一种减小结构地震动力响应的有效方法。鉴于传统隔震技术的一些不足,开发新型隔震技术己成为目前研究的一个热点课题。1993年,凝固态物理学中提出了声子晶体型周期性结构的概念。这种周期性结构具有独特的滤波特性,即处于某些频段(衰减域)范围内的波不能透过该结构。受此启发,本文将研究周期性结构的滤波特性以及该结构一种的潜在应用——周期性隔震基础。
     本论文研究内容包括:周期性结构频散关系的数值计算方法研究、周期性结构基本理论研究、周期性结构工程应用数值模拟和模型试验。在频散关系数值计算方法研究中,分析了傅里叶级数法的两个数学基础,并讨论了材料参数及几何参数对该方法收敛性的影响。在周期性结构理论研究中,首先讨论了周期性结构的滤波特性,分析了有限周期性结构对振动能量的衰减作用;其次对二维周期性结构研究了方向性衰减域的特性,提出了基于模态的局域共振频散关系绘制方法,并分析了与内部振子振动模态相对应的局域共振方向性衰减域。在工程应用数值模拟研究中,分析了一维层状、二维及三维有限周期性结构的衰减域特性,模拟了周期性基础对地震动的抑制作用;分析了改进的一维层状周期性基础模型及具有方向性衰减域的二维复合周期性基础对多种场地条件下地震动的阻隔作用。在模型试验研究中,首先完成了一维层状周期性基础的振动台测试,随后又完成了二维周期性基础的自由场振动测试。
     研究发现:傅里叶级数法收敛性受Gibbs振荡及乘积函数的一致收敛性算式影响。散射型周期性结构的滤波特性由组成周期性结构的不同材料相互作用产生;局域共振型周期性结构的滤波特性是由周期单元的子结构局域共振产生。当周期单元的对称程度较低时,周期性结构容易形成方向性衰减域;相对于对称程度较高的周期单元,对称程度较低的周期单元在实现低频宽带衰减域同时可有效减小周期性基础的尺寸。数值分析结果表明,只需3个周期单元,衰减域即可有效抑制外部激励的传播。地震动模拟结果表明,利用周期性基础抑制地震动的传播是可行的。由于周期性基础减小了地震动向上部结构输入的能量,从而降低了上部结构的地震动响应。改进的层状周期性基础和具有方向性衰减域的二维复合周期性基础,可适用于多种场地条件下的地震隔离。振动台试验验证了层状周期性基础对地震动的阻隔作用,自由场测试验证了二维周期性基础隔震应用的可行性。
Base isolation is an effective way to decrease structural responses under earthquake actions. However, because of the disadvantages of traditional base isolation systems, it is a hot topic to develop new seismic isolation systems. In1993, some investigations in the field of solid-state-physics show that phononic crystal, a novel periodic structure, can be designed as a filter for elastic wave. In some frequency regions, named band gap or attenuation zone, elastic waves cannot propagate in this type of periodic structure. Based on this idea, this work aims to investigate the filtering effect of this type of periodic structure and to study possible applications of periodic structure, named periodic seismic isolation foundation, in civil engineering.
     In this dissertation, attentions are focused on four topics:1, numerical method for the dispersion relationship of periodic structure;2, basic theory of periodic structure;3, numerical simulations of periodic foundations; A, experimental studies of periodic foundations. On the first topic, the convergence of the Fourier expansion method in calculating the band structures of elastic waves propagating in periodic composites is discussed based on its two mathematical backgrounds. And influences of the material parameters and the geometrical parameters on the convergence are analyzed. On the second topic, by using mass-spring models, the filtering effect of periodic structure for elastic wave is studied and the attenuation mechanism of energy flow in finite periodic structure is illustrated. To study the directional attenuation zone of local-resonant periodic structure, dispersion curves of local-resonant periodic structure are presented according to the vibration mode of the inner oscillator. On the third topic, numerical simulations are conducted to verify the efficiency of the attenuation zone of finite periodic structure and to show the filtering effect of periodic foundation for seismic waves. As using the improved layered periodic foundation or the two-dimensional periodic foundation with directional attenuation zones, seismic responses of upper-structures under different types of seismic waves are also simulated. On the fourth topic, shake table tests and free field tests are conducted for the layered periodic foundation and two-dimensional periodic foundation, respectively.
     Some conclusions are obtained:the convergence of the Fourier expansion method is influenced by the Gibbs oscillation and the uniform convergence formula for the product function. For the scattering periodic structure, the filtering effect is related to the interaction between different materials; for the local resonant periodic structure, the filtering effect is related to the resonance of the inner oscillator. Directional attenuation zones can be opened easily for non-symmetric periodic structures. Compared to symmetric periodic structures, the small-size non-symmetric periodic structures can open low-frequency broadband attenuation zones, which are much beneficial for engineering applications. Numerical simulation results show that vibrations in attenuation zones can be obviously lowered after three unit cells. Seismic simulation results show it is feasible to isolate seismic waves by using periodic foundations. Seismic responses of upper structure are decreased because the input energy is lowered by the periodic foundation. The improved layered periodic foundation and the two-dimensional periodic foundation with directional attenuation zones can be used to protect upper-structures in different sites. The efficiency of the layered periodic foundation is proved by the shaking table tests results, and the feasibility of two-dimensional periodic foundation is verified by the free field tests results.
引文
[1]胡聿贤.地震工程学[M].第二版.北京:地震出版社,2006.
    [2]国家汶川地震专家委员会介绍四川汶川地震及灾害评估情况.中国政府网[EB/OL]. http:\www.gov.cn.
    [3]清华大学土木工程结构专家组,西南交通大学土木工程结构专家组,北京交通大学土木工程结构专家组.汶川地震建筑震害分析[J].建筑结构学报,2008,29(4):1-9.
    [4]周福霖.工程结构减震控制[M].北京:地震出版社,1997.
    [5]唐家祥,刘再华.建筑结构基础隔震[M].武汉:华中理工大学出版杜,1993.
    [6]党育,杜永峰,李慧.基础隔震结构设计及施工指南[M].中国水利水电出版社,2007.
    [7]李宏男,霍林生.结构多维减震控制[M].科学出版社,2008.
    [8]Kunde M C, Jangid R S. Seismic behavior of isolated bridges:A-state-of-the-art review[J]. Electronic Journal of Structural Engineering,2003,3(2):140-169.
    [9]Naeim F, Kelly J M. Design of Seismic Isolated Structures:From Theory to Practice[M]. New York:John Wiley & Sons, INC.,1999.
    [10]Charleson A W, Wright P D, Skinner R I. Wellington Central Police Station, base isolation of an essential facility:Proc. Pacific Conference on Earthquake Engineering, New Zealand, 1987[C].377-388.
    [11]Skinner R I, Beck J L, Bycroft G N. A practical system for isolating structures from earthquake attack[J]. Earthquake Engineering & Structural Dynamics,1974,3(3):297-309.
    [12]Skinner R I, Kelly J M, Heine A J. Hysteretic dampers for earthquake-resistant structures[J]. Earthquake Engineering & Structural Dynamics,1974,3(3):287-296.
    [13]Robinson W H. Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes[J]. Earthquake Engineering & Structural Dynamics,1982,10(4):593-604.
    [14]徐忠根,周福霖.我国首栋橡胶垫隔震住宅楼动力分析[J].世界地震工程,1996,12(1):38-42.
    [15]杨佑发,周福霖.隔震结构地震反应分析的实用计算方法[J].世界地震工程,2000,16(1):72-76.
    [16]李中锡,周锡元.规则型隔震房屋的自振特性和地震反应分析方法[J].地震工程与工程振动,2002,22(2):72-76.
    [17]中华人民共和国住房和城乡建设部.GB50011-2001.建筑抗震设计规范[S].北京:中国建筑工业出版社,2001.
    [18]Koh C G, Kelly J M. Effects of axial load on elastomeric isolation bearings, Report UCB/EERC-86/12[R]. Berkeley, California, USA:Earthquake Engineering Research Center, University of California,1987.
    [19]Koh C G, Kelly J M. A simple mechanical model for elastomeric bearings used in base isolation[J]. International Journal of Mechanical Sciences,1988,30(12):933-943.
    [20]Koh C G, Kelly J M. Viscoelastic stability model for elastomeric isolation bearings[J]. Journal of Structural Engineering,1989,115(2):285-302.
    [21]Imbimbo M, Kelly J M. Influence of material stiffening on stability of elastomeric bearings at large displacements[J]. Journal of Engineering Mechanics,1998,124(9):1045-1049.
    [22]Kelly J M. Tension buckling in multilayer elastomeric bearings[J]. Journal of Engineering Mechanics,2003,129(12):1363-1368.
    [23]Ryan K L, Kelly J M, Chopra A K. Experimental observation of axial load effects in isolation bearings:13th World Conference on Earthquake Engineering, Canada,2004[C].
    [24]Ryan K L, Kelly J M, Chopra A K. Nonlinear model for lead-rubber bearings including axial-load effects[J]. Journal of Engineering Mechanics,2005,131(12):1270-1278.
    [25]Constantinou M C, Caccese J, Harris H G. Frictional characteristics of Teflon-steel interfaces under dynamic conditions[J]. Earthquake Engineering & Structural Dynamics, 1987,15(6):751-759.
    [26]Mokha A, Constantinou M, Reinhorn A. Teflon bearings in base isolation Ⅰ:Testing[J]. Journal of Structural Engineering,1990,116(2):438-454.
    [27]Constantinou M, Mokha A, Reinhorn A. Teflon bearings in base isolation Ⅱ:Modeling[J]. Journal of Structural Engineering,1990,116(2):455-474.
    [28]Mokha A, Constantinou M C, Reinhorn A M, et al. Experimental study of friction-pendulum isolation system[J]. Journal of Structural Engineering,1991,117(4):1201-1217.
    [29]Hwang J S. Evaluation of equivalent linear analysis methods of bridge isolation[J]. Journal of Structural Engineering,1996,122(8):972-976.
    [30]Hwang J S, Chiou J M. An equivalent linear model of lead-rubber seismic isolation bearings[J]. Engineering Structures,1996,18(7):528-536.
    [31]Hwang J S, Chiou J M, Sheng L H, et al. A refined model for base-isolated bridges with bi-linear hysteretic bearings[J]. Earthquake Spectra,1996,12(2):245-273.
    [32]Hwang J S, Ku S W. Analytical modeling of high damping rubber bearings[J]. Journal of Structural Engineering,1997,123(8):1029-1036.
    [33]Hwang J S, Sheng L H. Effective stiffness and equivalent damping of base-isolated bridges[J]. Journal of Structural Engineering,1993,119(10):3094-3101.
    [34]Hwang J S, Sheng L H. Equivalent elastic seismic analysis of base-isolated bridges with lead-rubber bearings[J]. Engineering Structures,1994,16(3):201-209.
    [35]周锡元,韩淼.隔震橡胶支座水平刚度系数的实用计算方法[J].建筑科学,1 998,14(6):3-8.
    [36]周锡元,韩淼,曾德民,等.组合橡胶支座及橡胶支座与柱串联系统的水平刚度计算方法[J].地震工程与工程振动,1999,19(4):67-75.
    [37]苏经宇,韩淼.橡胶支座基础隔震建筑地震作用实用计算方法[J].振动工程学报,1 999,12(2):229-236.
    [38]刘文光.橡胶隔震支座竖向刚度简化计算法[J].地震工程与工程振动,2001,21(4):1 11-1 16.
    [39]Roeder C W, Stanton J F, Feller T. Low temperature behavior and acceptance criteria for elastomeric bridge bearings, NCHRP Report 325[R]. Washington D.C.:Transportation Research Board, National Research Council,1989.
    [40]Roeder C W, Stanton J F, Feller T. Low-temperature performance of elastomeric bearings[J]. Journal of Cold Regions Engineering,1990,4(3):113-132.
    [41]Yura J, Kumar A, Yakut A, et al. Elastomeric Bridge Bearings:Recommended Test Methods, NCHRP Report 449[R]. Washington D.C.:Transportation Research Board,National Research Concil,2001.
    [42]Yakut A, Yura J A. Parameters influencing performance of elastomeric bearings at low temperatures[J]. Journal of Structural Engineering,2002,128(8):986-994.
    [43]刘文光,杨巧荣,周福霖.天然橡胶隔震支座温度相关性能试验研究[J].广州大学学报:自然科学版,2002,1(6):51-56.
    [44]刘文光,杨巧荣,周福霖.建筑用铅芯橡胶隔震支座温度性能研究[J].世界地震工程,2003,19(2):39-44.
    [45]熊世树,唐建设,梁波,等.装有3DB的三维隔震建筑的平扭-竖向地震反应分析[J].工程抗震与加固改造,2004,5:17-22.
    [46]熊世树,陈金凤,梁波,等.三维基础隔震结构多维地震反应的非线性分析[J].华中科技大学学报(自然科学版),2004,32(12):81-84.
    [47]颜学渊,张永山,王焕定,等.高层结构三维基础隔震抗倾覆试验研究[J].建筑结构学报,2009,30(4):1-8.
    [48]颜学渊,张永山,王焕定,等.三维隔震抗倾覆结构振动台试验[J].工程力学,2010,27(5):91-96.
    [49]孟庆利,林德全,张敏政.三维隔震系统振动台实验研究[J].地震工程与工程振动,2007,27(3):1 16-120.
    [50]贾俊峰,欧进萍,刘明,等.新型三维隔震装置力学性能试验研究[J].土木建筑与环境工程,2012,34(1):29-34.
    [51]Tajirian F F, Kelly J M, Aiken I D, et al. Elastomeric bearings for three-dimensional seismic isolation:Proceeding,1990 ASME PVP Conference, ASME PVP-200, Nashville, Tennessee, 1990[C].7-13.
    [52]Tajirian F F, Kelly J M, Aiken I D. Seismic isolation for advanced nuclear power stations[J]. Earthquake Spectra,1990,6(2):371-401.
    [53]Morishita M, Inoue K, Fujita T. Development of three-dimensional seismic isolation systems for fast reactor application[J]. Journal of Japan Association for Earthquake Engineering,2004,4(3):305-310.
    [54]熊世树,唐家祥.钢丝绳隔震器三向性能试验研究[J].华中理工大学学报,1 998,26(2):77-79.
    [55]赵亚敏,苏经宇,周锡元,等.碟形弹簧竖向隔震结构振动台试验及数值模拟研究[J].建筑结构学报,2008,29(6):99-106.
    [56]赵亚敏,苏经宇,周锡元,等.组合式碟形弹簧竖向隔震支座的设计与性能试验研究[J].北京工业大学学报,2009,35(7):892-898.
    [57]赵亚敏,苏经宇,陆鸣.组合式三维隔震支座力学性能试验研究[J].工程抗震与加固改造,2010,32(1):57-62.
    [58]李雄彦,薛素铎.大跨空间结构隔震技术的现状与新进展(英文)[J].空间结构,2010(4):87-95.
    [59]薛素铎,李雄彦,潘克君.大跨空间结构隔震支座的应用研究[J].建筑结构学报,2010,增刊2:56-61.
    [60]李雄彦,薛素铎.摩擦-碟簧三维复合隔震支座的性能试验研究[J].世界地震工程,2011,27(3):1-7.
    [61]Li X, Xue S, Cai Y. Three-dimensional seismic isolation bearing and its application in long span hangars[J]. Earthquake Engineering and Engineering Vibration,2013,12(1):55-65.
    [62]麦敬波,周福霖.复合隔震体系地震反应分析方法探讨[J].广州大学学报(自然科学版),2006,5(3):69-74.
    [63]范夕森,苏小卒,张鑫,等.组合隔震系统力学性能试验研究[J].建筑结构学报,2010,31(2):50-55.
    [64]魏陆顺,周福霖,刘文光.组合基础隔震在建筑工程中的应用[J].地震工程与工程振动,2007,27(2):158-163.
    [65]杨树标,马裕超,李旭光,等.复合隔震结构模型振动台试验研究[J].地震工程与工程振动,2010,30(1):142-146.
    [66]杨树标,马裕超,原朵仙.复合隔震结构高宽比限值研究[J].世界地震工程,2010,26(4):163-166.
    [67]杨树标,裴俊杰,贾剑辉.结构特征及场地类别对复合隔震结构地震反应的影响[J].世界地震工程,2012,28(2):131-135.
    [68]杨树标,孙丰光,马裕超,等.基于试验的复合隔震结构参数研究[J].工程建设与设计,2010,3:23-26.
    [69]Mostaghel N, Khodaverdian M. Dynamics of resilient-friction base isolator(R-FBI)[J]. Earthquake Engineering & Structural Dynamics,1987,15(3):379-390.
    [70]Mostaghel N, Khodaverdian M. Seismic response of structures supported on R-FBI system[J]. Earthquake Engineering & Structural Dynamics,1988,16(6):839-854.
    [71]周锡元,韩森,李大望,等.并联和串联基础隔震体系地震反应的某些特征[J].工程抗震,1995,12(4):1-5.
    [72]杜永峰,林治丹.双向水平地震作用下串联隔震结构的振动控制[J].工程抗震与加固改造,20 1 0,32(04):32-37.
    [73]杨树标.砌体复合隔震体系研究[J].工程力学,1999,3(3):615-618.
    [74]杨树标.砌体并联复合隔震体系的隔震性能研究[J].工业建筑,2000,30(12):15-17.
    [75]杨树标.复合隔震结构地震反应的简化计算[J].世界地震工程,2001,17(2):65-69.
    [76]李爱群,毛利军.并联基础隔震体系地震反应特征与隔震层参数的优选[J].工程抗震与加固改造,2005,27(2):27-31.
    [77]吕西林,朱玉华,施卫星,等.组合基础隔震房屋模型振动台试验研究[J].土木工程学报,2001,34(2):43-49.
    [78]朱玉华,吕西林.组合基础隔震系统地震反应分析[J].土木工程学报,2004,37(4):76-81.
    [79]Lin P, Roschke P N, Loh C H. Hybrid base-isolation with magnetorheological damper and fuzzy control[J]. Structural Control and Health monitoring,2007,14(3):384-405.
    [80]Lin P, Roschke P, Loh C H. System identification and real application of the smart magneto-rheological damper:Intelligent Control,2005. Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation, Limassol, Cyprus,2005[C]. IEEE.989-994.
    [81]Shook D A, Roschke P N, Ozbulut O E. Superelastic semi-active damping of a base-isolated structure[J]. Structural Control and Health Monitoring,2008,15(5):746-768.
    [82]Shook D, Lin P, Lin T, et al. A comparative study in the semi-active control of isolated structures[J]. Smart Materials and Structures,2007,16(4):1433.
    [83]Shook D, Roschke P, Lin P, et al. Experimental investigation of super-elastic semi-active damping for seismically excited structures:Proceedings of the 18th Analysis and Computation Specialty Conference,2008[C].1-10.
    [84]Ramallo J C, Johnson E A, Spencer Jr B F. "Smart" base isolation systems[J]. Journal of Engineering Mechanics,2002,128(10):1088-1099.
    [85]Yoshioka H, Ramallo J C, Spencer Jr B F. "Smart" base isolation strategies employing magnetorheological dampers[J]. Journal of Engineering Mechanics,2002,128(5):540-551.
    [86]Ramallo J C, Yoshioka H, Spencer B F. A two-step identification technique for semiactive control systems[J]. Structural Control and Health Monitoring,2004,11(4):273-289.
    [87]Kim H, Roschke P N, Lin P, et al. Neuro-fuzzy model of hybrid semi-active base isolation system with FPS bearings and an MR damper[J]. Engineering Structures, 2006,28(7):947-958.
    [88]Kim H S, Roschke P N. Fuzzy Control of Base-Isolation System Using Multi-Objective Genetic Algorithm[J]. Computer-Aided Civil And Infrastructure Engineering, 2006,21(6):436-449.
    [89]Kim H, Roschke P N. Design of fuzzy logic controller for smart base isolation system using genetic algorithm[J]. Engineering Structures,2006,28(l):84-96.
    [90]Ozbulut O E, Hurlebaus S. Fuzzy control of piezoelectric friction dampers for seismic protection of smart base isolated buildings[J]. Bulletin of Earthquake Engineering, 2010,8(6):1435-1455.
    [91]王焕定,付伟庆,张永山,等.磁流变智能基础隔震系统的试验研究[J].同济大学学报(自然科学版),2006,34(7):880-885.
    [92]付伟庆,丁琳,陈菲,等.高层隔震结构模型双向振动台试验研究[J].世界地震工程,2006,22(3):125-130.
    [93]付伟庆,于德湖,刘文光,等.高层隔震模型结构双向地震反应的数值计算与试验[J].振动与冲击,2010,29(5):114-127.
    [94]李昌平,刘伟庆,王曙光,等.高层隔震和非隔震结构振动台试验对比[J].南京工业大学学报(自然科学版),2013,35(2):6-10.
    [95]李昌平,刘伟庆,王曙光,等.软土地基上高层隔震结构模型振动台试验研究[J].建筑结构学报,2013,34(7):72-78.
    [96]祁皑,商昊江.高层基础隔震结构高宽比限值分析[J].振动与冲击,201 1,30(11):272-280.
    [97]商旻江,祁皑.高层隔震结构减震机理探讨[J].振动与冲击,2012,31(4):8-17.
    [98]商旻江,祁皑.高层隔震结构设计方法研究[J].福州大学学报(自然科学版),2012,40(1):107-114.
    [99]商旻江,祁皑,范宏伟.高层隔震结构等效模型研究[J].福州大学学报(自然科学版),201 1,39(1):110-1 19.
    [100]刘文光,闫维明,霍达,等.塔型隔震结构多质点体系计算模型及振动台试验研究[J].土木工程学报,2003,36(5):64-70.
    [101]刘文光,杨巧荣,周福霖.大高宽比隔震结构地震反应的实用分析方法[J].地震工程与工程振动,2004,24(4):115-121.
    [102]刘文光,杨巧荣,周福霖.大高宽比隔震结构地震反应预测理论[J].广州大学学报(自 然科学版),2004,3(4):346-350.
    [103]王铁英,王焕定,刘文光,等.大高宽比橡胶垫隔震结构振动台试验研究(1)[J].哈尔滨工业大学学报,2006,38(12):2060-2064.
    [104]王铁英,王焕定,刘文光,等.大高宽比橡胶垫隔震结构振动台试验研究(2)[J].哈尔滨工业大学学报,2007,39(2):196-200.
    [105]付伟庆,刘文光,王建,等.高层隔震结构的等效简化模型研究[J].地震工程与工程振动,2005,25(6):141-145.
    [106]付伟庆,王焕定,丁琳,等.规则型高层隔震结构实用设计方法研究[J].哈尔滨工业大学学报,2007,39(10):1541-1545.
    [107]王曙光,杜东升,刘伟庆.高层建筑结构隔震设计关键问题[J].南京工业大学学报(自然科学版),2009,3 1(1)71-77.
    [108]杜东升,王曙光,刘伟庆,等.高层隔震结构非线性地震响应分析及设计方法研究[J].防灾减灾工程学报,2010,30(05):550-557.
    [109]Takaoka E, Takenaka Y, Nimura A. Shaking table test and analysis method on ultimate behavior of slender base-isolated structure supported by laminated rubber bearings[J]. Earthquake Engineering & Structural Dynamics,2011,40(5):551-570.
    [110]Hall J F, Heaton T H, Halling M W, et al. Near-source ground motion and its effects on flexible buildings[J]. Earthquake Spectra,1995,11(4):569-605.
    [111]Malhotra P K. Response of buildings to near-field pulse-like ground motions[J]. Earthquake Engineering & Structural Dynamics,1999,28(11):1309-1326.
    [112]刘启方,袁一凡,金星,等.近断层地震动的基本特征[J].地震工程与工程振动,2006,26(1):1-10.
    [113]Heaton T H, Hall J F, Wald D J, et al. Response of high-rise and base-isolated buildings to a hypothetical Mw 7.0 blind thrust earthquake[J]. Science,1995,267(5195):206-211.
    [114]Ariga T, Kanno Y, Takewaki I. Resonant behaviour of base-isolated high-rise buildings under long-period ground motions[J]. The Structural Design of Tall and Special Buildings, 2006,15(3):325-338.
    [115]Kelly J M. The role of damping in seismic isolation[J]. Earthquake Engineering & Structural Dynamics,1999,28(1):3-20.
    [116]Jangid R S, Kelly J M. Base isolation for near-fault motions[J]. Earthquake Engineering & Structural Dynamics,2001,30(5):691-707.
    [117]Jangid R S. Optimum friction pendulum system for near-fault motions[J]. Engineering Structures,2005,27(3):349-359.
    [118]Jangid R S. Optimum lead-rubber isolation bearings for near-fault motions[J]. Engineering Structures,2007,29(10):2503-2513.
    [119]Bhasker Rao P, Jangid R S. Performance of sliding systems under near-fault motions[J]. Nuclear Engineering and Design,2001,203(2):259-272.
    [120]Panchal V R, Jangid R S. Variable friction pendulum system for near-fault ground motions[J]. Structural Control and Health Monitoring,2008,15(4):568-584.
    [121]Panchal V R, Jangid R S. Variable friction pendulum system for seismic isolation of liquid storage tanks[J]. Nuclear Engineering and Design,2008,238(6):1304-1315.
    [122]Providakis C P. Effect of LRB isolators and supplemental viscous dampers on seismic isolated buildings under near-fault excitations[J]. Engineering Structures, 2008,30(5):1187-1198.
    [123]Providakis C P. Effect of supplemental damping on LRB and FPS seismic isolators under near-fault ground motions[J]. Soil Dynamics and Earthquake Engineering, 2009,29(1):80-90.
    [124]Providakis C P. Pushover analysis of base-isolated steel-concrete composite structures under near-fault excitations[J]. Soil Dynamics and Earthquake Engineering,2008,28(4):293-304.
    [125]Lu L, Lee T, Hsu C. Experimental Verification of Variable-Frequency Rocking Bearings for Near-fault Seismic Isolation:15th World Conference on Earthquake Engineering, Lisbon, Portugal,2012[C].
    [126]Lu L, Hsu C. Experimental study of variable-frequency rocking bearings for near-fault seismic isolation[J]. Engineering Structures,2013,46:116-129.
    [127]Nagarajaiah S. Structural control benchmark problem:Smart base isolated building subjected to near fault earthquakes[J]. Structural Control and Health Monitoring, 2006,13(2-3):571-572.
    [128]Lu L, Lin G. Predictive control of smart isolation system for precision equipment subjected to near-fault earthquakes[J]. Engineering Structures,2008,30(11):3045-3064.
    [129]Lu L, Lin G. Improvement of near-fault seismic isolation using a resettable variable stiffness damper[J]. Engineering Structures,2009,31(9):2097-2114.
    [130]Lu L, Lin G, Kuo T. Stiffness controllable isolation system for near-fault seismic isolation[J]. Engineering Structures,2008,30(3):747-765.
    [131]Spyrakos C C, Beskos D E. Dynamic response of flexible strip-foundations by boundary and finite elements[J]. Soil Dynamics and Earthquake Engineering,1986,5(2):84-96.
    [132]Spyrakos C C, Beskos D E. Dynamic response of rigid strip-foundations by a time-domain boundary element method[J]. International Journal for Numerical Methods In Engineering, 1986,23(8):1547-1565.
    [133]Novak M, Henderson P. Base-isolated buildings with soil-structure interaction[J]. Earthquake Engineering & Structural Dynamics,1989,18(6):751-765.
    [134]Stehmeyer E H, Rizos D C. Considering dynamic soil structure interaction (SSI) effects on seismic isolation retrofit efficiency and the importance of natural frequency ratio[J]. Soil Dynamics and Earthquake Engineering,2008,28(6):468-479.
    [135]李忠献,田力.地下爆炸波作用下基底滑移隔震建筑-土-隧道相互作用的动力分析[J].工程力学,2004,21(6):56-64.
    [136]李忠献,田力.地下爆炸波作用下基底滑移隔震大跨结构的动力响应分析[J].计算力学学报,2005,22(4):457-464.
    [137]于旭,宰金珉,王志华.考虑SSI效应的铅芯橡胶支座隔震结构体系振动台模型试验[J].南京航空航天大学学报,201 0,42(6):786-792.
    [138]于旭,宰金珉,王志华.铅芯橡胶支座隔震钢框架结构体系振动台模型试验研究[J].世界地震工程,2010,26(3):30-36.
    [139]于旭,宰金珉,庄海洋.SSI效应对隔震结构地震响应的影响分析[J].南京航空航天大学学报,2011,43(6):846-851.
    [140]Constantinou M C. A simplified analysis procedure for base-isolated structures on flexible foundation[J]. Earthquake Engineering & Structural Dynamics,1987,15(8):963-983.
    [141]Constantinou M C, Kneifati M C. Dynamics of soil-base-isolated-structure systems[J]. Journal of Structural Engineering,1988,114(1):211-221.
    [142]Siddiqui F, Constantinou M C. Simplified analysis method for multistorey base-isolated structures on viscoelastic halfspace[J]. Earthquake Engineering & Structural Dynamics, 1989,18(1):63-77.
    [143]Darbre G R, Wolf J P. Criterion of stability and implementation issues of hybrid frequency-time-domain procedure for non-linear dynamic analysis[J]. Earthquake Engineering & Structural Dynamics,1988,16(4):569-581.
    [144]Darbre G R. Seismic analysis of non-linearly base-isolated soil-structure interacting reactor building by way of the hybrid frequency-time-domain procedure[J]. Earthquake Engineering & Structural Dynamics,1990,19(5):725-738.
    [145]Spyrakos C C, Koutromanos I A, Maniatakis C A. Seismic response of base-isolated buildings including soil-structure interaction[J]. Soil Dynamics and Earthquake Engineering, 2009,29(4):658-668.
    [146]李忠献,李延涛,王健.土-结构动力相互作用对基础隔震的影响[J].地震工程与工程振动,2003,23(5):180-186.
    [147]李忠献,刘颖,王健.滑移隔震结构考虑土-结构动力相互作用的动力分析[J].工程抗震,2004,4:1-6.
    [148]曾奔,周福霖,徐忠根.考虑土-结构相互作用的隔震结构楼层反应谱分析(英文)[J].科学技术与工程,2008,08(14):3852-3857.
    [149]杜东升,刘伟庆,王曙光,等.SSI效应对隔震结构的地震响应及损伤影响分析[J].土木工程学报,2012,45(5):18-25.
    [150]刘伟庆,李昌平,王曙光,等.不同土性地基上高层隔震结构振动台试验对比研究[J].振动与冲击,2013,32(16):128-151.
    [151]李昌平,刘伟庆,王曙光,等.土-隔震结构相互作用体系动力特性参数的简化分析方法[J].工程力学,2013,30(7):173-179.
    [152]邓长根,何永超.日本建筑结构隔震减震研究新进展[J].世界地震工程,2002,18(3):168-173.
    [153]杨迪雄,李刚,程耿东.隔震结构的研究概况和主要问题[J].力学进展,2003,33(3):302-312.
    [154]Moon B, Kang G, Kang B, et al. Design and manufacturing of fiber reinforced elastomeric isolator for seismic isolation[J]. Journal of Materials Processing Technology, 2002,130:145-150.
    [155]Moon B, Kang G, Kang B, et al. Design and manufacturing of fiber reinforced elastomeric isolator for seismic isolation[J]. Journal of Materials Processing Technology, 2002,130:145-150.
    [156]Kang B, Kang G, Moon B. Hole and lead plug effect on fiber reinforced elastomeric isolator for seismic isolation[J]. Journal of Materials Processing Technology,2003,140(1):592-597.
    [157]Kelly J M. Analysis of fiber-reinforced elastomeric isolators[J]. Journal of Seismology and Earthquake Engineering,1999,2(1):19-34.
    [158]Mordini A, Strauss A. An innovative earthquake isolation system using fibre reinforced rubber bearings[J]. Engineering Structures,2008,30(10):2739-2751.
    [159]Khanlari S, Ashkezari G D, Kokabi M, et al. Fiber-reinforced nanocomposite seismic isolators:Design and manufacturing[J]. Polymer Composites,2010,31(2):299-306.
    [160]Choi E, Nam T H, Oh J T, et al. An isolation bearing for highway bridges using shape memory alloys[J]. Materials Science and Engineering:A,2006,438:1081-1084.
    [161]Attanasi G, Auricchio F, Fenves G L. Feasibility assessment of an innovative isolation bearing system with shape memory alloys[J]. Journal of Earthquake Engineering, 2009,13(S1):18-39.
    [162]Liao G J, Gong X L, Xuan S H, et al. Development of a real-time tunable stiffness and damping vibration isolator based on magnetorheological elastomer[J]. Journal of Intelligent Material Systems and Structures,2012,23(1):25-33.
    [163]Li Y, Li J, Li W, et al. Development and characterization of a magnetorheological elastomer based adaptive seismic isolator[J]. Smart Materials and Structures,2013,22(3):35005.
    [164]Li Y, Li J, Tian T, et al. A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control[J]. Smart Materials and Structures, 2013,22(9):95020.
    [165]Yang J, Du H, Li W, et al. Experimental study and modeling of a novel magnetorheological elastomer isolator[J]. Smart Materials and Structures,2013,22(11):117001.
    [166]Ismail M, Rodellar J, Ikhouane F. An innovative isolation device for aseismic design[J]. Engineering Structures,2010,32(4):1168-1183.
    [167]Aberg M, Gudmundson P. The usage of standard finite element codes for computation of dispersion relations in materials with periodic microstructure[J]. The Journal of the Acoustical Society of America,1997,102:2007.
    [168]Tsang H H. Seismic isolation by rubber-soil mixtures for developing countries[J]. Earthquake Engineering & Structural Dynamics,2008,37(2):283-303.
    [169]Tsang H H, Lo S H, Xu X, et al. Seismic isolation for low-to-medium-rise buildings using granulated rubber-soil mixtures:numerical study[J]. Earthquake Engineering & Structural Dynamics,2012,41(14):2009-2024.
    [170]尚守平,岁小溪,周志锦,等.橡胶颗粒-砂混合物动剪切模量的试验研究[J].岩土力学,2010,31(2):377-381.
    [171]熊伟,曾庆豪,尚守平,等.新型岩土隔震系统试验研究[J].建筑结构学报,2010,增刊2:39-45.
    [172]Xiong W, Li Y. Seismic isolation using granulated tire-soil mixtures for less-developed regions:experimental validation[J]. Earthquake Engineering & Structural Dynamics, 2013,42(14):2187-2193.
    [173]李忠学.结构仿生学与新型有限元计算理论[M].北京:科学出版社,2009.
    [174]Thomas E L, Gorishnyy T, Maldovan M. Phononics:Colloidal crystals go hypersonic[J]. Nature Materials,2006,5(10):773-774.
    [175]Sun J, Wu T. Guided Surface Acoustic Waves in Phononic Crystal Waveguides:IEEE, Ultrasonics Symposium, Vancouver, Canada,2006[C]. IEEE.673-676.
    [176]Rayleigh L. On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1887,24(147):145-159.
    [177]Born M, Huang K. Dynamical theory of crystal lattices[M]. Clarendon Press Oxford,1954.
    [178]Brillouin L. Wave propagation in periodic structures[M]. New York:Dover Publication Inc., 1946.
    [179]Kunin I A. Elastic media with microstructure. I-One-dimensional models[G]. Berlin: Springer-Verlag,1982.
    [180]Kittel C. Introduction to solid state physics[M]. Wiley New York,1996.
    [181]Mead D M. Wave propagation in continuous periodic structures:research contributions from Southampton,1964-1995[J]. Journal of Sound and Vibration,1996,190(3):495-524.
    [182]Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters,1987,58(20):2059-2062.
    [183]John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters,1987,58(23):2486-2489.
    [184]温熙森.光子/声子晶体理论与技术[M].科学出版社,2006.
    [185]Sigalas M M, Economou E N. Elastic and acoustic wave band structure[J]. Journal of Sound and Vibration,1992,158(2):377-382.
    [186]Kushwaha M S, Halevi P, Dobrzynski L, et al. Acoustic band structure of periodic elastic composites[J]. Physical Review Letters,1993,71(13):2022-2025.
    [187]Liu Z, Zhang X, Mao Y, et al. Locally resonant sonic materials[J]. Science, 2000,289(5485):1734-1736.
    [188]温熙森,温激宏,郁殿龙,等.声子晶体[M].北京:国防工业出版社,2009.
    [189]Mead D J. Vibration response and wave propagation in periodic structures[J]. Journal of Engineering for Industry,1971,93(3):783-792.
    [190]Tassilly E. Propagation of bending waves in a periodic beam[J]. International Journal of Engineering Science,1987,25(1):85-94.
    [191]Xiang H, Shi Z. Analysis of flexural vibration band gaps in periodic beams using differential quadrature method[J]. Computers & Structures,2009,87(23):1559-1566.
    [192]Xiang H, Shi Z. Vibration attenuation in periodic composite Timoshenko beams on Pasternak foundation[J]. Structural Engineering and Mechanics,2011,40(3):373-392.
    [193]Yu D, Wen J, Shen H, et al. Propagation of flexural wave in periodic beam on elastic foundations[J]. Physics Letters A,2012,376(4):626-630.
    [194]Mead D J, Mallik A K. An approximate theory for the sound radiated from a periodic line-supported plate[J]. Journal of Sound and Vibration,1978,61 (3):315-326.
    [195]Mead D J, Parthan S. Free wave propagation in two-dimensional periodic plates[J]. Journal of Sound and Vibration,1979,64(3):325-348.
    [196]Sigalas M M, Economou E N. Elastic waves in plates with periodically placed inclusions[J]. Journal of Applied Physics,1994,75(6):2845-2850.
    [197]Wu T, Huang Z, Tsai T, et al. Evidence of complete band gap and resonances in a plate with periodic stubbed surface[J]. Applied Physics Letters,2008,93(11):111902.
    [198]Wu T, Wu T, Hsu J. Waveguiding and frequency selection of Lamb waves in a plate with a periodic stubbed surface[J]. Physical Review B,2009,79(10):104306.
    [199]Kushwaha M S, Halevi P, Martinez G, et al. Theory of acoustic band structure of periodic elastic composites[J]. Physical Review B,1994,49(4):2313-2322.
    [200]Sigalas M M, Economou E N. Attenuation of multiple-scattered sound[J]. EPL (Europhysics Letters),1996,36(4):241-246.
    [201]Tanaka Y, Tomoyasu Y, Tamura S. Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large acoustic mismatch[J]. Physical Review B, 2000,62(11):7387-7392.
    [202]Kafesaki M, Sigalas M M, Economou E N. Elastic wave band gaps in 3-D periodic polymer matrix composites[J]. Solid State Communications,1995,96(5):285-289.
    [203]Kafesaki M, Economou E N. Multiple-scattering theory for three-dimensional periodic acoustic composites[J]. Physical Review B,1999,60(17):11993-12001.
    [204]Goffaux C, Sanchez-Dehesa J. Two-dimensional phononic crystals studied using a variational method:Application to lattices of locally resonant materials[J]. Physical Review B,2003,67(14):144301.
    [205]Goffaux C, Sanchez-Dehesa J, Yeyati A L, et al. Evidence of fano-like interference phenomena in locally resonant materials[J]. Physical Review Letters,2002,88(22):225502.
    [206]Goffaux C, Sanchez-Dehesa J, Lambin P. Comparison of the sound attenuation efficiency of locally resonant materials and elastic band-gap structures[J]. Physical Review B, 2004,70(18):184302.
    [207]Hirsekorn M, Delsanto P P, Batra N K, et al. Modelling and simulation of acoustic wave propagation in locally resonant sonic materials[J]. Ultrasonics,2004,42(1):231-235.
    [208]Hirsekorn M, Delsanto P P, Leung A C, et al. Elastic wave propagation in locally resonant sonic material:Comparison between local interaction simulation approach and modal analysis[J]. Journal of Applied Physics,2006,99(12):124912.
    [209]Wang G, Yu D, Wen J, et al. One-dimensional phononic crystals with locally resonant structures[J]. Physics Letters A,2004,327(5):512-521.
    [210]Wang G, Wen X, Wen J, et al. Two-dimensional locally resonant phononic crystals with binary structures[J]. Physical Review Letters,2004,93(15):154302.
    [211]Li Y, Hou Z. Surface acoustic waves in a two-dimensional phononic crystal slab with locally resonant units[J]. Solid State Communications,2013,173:19-23.
    [212]Ruzzene M, Baz A M. Attenuation and localization of wave propagation in periodic rods using shape memory inserts:SPIE's 7th Annual International Symposium on Smart Structures and Materials,2000[C]. International Society for Optics and Photonics.389-407.
    [213]Ruzzene M, Baz A. Control of wave propagation in periodic composite rods using shape memory inserts[J]. Journal of Vibration and Acoustics,2000,122(2):151-159.
    [214]Chen T, Ruzzene M, Baz A. Control of wave propagation in composite rods using shape memory inserts:theory and experiments[J]. Journal of Vibration and Control, 2000,6(7):1065-1081.
    [215]Thorp O, Ruzzene M, Baz A. Attenuation and localization of wave propagation in rods with periodic shunted piezoelectric patches[J]. Smart Materials and Structures, 2001,10(5):979-989.
    [216]Laude V, Wilm M, Benchabane S, et al. Full band gap for surface acoustic waves in a piezoelectric phononic crystal[J]. Physical Review E,2005,71(3):36607.
    [217]Wu T, Hsu Z, Huang Z. Band gaps and the electromechanical coupling coefficient of a surface acoustic wave in a two-dimensional piezoelectric phononic crystal[J]. Physical Review B,2005,71(6):64303.
    [218]Hsu J, Wu T. Calculations of Lamb Wave Band Gaps and Dispersions for Piezoelectric Phononic Plates Using Mindlin's Theory-Based Plane Wave Expansion Method[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2008,55(2):431-441.
    [219]Pang Y, Liu J, Wang Y, et al. Wave propagation in piezoelectric/piezomagnetic layered periodic composites[J]. Acta Mechanica Solida Sinica,2008,21(6):483-490.
    [220]Pang Y, Wang Y, Liu J, et al. A study of the band structures of elastic wave propagating in piezoelectric/piezomagnetic layered periodic structures[J]. Smart Materials and Structures, 2010,19(5):55012.
    [221]Wang Y, Li F, Huang W, et al. Wave band gaps in two-dimensional piezoelectric/piezomagnetic phononic crystals[J]. International Journal of Solids and Structures,2008,45(14):4203-4210.
    [222]Wang Y, Li F, Kishimoto K, et al. Elastic wave band gaps in magnetoelectroelastic phononic crystals[J]. Wave Motion,2009,46(1):47-56.
    [223]Wang Y, Li F, Kishimoto K, et al. Wave band gaps in three-dimensional periodic piezoelectric structures[J]. Mechanics Research Communications,2009,36(4):461-468.
    [224]Wang Y, Li F, Kishimoto K, et al. Band gaps of elastic waves in three-dimensional piezoelectric phononic crystals with initial stress[J]. European Journal of Mechanics-A/Solids,2010,29(2):182-189.
    [225]Rodriguez-Ramos R, Calas H, Otero J A, et al. Shear horizontal wave in multilayered piezoelectric structures:Effect of frequency, incidence angle and constructive parameters[J]. International Journal of Solids and Structures,2011,48:2941-2947.
    [226]Martinezsala R, Sancho J, Sanchez J V, et al. Sound-attenuation by sculpture[J]. Nature, 1995,378(6554):241.
    [227]Martinez-Sala R, Rubio C, Garcia-Raffi L M, et al. Control of noise by trees arranged like sonic crystals[J]. Journal of Sound and Vibration,2006,291(1):100-106.
    [228]Sanchez-Perez J V, Caballero D, Martinez-Sala R, et al. Sound attenuation by a two-dimensional array of rigid cylinders[J]. Physical Review Letters, 1998,80(24):5325-5328.
    [229]Meseguer F, Holgado M, Caballero D, et al. Rayleigh-wave attenuation by a semi-infinite two-dimensional elastic-band-gap crystal[J]. Physical Review B,1999,59(19):12169-12172.
    [230]Vasseur J O, Deymier P A, Frantziskonis G, et al. Experimental evidence for the existence of absolute acoustic band gaps in two-dimensional periodic composite media[J]. Journal of Physics:Condensed Matter,1998,10(27):6051-6064.
    [231]Vasseur J O, Deymier P A, Chenni B, et al. Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals[J]. Physical Review Letters,2001,86(14):3012-3015.
    [232]Benchabane S, Khelif A, Rauch J, et al. Evidence for complete surface wave band gap in a piezoelectric phononic crystal[J]. Physical Review E,2006,73(6):65601.
    [233]Romero-Garcia V, Sanchez-Perez J V, Castineira-Ibanez S, et al. Evidences of evanescent Bloch waves in phononic crystals[J]. Applied Physics Letters,2010,96(12):124102.
    [234]Ho K M, Cheng C K, Yang Z, et al. Broadband locally resonant sonic shields[J]. Applied Physics Letters,2003,83(26):5566-5568.
    [235]Yang Z, Dai H M, Chan N H, et al. Acoustic metamaterial panels for sound attenuation in the 50-1000 Hz regime[J]. Applied Physics Letters,2010,96(4):41906.
    [236]Goffaux C, Vigneron J P. Theoretical study of a tunable phononic band gap system[J]. Physical Review B,2001,64(7):75118.
    [237]Wen J, Yu D, Wang G, et al. The directional propagation characteristics of elastic wave in two-dimensional thin plate phononic crystals[J]. Physics Letters A,2007,364(3):323-328.
    [238]Yan Z, Wang Y. Wavelet-based method for calculating elastic band gaps of two-dimensional phononic crystals[J]. Physical Review B,2006,74(22):224303.
    [239]Yan Z, Wang Y. Calculation of band structures for surface waves in two-dimensional phononic crystals with a wavelet-based method[J]. Physical Review B,2008,78(9):94306.
    [240]Chen A, Wang Y. Study on band gaps of elastic waves propagating in one-dimensional disordered phononic crystals[J]. Physica B:Condensed Matter,2007,392(1):369-378.
    [241]Jensen J S, Pedersen N L. On maximal eigenfrequency separation in two-material structures: the ID and 2D scalar cases[J]. Journal of Sound and Vibration,2006,289(4):967-986.
    [242]El-Sabbagh A, Akl W, Baz A. Topology optimization of periodic Mindlin plates[J]. Finite Elements in Analysis and Design,2008,44(8):439-449.
    [243]Hussein M I, Frazier M J. Band structure of phononic crystals with general damping[J]. Journal of Applied Physics,2010,108(9):93506.
    [244]Laude V, Achaoui Y, Benchabane S, et al. Evanescent Bloch waves and the complex band structure of phononic crystals[J]. Physical Review B,2009,80(9):92301.
    [245]吴代鸣.固体物理学基础[M].北京:高等教育出版社,2007.
    [246]黄昆.固体物理学[M].北京:人民教育出版社,1979.
    [247]廖振鹏.工程波动理论导论[M].第二版.北京:科学出版社,2003.
    [248]向宏军,程志宝,刘心男ANSYS在周期结构禁带分析及能带图绘制中的应用[z].2013.
    [249]Bert C W, Malik M. Differential quadrature method in computational mechanics:a review[J]. Applied Mechanics Reviews,1996,49(1):1-28.
    [250]Shu C, Richards B E. Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations[J]. International Journal for Numerical Methods in Fluids,1992,15(7):791-798.
    [251]肖国华.微分求积方法在厚板振动分析中的应用[D].北京交通大学结构工程,2011.
    [252]Andrianov I V, Awrejcewicz J, Danishevs Kyy V V, et al. Wave propagation in periodic composites:Higher-order asymptotic analysis versus plane-wave expansions method[J]. Journal of Computational and Nonlinear Dynamics,2011,6(1):11015.
    [253]Liu Z, Chan C T, Sheng P, et al. Elastic wave scattering by periodic structures of spherical objects:Theory and experiment[J]. Physical Review B,2000,62(4):2446-2457.
    [254]Cao Y, Hou Z, Liu Y. Convergence problem of plane-wave expansion method for phononic crystals[J]. Physics Letters A,2004,327(2):247-253.
    [255]Sozuer H S, Haus J W, Inguva R. Photonic bands:Convergence problems with the plane-wave method[J]. Physical Review B,1992,45(24):13962-13972.
    [256]Li L, Haggans C W. Convergence of the coupled-wave method for metallic lamellar diffraction gratings[J]. JOSA A,1993,10(6):1184-1189.
    [257]Lalanne P, Morris G M. Highly improved convergence of the coupled-wave method for TM polarization[J]. JOSA A,1996,13(4):779-784.
    [258]Li L. Use of Fourier series in the analysis of discontinuous periodic structures[J]. JOSA A, 1996,13(9):1870-1876.
    [259]Li L. Mathematical reflections on the Fourier modal method in grating theory[M]//Mathematical modeling in optical science.2001:111-139.
    [260]Shen L, He S. Analysis for the convergence problem of the plane-wave expansion method for photonic crystals[J]. JOSA A,2002,19(5):1021-1024.
    [261]同济大学,数学教研室.高等数学(下册)[M].第四版.高等教育出版社,2004.293-314.
    [262]Adcock B. Gibbs phenomenon and its removal for a class of orthogonal expansions[J]. BIT Numerical Mathematics,2011,51(1):7-41.
    [263]Babua I, Osborn J E. Numerical treatment of eigenvalue problems for differential equations with discontinuous coefficients [J]. Mathematics Of Computation, 1978,32(144):991-1023.
    [264]Gottlieb D, Shu C. On the Gibbs phenomenon and its resolution[J]. SIAM Review, 1997,39(4):644-668.
    [265]Zygmund A. Trigonometric series[M]. Cambridge university press,2002.
    [266]温激宏.声子晶体振动带隙及减振特性研究[D].国防科技大学,2005.
    [267]Jensen J S. Phononic band gaps and vibrations in one-and two-dimensional mass-spring structures[J]. Journal of Sound and Vibration,2003,266(5):1053-1078.
    [268]Sun C T, Achenbach J D, Herrmann G. Continuum theory for a laminated medium[J]. Journal of Applied Mechanics,1968,35(3):467-475.
    [269]Lee E H, Yang W H. On waves in composite materials with periodic structure[J]. Siam Journal on Applied Mathematics,1973,25(3):492-499.
    [270]Delph T J, Herrmann G, Kaul R K. Harmonic wave-propagation in a periodically layered, infinite elastic body:antiplane strain[J]. Journal of Applied Mechanics-Transactions of The ASME,1978,45(2):343-349.
    [271]Delph T J, Herrmann G, Kaul R K. Harmonic wave-propagation in a periodically layered, infinite leastic body-plane-strain, analycial results[J]. Journal of Applied Mechanics-Transactions Of The ASME,1979,46(1):113-119.
    [272]Delph T J, Herrmann G, Kaul R K. Harmonic wave-propagation in a periodically layered, infinite elastic body-plane-strain, numerical results[J]. Journal of Applied Mechanics-Transactions of The ASME,1980,47(3):531-537.
    [273]Camley R E, Djafari-Rouhani B, Dobrzynski L, et al. Transverse elastic waves in periodically layered infinite and semi-infinite media[J]. Physical Review B, 1983,27(12):7318-7329.
    [274]Delph T J, Herrmann G. An effective dispersion theory for layered composites[J]. Journal Of Applied Mechanics-Transactions of The ASME,1983,50:157-164.
    [275]Zhao D, Wang W, Liu Z, et al. Peculiar transmission property of acoustic waves in a one-dimensional layered phononic crystal[J]. Physica B:Condensed Matter, 2007,390(1):159-166.
    [276]王元明.数学物理方程与特殊函数[M].第三版.北京:高等教育出版社,2004.
    [277]杜修力.工程波动理论与方法[M].北京:科学出版社,2009.
    [278]PEER. Peer Ground Motion Database[EB/OL]. http://peer.berkeley.edu/peer_ ground_motion database.
    [279]Sackman J L, Kelly J M, Javid A E. A layered notch filter for high-frequency dynamic isolation[J]. Journal of Pressure Vessel Technology,1989,111(1):17-24.
    [280]李慧,党育,杜永峰.基础隔震结构设计及施工指南[G].中国水利出版社,2007.
    [281]Kushwaha M S, Halevi P. Band-gap engineering in periodic elastic composites [J]. Applied Physics Letters,1994,64(9):1085-1087.
    [282]Sigalas M, Economou E N. Band structure of elastic waves in two dimensional systems[J]. Solid State Communications,1993,86(3):141-143.
    [283]Sigalas M M, Economou E N. Elastic and acoustic wave band structure[J]. Journal of Sound Vibration,1992,158:377-382.
    [284]Redondo J, Pico R, Roig B, et al. Time domain simulation of sound diffusers using finite-difference schemes[J]. Acta Acustica United with Acustica,2007,93(4):611-622.
    [285]Redondo J, Sanchez-Morcillo V, Pic6 R. The potential for phononic sound diffusers (PSD)[J]. Building Acoustics,2011,18(1):37-46.
    [286]Li Z J, Chen H S. The development trend of advanced building materials:Procedding of the First International Forum on Advances in Structural Engineering-2006:Emerging Structural Materials and Systems, Beijing.China,2006[C]. China Architecture and Building Press. 120-206.
    [287]Jia G, Shi Z. A new seismic isolation system and its feasibility study[J]. Earthquake Engineering and Engineering Vibration,2010,9(1):75-82.
    [288]Jones R M. Mechanics of composite materials[M]. Taylor & Francis London,1975.
    [289]American-Concrete-Institute. Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary[S]. American Concrete Institute,2008.
    [290]Kitada Y, Hirotani T, Iguchi M. Models test on dynamic structure-structure interaction of nuclear power plant buildings[J]. Nuclear Engineering And Design,1999,192(2):205-216.
    [291]Choi S, Park S, Hyun C, et al. In-operation modal analysis of containments using ambient vibration[J]. Nuclear Engineering and Design,2013,260:16-29.
    [292]Choi S, Park S, Hyun C, et al. Modal parameter identification of a containment using ambient vibration measurements[J]. Nuclear Engineering And Design,2010,240(3):453-460.
    [293]Efunda. Steel S Section I-Beams, http://www.efunda. com/design standards/beams/ Rolled Steel Beams RltsS.cfm[EB/OL].
    [294]NEES. NEES@UTexase, http://nees.utexas.edu/Home.shtml[EB/OL].
    [295]Larabi H, Pennec Y, Djafari-Rouhani B, et al. Multicoaxial cylindrical inclusions in locally resonant phononic crystals[J]. Physical Review E,2007,75(6):66601.
    [296]Larabi H, Pennec Y, Djafari-Rouhani B, et al. Locally resonant phononic crystals with multilayers cylindrical inclusions:Journal of Physics:Conference Series,2007[C]. IOP Publishing.12112.
    [297]Yang W, Chen L. The tunable acoustic band gaps of two-dimensional phononic crystals with a dielectric elastomer cylindrical actuator[J]. Smart Materials and Structures, 2008,17(l):15011.
    [298]Hsieh P, Wu T, Sun J. Three-dimensional phononic band gap calculations using the FDTD method and a PC cluster system[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2006,53(1):148-158.
    [299]Shi Z, Huang J. Feasibility of reducing three-dimensional wave energy by introducing periodic foundations[J]. Soil Dynamics and Earthquake Engineering,2013,50:204-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700