用户名: 密码: 验证码:
应变硬化水泥基复合材料损伤失效机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应变硬化水泥基复合材料(Strain Hardening Cement—based Composite,简称SHCC)在拉伸荷载作用下具有应变硬化特性和多缝开裂特性,其极限拉伸应变可达到4%以上。因此SHCC在控制结构裂缝以及提高结构抗震性能等方面有广阔的应用前景。目前,SHCC的设计理论、基本力学性能、耐久性能等方面的成果较多。但大多数研究是针对未收损伤构件进行的,这与实际工程有一定的差别。所以,本文针对上述问题研究SHCC的开裂损伤机理以及开裂后的耐久性,主要结论如下:
     (1)采用数字图像处理的方法研究了拉伸荷载作用下SHCC试件成型面和底面的裂缝开展过程,并用数理统计和概率的方法对其进行分析。发现试件底面的裂缝密度低于试件成型面,其平均裂缝宽度大于成型面,裂缝密度、平均裂缝宽度等裂缝宽度统计参数均与拉伸应变呈三次多项式关系,并且通过分析发现拉伸荷载作用下SHCC的裂缝宽度分布可以用Gamma分布进行描述。在此基础上进行毛细吸水试验和氯离子侵蚀试验,研究不同拉伸应变下SHCC的耐久性,同时研究了硅烷浸渍防水处理对开裂SHCC的防护效果。发现随着拉伸应变的增加,SHCC试件的吸水速度增快,吸水量增大,毛细吸收系数随拉伸应变线性增加,氯离子侵入深度和侵入量增大。而硅烷防水处理可以有效地延缓开裂SHCC中水分和氯离子的侵入。最后基于上述研究结果给出了裂缝特征与SHCC渗透性的关系,用于开裂SHCC的耐久性评价。
     (2)应用中子成像技术,突破SHCC的非透明局限,实现了对SHCC材料在未开裂以及多缝开裂情况下水分侵入过程的可视化成像追踪和定量计算。研究发现:SHCC在无裂缝时,水分侵入量很少;但当多缝开裂且裂缝宽度较大时,水分迅速沿裂缝侵入试件内部,并为裂缝两侧基体提供水源,甚至通过纤维与水泥基体之间的微孔道大量渗透而侵入整个开裂区域。但采用内掺硅烷乳液方法制备的整体防水SHCC在开裂后表现出良好的耐久性。
     (3)从引起干缩的本质原因——湿度扩散着手,针对应变硬化水泥基材料湿度扩散和干燥收缩提出了一种湿度扩散系数和干缩应力的反演分析方法。在迭代计算过程中引入了遗传算法进行优化。由反演分析法计算得到的SHCC及其基体的失水曲线和收缩曲线与试验曲线基本吻合。表明文中采用的反演算法反演值可信度较好,计算精度较高。同时也表明反演算法具有良好的适应性,可达到多参数反演分析的目的。从试验结果来看:随着环境湿度的减小,SHCC及其基体的失水率和干缩率均增大;所有试件前期失水速度和干缩速度快,后期逐渐减小;SHCC的气态水湿度扩散系数D,小于其基体的D,。随着干燥龄期的增长,试件内部靠近试件表面处由于湿度梯度的作用逐步受拉,甚至达到其抗拉强度,从而引起开裂;当干缩应力达到材料的抗拉强度时,由于该种材料特有的应变硬化特性,其应力并没有软化降低,而是保持该抗拉强度值;随着干燥龄期的增长,试件的干燥前锋逐步向试件内部推进;当试件某位置达到其抗拉强度时,其内部的应力先由抗拉逐步降低并逐步过渡到受压,呈梯度分布。非常直观的呈现了SHCC在干燥收缩过程中的损伤全过程。
     (4)通过快速冻融试验,研究了不同冻融循环次数下SHCC的相对动弹性模量变化、质量损失率、SHCC棱柱体弯曲韧性、毛细吸水特性、抗氯离子侵蚀性能、碳化性能以及SHCC与钢筋的粘结滑移性能。SHCC经300次冻融循环后相对动弹性模量损失仅4%,质量损失不到2%。纤维的掺入有效的提高了SHCC的抗冻性。随着冻融循环次数的增加,由于PVA纤维与基体界面之间粘结强度的降低,PVA纤维在拉伸作用下的拔出数量增多,而拔断数量减少,从而使得SHCC棱柱体试件的弯曲抗拉强度有一定幅度的下降,但试件跨中挠度增大。冻融前后SHCC试件的毛细吸水试验、抗氯离子侵蚀试验以及碳化试验均表明,冻融作用对其耐久性能影响不大。随着冻融循环次数的增加,钢筋与普通混凝土极限粘结强度近似线性降低。试件发生劈裂破坏。而SHCC粘结试件随着冻融循环次数的增加,钢筋与SHCC极限粘结强度逐渐下降,但降低幅度不大。试件发生拔出破坏。
Strain Hardening Cement—based Composite(SHCC) is featured with its tensile strain-hardening characteristic and multi-crack characteristic. It ultimate tensile strain can reach4%.So It can be applied into crack controlling structure, enhancing the seismic resistance of structures and so on. There are a lot of papers on design theory, basic mechanical performance and durability performance of SHCC up till now. But most of these results are based the undamaged SHCC. This is different for real saturation of SHCC in practice. Based on the above problem, this thesis will focus on the cracking mechanism and its influence on durability of SHCC. The detailed contend of this thesis are as follows:
     (1) Digital image process was used to investigate the crack pattern of SHCC both on finished surface and formed surface under direct tension load. Then statistical and potential methods were used to deal with the crack width distribution. Results indicate that the crack density of formed surface is lower than finished surface. But the average crack width of formed surface is bigger than finished surface. And the crack width parameters such as crack density, average crack width follows polynomial equation with the order of3. Also it was established that the Gamma distribution is the most accurate statistical distribution to describe the distribution of crack widths of SHCC at different tensile strains. Based on this, capillary absorption of and chloride penetration into SHCC under different strain level were performed. At the same time silane impregnation was used to protect the cracked SHCC. From the results, we can get that with the increase of strain level, water was absorbed quicker, more water was absorbed and the coefficient of capillary absorption will increase linearly with strain level. And for chloride penetration, the depth and amount of chloride increased with strain level too. But silane impregnation can reduce the penetration of water and chloride into SHCC. Finally, three evaluation methods of the influence of crack pattern on permeability were performed. This can be used to evaluate the durability of cracked SHCC.
     (2) Neutron radiography has been successfully applied to visualize the process of water penetration into cracked SHCC and to quantify the corresponding time-dependent moisture distributions in cracked SHCC. Results indicate that in un-cracked SHCC, less water can be found. But for cracked SHCC especially for the specimens with big crack, water will penetration into the specimens along the crack immediately and then water migrated further into the surrounding matrix from water filled cracks. Later water moved into the matrix adjacent to the cracks which was mechanically damaged by direct tension. But for integral water repellent SHCC, little water can penetrate into it.
     (3) Based on moisture diffusion, a method of inverse analysis has been proposed to calculate the moisture diffusion coefficient and shrinkage stress of SHCC. Evolutionary algorithm was selected during optimization process. A quite good fit of analysis results to the experimental data could be achieved. This indicates that the accuracy of the calculated results by the proposed inverse analysis method is very high. This method can solve the feedback problem of milti-parameter. From the experimental results, we can get that with the decrease of RH, the weight loss and shrinkage rate of SHCC and its matrix will increase. And at the beginning of exposure time, all of the specimens will loss water quick and also the speed of shrinkage is quick. But with the increase of exposure time, the speed of water losing and shrinkage will go down. At the same time, the vapor diffusion coefficient of SHCC is smaller than its matrix. Because of the moisture gradient, the surface layer of SHCC was tensioned. And the tension stress can reach the ultimate tension stress, and then crack will happen. But strain softening will not happen, the stress will remain the sameo With the increase of drying time, the drying front kept moving into deeper layer step by step. So from the surface layer to dapper layer of SHCC, the stress gradient exist, it will change from tensile stress to compressive stress. From the stress distribution, the whole deterioration process is very clear.
     (4) Accelerated freeze-thaw test on SHCC has been conducted, and change of relative dynamic elastic modulus, mass loss, bend property, water capillary absorption, chloride penetration, carbonation and bond behavior are gained. After300freeze-thaw cycles, the reduction of dynamic elastic modulus is just4%and the weight loss is just2%. So the adding of PVA fiber increases the frost property. With the increase of freeze-thaw cycles, the bond strength between PVA fiber and matrix will decrease, then more fiber will be pulled out and less fiber will be destroyed under tensile stress. In this way, the bending strength will go down for the prism of SHCC under4-point bending, but the deformation of the prism will increase. From the results of water capillary absorption test, chloride penetration test and carbonation test of SHCC before and after frost damage, the influence of frost damage is very little. From the results of pull out test, the bond strength between steel bar and normal concrete decreases linear with increase of freeze-thaw cycles. And all of concrete specimens fail in a split way. But for SHCC, the bond strength between steel bar and SHCC decreases with the increase of freeze-thaw cycles a little. Pull-out failure happened for all SHCC specimens.
引文
[1]P. K. Metha.Durability of concrete-fifty years of progress:durability of concrete [C]. Proceeding of 2ndInternational Conference on Concrete Durability,1991,126(1):1-31.
    [2]吴中伟.纤维增强—水泥基材料的未来.混凝土与水泥制品[J].1999,1:5-6.
    [3]沈荣熹,崔琦,李清海.新型纤维增强水泥基复合材料[M].北京:中国建材工业出版社,2004.
    [4]V. C. Li, C. K. Y. Leung, Steady state and multiple cracking of short random fiber composites [J]. Journal of Engineering Mechanics,1992,188(11):2246-2264.
    [5]徐世娘,李贺东.超高韧性水泥基复合材料研究进展及其工程应用[J].土木工程学报,2008,41(6):45-60.
    [6]V. C. Li. Reflections on the Research and Development of Engineered Cementitious Composites (ECC) [C]. Proceedings of the JCI international workshop on ductile fiber Reinforced Cementitious Composites,2002,91-98.
    [7]V. C. Li. On Engineered Cementitious Composites:a Review of the Material and its Applications [J]. Journal of Advanced Concrete Technology,2003,1(3):215-230.
    [8]张君,公成旭,居贤春.高韧性低收缩纤维增强水泥基复合材料特性及应用[J].水利学报,2011,42(12),1452-1461.
    [9]J. Zhang and V, C. Li. Effect of inclination angle on fiber rupture load in fiber reinforced cementitious composites [J]. Composites Science and Technology,2002,62(6):775-781.
    [10]M. H. Lepech, V. C. Li. Water Permeability of Engineered Cementitious Composites [J]. Cement and Concrete Composites,2009,31,744-753.
    [11]M. Sahmaran, V. C. Li. Durability Properties of Micro-Cracked ECC Containing High Volumes Fly Ash [J]. Cement and Concrete Research,2009,39,1033-1043.
    [12]张鹏,F. H. Wittmann,赵铁军,E. Lehmann,田砾.高韧性PVA-SHCC多缝开裂后吸水特性研究[J].建筑材料学报,2011,14(3),324-328.
    [13]F. H. Wittmann, T. Zhao, L. Tian, F. Wang and L. Wang. Aspects of Durability of Strain Hardening Cement-based Composites under Imposed Strain [C]. Proceedings of the 1st RILEM International Conference on Strain Hardening Cementitious Composites.2009, 173-179.
    [14]M. Sahmaran, V. C. Li. Influence of Micro-cracking on Water Absorption and Sorptivity of Engineered Cementitious Composites [J]. Materials and Structures,2009,42(5),593-603.
    [15]A. Kamal, M. Kunieda, N. S. Ueda and H. Nakamura. Evaluation of crack opening performance of a repair material with strain hardening behavior [J]. Cement and Concrete Composites,2008,30,863-871.
    [16]M. Li and V. C. Li. Cracking and Healing of Engineered Cementitious Composites under Chloride Environment [J]. ACI Materials Journal,2011,108(3),333-340.
    [17]W. P. Boshoff, C. J. Adendorff. Modeling SHCC cracking for durability [C]. Fracture and Damage of Advanced Fiber-Reinforced Cement-Based Materials,2010,195-202.
    [18]Peng-gang Wang, Folker H. Wittmann, Tie-jun Zhao and Wei-lin Huang. Evaluation of crack patterns on SHCC as function of imposed strain [C]. Proceedings of the 2ed RILEM International Conference on Strain Hardening Cementitious Composites,2011,217-224.
    [19]C. Wagner, N. Bretschneider and V. Slovik, Evaluation of crack patterns in strain hardening cement-based composites (SHCC) with respect to structural durability [J]. Journal of Restoration of Buildings and Monuments,2011,17,221-236.
    [20]J. Zhang and V. C. Li. Influences of Fibers on the Drying Shrinkage of Fiber Reinforced Cementitious Composites [J]. ASCE Journal of Engineering Mechanics,2001,127(1):37-44.
    [21]Y. M. Lim, H. C. Wu and V. C. Li. Development of flexural composite properties and drying shrinkage behavior of high performance fiber reinforced cementitious composites at early ages [J]. ACI Materials Journal,1999,96(1):20-26.
    [22]V. C. Li. H. Horii, P. Kabele etal. Repair and Retrofit with Engineered Cementitiouse Composites [J]. Engineering Fracture Mechanics,2000,65:317-334.
    [23]公成旭.高韧性低收缩纤维增强水泥基复合材料研发[D].硕士学位论文,北京:清华大学,2008.
    [24]M. Sahmaran, M. Lachemi, K. M. A. Hossain and V. C. Li, Internal Curing of Engineered Cementitious Composites for Prevention of Early Age Autogenous Shrinkage Cracking [J]. Cement and Concrete Research,2009,39(10):893-901.
    [25]刘志凤.超高韧性水泥基复合材料干燥收缩及约束收缩下抗裂性能研究[D].硕士论文,大连:大连理工大学,2009.
    [26]刘有志,.张国新,朱岳明.基于细观损伤模型的混凝土湿度及干缩特性研究[J].工程力学,2008(8),:204-208.
    [27]G. Hedenblad. Moisture permeability of mature concrete, cement mortar and cement past [R]. Report TVBM-1014, IUND Institute of Technology, Lund,1993.
    [28]Z. P. Bazant. Mathematical models for creep and shrinkage of concrete [C]. Proceedings of International Conference on Creep and Shrinkage in Concrete Structure.1982,163-226.
    [29]Z. P. Bazant., J. K. Kim. Consequences of diffusion theory for shrinkage of concrete [J]. Materials and Structures,1991,24:232-326.
    [30]Z. P. Bazant and Y. Xi. Drying creep of concrete:constitutive model and experiments separating its mechanics [J]. Materials and structures,1994,27:3-14.
    [31]Y. Xi. A model for moisture capacities of composite materials Part I:formulation [J]. Computational Materials Science,1995,4:65-77
    [32]B. Villmann, V. Slowik and A. Michel. Determination of the diffusion coefficient by inverse analysis of drying experiments [C]. Proceedings of 5th International Essen Workshop: Transport in Concrete:Nano-to Macrostructure.2007:43-50
    [33]B. Villmann, V. Slowik. Infinitesimal shrinkage as determined by inverse analysis [C]. Proceedings of ASMES International Workshop,2011,231-252
    [34]虞维平.含湿多空介质热湿迁移特性研究[D].博士学位论文,北京:清华大学,1987.
    [35]牛焱洲,涂传林.混凝土浇筑块的湿度场与干缩应力[J].水利发电学报,1991,2:87-95.
    [36]王同生.混凝土结构的随机温度应力[J].水利学报,1985,1:23-32.
    [37]刘有志.水工混凝土温控和湿控防裂方法研究[D].博士学位论文,南京:河海大学,2006
    [38]Y. Yuan and Z. L. Wan. Prediction of cracking within early-age concrete due to thermal, drying and creep behavior [J]. Cement and Concrete Research,2002,32:1053-1059.
    [39]M. B. Weimann and V. C. Li. Hygral Behavior of Engineered Cementitious Composites (ECC) [J]. Restoration of Buildings and Monuments,2003,9(5):513-534.
    [40]余红发.盐湖地区高性能混凝土耐久性、机理与使用寿命预测方法[D].博士学位论文,南京:东南大学,2004.
    [41]K. H. Khayat, A. Tagnit-Hamou, N. Petrov. Performance of concrete wharves constructed between 1901 and 1928 at the Port of Montre'al [J]. Cement and Concrete Research,2005, 35(2):226-232.
    [42]T. C. Powers. A working hypothesis for further studies of frost resistance of concrete [J]. ACI Materials Journal,1945,41:245-272.
    [43]T. C. Powers, R. A. Helmuth. Theory of volume change in hardened Portland cement paste during freezing [C]. Proceedings of Highway Research Board,1953:285-297.
    [44]G. G. Livan. Plase transitions of adsorbates Ⅲ:Heat effects and dimensional changes in nonequilibrium temperature cycles [J]. Colloid and Interface Science,1972,38:75-83.
    [45]G. G. Livan. Plase transitions of adsorbates IV:Mechanism of frost action in hardened cement paste [J]. Colloid and Interface Science,1972,55,38-42.
    [46]G. G. Livan. Plase transitions of adsorbates V:Aqueous sodium chloride solutions adsorbed of porous silica glass [J]. Colloid and Interface Science,1973,45:154-169.
    [47]G. Fagerlund. The international cooperative test of the critical degree of saturation method of assessing the freeze-thaw resistance of concrete [J]. Cement and Concrete Research,1977,4, 211-223.
    [48]M. J. Setzer. Micro-Ice-Lens formation in porous solid [J]. Colloid and Interface Science, 2001,201:193-201.
    [49]M. Lepech, V. C. LI. Durabilityand long term performance of Engineered Cementitious Composites [C]. Proceedings of Internal RILEM workshop on HPFRCC in structural applications,2006:165-174.
    [50]徐世娘,蔡新华,李贺东.超高韧性水泥基复合材料抗冻耐久性能试验研究[J].工程力 学,2009,42(9):42-46.
    [51]蔡新华.超高韧性水泥基复合材料耐久性能试验研究[D].博士学位论文,大连,大连理工大学,2009.
    [52]M. Sahmaran and V. C. Li. De-icing Salt Scaling Resistance of Mechanically Loaded Engineered Cementitious Composites [J]. Journal of Cement and Concrete Research,2007,37, 1035-1046.
    [53]刘曙光,王志伟,闫长旺,张菊,闫敏.PVA纤维水泥基复合材料盐冻损伤分析及寿命预测[J].混凝土与水泥制品,2012,11,46-48..
    [54]M. Sahmaran, M. Lachemi and Li V. C. Assessing the durability of Engineered Cementitious Composites under freezing and thawing cycles[J]. Journal of ASTM International,2009,6(7): 1-13.
    [55]朱方之.冻融循环对混凝土耐久性及持载下钢筋混凝土粘结性能影响[D].博士学位论文,西安,西安建筑科技大学,2013.
    [56]徐有邻.变形钢筋-混凝土粘结锚固性能的试验研究[D].博士学位论文,北京:清华大学,1990.
    [57]张伟平,张誉.绣胀开裂后钢筋混凝土粘结滑移本构关系研究[J].土木工程学报,2011,34(5):40-44.
    [58]赵羽习,金伟良.钢筋与混凝土粘结本构关系的试验研究[J].建筑结构学报,2002,23(1):32-37.
    [59]M. M. Saeed. H. Jules. Study of bond stress-slip relationship in reinforced concrete [J]. ACI Matrial Journal,1979,76(1):19-29.
    [60]E. L. Kemp et al. Effect of rust and scale on the bond characteristics of deformed reinforcing bars [J]. ACI Matrial Journal,1968,65(9):743-758.
    [61]袁迎曙,余索等.锈蚀钢筋混凝土的粘结性能退化研究[J].工业建筑,1999,29(11):47-50.
    [62]徐港,王青.锈蚀钢筋与混凝土粘结性能研究[J].混凝土,2006,5:13-17.
    [63]冀晓东.冻融后混凝土力学性能及钢筋混凝土粘结性能的研究[D].博士学位,大连:大连理工大学,2007.
    [64]Yasuhiko Sato, Hassan Muttaqin. Mechanical behavior of concrete and RC members damaged by freezing-thawing action [C]. Durability of Reinforced Concrete under Combined Mechanical and Climatic Loads, Qingdao, China, Aedificatio Publishers,2005:263-275.
    [65]何世钦.氯离子环境下钢筋混凝土构件耐久性能试验研究[D].博士学位论文,大连:大连理工大学,2004.
    [66]徐世娘,王洪昌.超高韧性水泥基复合材料与钢筋粘结本构关系的试验研究[J].工程力学,2008,25(11),53-61.
    [67]蔡新华.超高韧性水泥基复合材料耐久性能试验研究[D].博士学位论文,大连:大连理工大学,2009.
    [68]田砾.应变硬化水泥基复合材料性能及修复机理研究[D].博士学位论文,西安:西安建筑科技大学,2010.
    [69]周立霞,王起才.粉煤灰粒度分布及其活性的灰色关联分析[J].硅酸盐通报,2011.6:56-66.
    [70]战洪艳.有机硅防水处理技术及混凝土表面氯离子隔离层建立.硕士学位论文,青岛:青岛建筑工程学院,2004.
    [71]M. Levi, C. Ferro, D. Regazzoli and G. Dotelli. Comparative evaluation method of polymer surface treatments applied on high performance concrete[J]. Materials Science,2002,37: 4881-4888.
    [72]G. Liu and P. Stabem. Effect of surface hydophobation for protection of early age concrete against chloride penetration[C]. Proceedings of the 4th International Conference on Water Repellent Treatment of Building Materials,2005:93-104.
    [73]吴瑞雪.应变硬化水泥基复合材料单轴拉伸性能及其温度影响规律研究[D].硕士学位论文,青岛:青岛理工大学,2013.
    [74]P. K. Mehta. Durability-Critical issues for the future[J]. Concrete Structure,1997, (19):1-3
    [75]C. Hall. Barrier performance of concrete-a review of fluid transport theory[J]. Materials and Structures,1994,27:291-306.
    [76]S. A. Kelham. A water absorption test for concrete[J], Magazine of Concrete Research,1988, 40:106-110.
    [77]P. Lunk. Penetration of water and salt solutions into concrete by capillary suction[J], Restoration of Buildings and Monuments,1998,4:399-422.
    [78]洪乃丰.混凝土中钢筋腐蚀与防护技术—钢筋腐蚀危害与对混凝土的破坏作用[J].工业建筑,1999,29(8):66-68.
    [79]洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998.
    [80]R. F. Feldman, G. W. Chan, R. J. Brousseau, and P. J. Tumidajski. Investigation of the rapid chloride permeability test[J]. ACI Materials Journal,1994,91(2):246-255.
    [81]S. S. Park, S. J. Kwon, S. H. Jung, S. W. Lee.Modeling of water permeability in early aged concrete with cracks based on micro pore structure[J]. Construction and Building Materials, 2012,27(1):597-604.
    [82]赵陈超,蔡文玉,俞剑峰.高渗透型有机硅防水剂.上海涂料,2007,12:24-28.
    [83]A. Gerdes, D. Oehmichen, B. Preindl et al. Chemical reactivity of silanes in cement-based materials[C]. Proceedings of Hydrophobic IV, Water Repellent Treatment of Building Materials,2005:47-58.
    [84]J. Carmeliet. Water transport-liquid and vapour in porous materials:understanding physical mechanisms and effects from hydrophobic treatment[C]. Proceedings of the 3rd International Conference on Surface Technology with Water Repellent Agents,2001,171-178.
    [85]V. J. De, R. B. Polder and H. Borsje. Durability of hydrophobic treatment of concrete [C]. Proceedings of the 2nd International Conference on Water Repellent Treatment of Building Materials,1998,77-90.
    [86]赵陈超,蔡文玉,俞剑峰.高渗透型有机硅防水剂[J].上海涂料,2007,12:24-28.
    [87]党俐,陆文雄,梁晶晶.新型混凝土防护涂层的合成及其性能研究[J].混凝土,2006,10:91-93.
    [88]F. H. Wittmann, Y. Z. Xian, T. J.Zhao, F. Beltzung and S. Giessler. Drying and shrinkage of integral water repellent concrete[J]. Int. J. Restoration of Buildings and Monuments,2006, 12(3):229-242.
    [89]咸永珍,内掺有机硅防水处理对混凝土性能的影响[D].硕士学位论文,青岛:青岛建筑工程学院,2006.
    [90]C. Wagner, N. Bretschneider and V. Slowik. Evaluation of crack patterns in strain hardening cement-based composites (SHCC) with respect to structure durability [J]. Restoration of Building and Monuments,2011,17(3),221-236.
    [91]C. Edvardsen. Water permeability and autogenous healing of cracks in cracked concrete [J]. ACI Material Journal,1999,96(4),448-454.
    [92]C. M. Aldea, S. P. Shah and A. Karr. Permeability of cracked concrete[J]. Materials and Structures,1999,32(6):370-376.
    [93]P. Lunk, F. H. Wittmann. The behavior of cracks in water repellent concrete structures with respect to capillary water transport [C]. Proceedings of the 2nd International Conference on Water Repellent Treatment of Building Materials, ETH Zurich, Switzerland:Aedificatio Publisher,1998,63-76.
    [94]W. P. Boshoff and C. J. Adendorff. Modeling SHCC cracking for durability[C]. Fracture and Damage of Advanced Fiber-reinforced Cement-based Material,2010,195-202.
    [95]H. W. Reinhardt and M. Jooss. Permeability and self-healing of cracked concrete as a function of temperature and crack width [J]. Cement and Concrete Research,2003,33(7), 981-985.
    [96]M. C. Phillipson, P. H. Baker, M. Davies, Z. Ye, A. McNaughtan, G. H. Galbraith and R. C. McLean. Moisture measurement in building materials:an overview of current methods and new approaches[J]. Building Services Engineering Research and Technology,2007,28(4): 303-316.
    [97]S. Roels, Carmeliet, H. Hens, O. Adan, H. Brocken, R. Cerny, Z. Pavlik, A. T. Ellis, C. Hall, K. Kumaran, L. Pel, R. Plagge. A comparison of different techniques to quantify moisture content profiles in porous building materials [J]. Journal of Thermal Envelope and Building Science,2004,27(4):261-276.
    [98]R. J. Gummerson, C. Hall, W. D. Hoff, R. Hawkes, G N. Holland and W. S. Moore. Unsaturated water flow within porous materials observed by NMR imaging [J]. Nature,1979, 281(6):56-57.
    [99]G. H. A. Heijden, R. M. W. Bijnen, L. Pel and H. P. Huinink. Moisture transport in heated concrete, as studied by NMR, and its consequences for fire spalling [J]. Cement and Concrete Research,2007,27(6):894-901.
    [100]L. Pel, K. Kopinga, G Bertram and G. Lang. Water absorption in fired-clay brick observed by NMR-scanning [J]. Journal of Physics D:Applied Physics,1995,28(4):675-680.
    [101]L. Pel, K. Hazrati, K. Kopinga, and J. Marchand. Water absorption in mortar determined by NMR [J]. Magnetic Resonance Imaging,1998,16(5/6):525-528.
    [102]P. H. Baker, D. Bailly, M. Campbell, G. H. Galbraith, R. C. McLean, N. Poffa, C. H. Sanders. The application of X-ray absorption to building moisture transport studies [J]. Measurement, 2007,40(9/10):951-959.
    [103]J. Prazak, P. Lunk. Capillary suction of autoclaved aerated concrete [C]. Advances in Autoclaved Aerated Concrete,1992,119-123.
    [104]J. Cid. Study of moisture transfer in a deformable porous medium through attenuation of two different energy gamma rays [J]. Review of Scientific Instruments,1992,63(3):2057-2064.
    [105]M. I. Nizovtsev, S. V. Stankus, A. N. Sterlyagov, V. I. Terekhov and R. A. Khairulin. Determination of moisture diffusivity in porous materials using gamma method [J]. International Journal of Heat and Mass Transfer,2008,51(17/18):4161-4167.
    [106]J. T. Lindsay. Neutron radioscopy-history and future [C]. Proceeds of the 7th World Conference of Neutron Radiography, Rome, Italy:Italian National Agency for New Technologies,2002,423-430.
    [107]E. H. Lehmann, P. Vontobel and G Frei. Neutron imaging-present status and options with TOF methods [J]. Journal of Neutron Research,2005,13(1-3):27-31.
    [108]郑世才.中子射线照相检验技术[J].无损检测,2000,22(8):376-380.
    [109]Kallmann H. Neutron radiography [J]. Research,1948,1(6):254-260.
    [110]裴宇阳,唐国有,郭之虞.中子照相技术及其应用[J].现代仪器,2004,10(5):17-22.
    [111]唐彬,张松宝,李西安,夏明.热中子照相成像系统的研制[J].核电子学和探测技术,2006,26(1):84-86.
    [112]D. H. C. Harris, W. A. J. Seymour. Applications of real time neutron radiography at harwell [C]. Proceeds of the 2nd World Conference of Neutron Radiography, Paris, France,1986, 595-600.
    [113]H. Kallmann. Neutron radiography [J]. Research,1948,1(6):254-260.
    [114]J. Thewlis. Neutron radiography [J]. British Journal of Applied Physics,1956,7(10):345-350.
    [115]http://neutra.web.psi.ch [EB/OL].
    [116]Standard Practices for Thermal Neutron Radiography of Materials [S].2002,748-02,
    [117]米德伦,魏彪,唐彬,潘英俊.基于CCD数字摄像机的中子成像系统研制[J].半导体光电,2005,26(Sp):131-133.
    [118]H. Pleinert. Determination of Moisture Distributions in Porous Building Materials Neutron Signal Transfer Analysis [R]. Building Materials Reports No.10, Zurich:Aedificatio Publishers,1998.
    [119]D. H. C. Harris, W. A. J. Seymour. Applications of real time neutron radiography at harwell [C]. Proceeds of the 2nd World Conference of Neutron Radiography, Paris, France,1986, 595-600.
    [120]Zhang Peng, Wittmann F H, Zhao Tiejun, Lehmann E H. Neutron imaging of water penetration into cracked steel reinforced concrete [J]. Physica B:Condensed Matter,2010, 405(7):1866-1871.
    [121]F. C. De Beer, J. J. Le Roux and E. P. Kearsley. Testing the durability of concrete with neutron radiography [J]. Nuclear Instruments and Methods in Physics Research A,2005, 542(1-3):226-231.
    [122]C. J. Ridgway, P. A. C. Gane, A. E. G El Abd and A. Czachor. Water absorption into construction materials:comparison of neutron radiography data with network absorption models [J]. Transport in Porous Media,2006,63(3):503-525.
    [123]徐丽,张幸红,韩杰才.射线检测在复合材料无损检测中的应用[J].无损检测,2004,26(9):450-456.
    [124]S. Zabler, A.Rack, I. Manke, K. Thermann, J. Tiedemann, N. Harthill and H. Riesemeier. High-resolution tomography of cracks, voids and microstructure in greywacke and limestone [J]. Journal of Structural Geology,2008,30(7):876-887.
    [125]J. J. Milczarek, A. Czachor, A. E. G Ei Abd and Z. Wisniewski. Dynamic neutron radiography observations of water migration in porous media [J]. Nuclear Instruments and Methods in Physics Research A,2005,542(1-3):232-236.
    [126]张鹏,Wittmann F H,赵铁军,Lehmann E,金祖权.中子照相技术及其在混凝土材料研究中的应用[J].混凝土,2009,32(4):24-25.
    [127]W. J. Richards, J. R. Barrett, M. E. Springgate and K. C. Shields. Neutron radiography inspection of investment castings [J]. Applied Radiation and Isotope,2004,61(4):675-682.
    [128]安福林,李富荣.用热中子照相检测火箭导爆索[J].核电子学与探测技术,1999,19(3):188-191.
    [129]L. Hanzic, T. Nemec and R. Ilic. Determination of the capillarity coefficients of distilled water and oil in concrete by neutron radiography [C]. Proceeds of the 7th World Conference of Neutron Radiography, Rome, Italy:Italian National Agency for New Technologies,2002, 643-650.
    [130]张朝宗,安福林.中子照相研究工作的若干进展[J].同位素,1990,3(1):36-37.
    [131]R. Pugliesi, M. L. G Andrade. Study of cracking in concrete by neutron radiography [J]. Applied Radiation and Isotopes,1997,48(3):339-344.
    [132]马振泽.中子探测和照相技术在无损检测中的应用[J].核电子学与探测技术,1995, 15(6):377-381.
    [133]王新建.利用中子照相评估碳酸盐岩储集层裂缝酸化效果[J].天然气工业,1995,15(5):93-93.
    [134]云中客.三维中子成像在医学中的应用[J].物理,2004,33(11):808-808.
    [135]R. Hassanein, E. Lehmann and P. Vontobel. Methods of scattering corrections for quantitative neutron radiography [J]. Nuclear Instruments and Methods in Physics Research A, 2005,542(1-3):353-360.
    [136]章法强,李正宏,杨建伦,杨洪琼,叶凡,应纯同,刘广均.快中子照相中的点扩散函数计算[J].强激光与粒子束,2006,18(7):1183-1185.
    [137]A. A. Harms, D. R. Wymann. Mathematics and Physics of Neutron Radiography [M]. Dordrecht:D. Reidel Publishing Company,1986.
    [138]H. Pleinert, E. Lehmann. Quantitative neutron radiography measurement of hydrogenous distribution [C]. Proceeds of the 5th World Conference on Neutron Radiography, Berlin, Germany,1996,586-593.
    [139]N. Kardjilov, F. C. De Beer, R. Hassanein, E. Lehmann, P. Vontobel. Scattering corrections in neutron radiography using point scattered functions [J]. Nuclear Instruments and Methods in Physics Research A,2005,542(1-3):336-341.
    [140]黄光远,刘小军.数学物理反问题[M].济南:山东科学技术出版社,1993.
    [141]J. N. Franklin. Well posed stochastic extensions of ill posed linear problems [J]. Journal of mathematics application.1970,31,682-716.
    [142]杨文采.地球物理反演的理论与方法[M].北京:地质出版社,1997.
    [143]吉洪诺夫,阿尔先宁.不适定问题的解法[M].王秉忱译.北京:地质出版社,1979.
    [144]范鸣玉.张莹.最优化技术基础[M].清华大学出版社.1982.
    [145]沈振中.三维粘弹性位移反分析的可变容差法们[J].水利学报,1997,9:66-70.
    [146]道恒等.力学反问题的神经网络分析法[J].计算结构力学及其应用,1996,13(2):115-118.
    [147]朱台华,摄动粘弹性模型的反演分析[C].首届全国青年岩石力学学术研讨会论文集[C].上海,1991:313-316.
    [148]陈彩营,基于BP神经网络的混凝土热学参数反分析[D].硕士学位论文,郑州:华北水电水利大学,2013.
    [149]朱岳明,林志祥.混凝土温度场热力学参数的并行反分析[J].水电能源科学,2005,23(2):69-72.
    [150]刘有志,水工混凝土温控和湿控防裂方法研究[D].博士学位论文,南京:河海大学,2006.
    [151]张宇鑫,大体积混凝土温度应力仿真分析与反分析[D].博士学位论文,大连:大连理工大学,2002.
    [152]施占新,深大基坑考虑动态施工的数值模拟与参数反分析研究[D].博士学位论文,南 京:东南大学,2007.
    [153]D. Xin, D. G Zollinger, G. D. Allent. An approach to determine diffusivity in hardening concrete based on measured humidity profiles[J]. Advanced cement based materials.1995(2): 138-144.
    [154]J. K. Kim, C. S. Lee. Prediction of differential drying shrinkage in concrete[J]. Cement and concrete research.1998,28(7):985-994.
    [155]B. Vimann, V. Slowik, A. Michel. Determination of the diffusion coefficient by inverse analysis of drying experiments. Proceedings of the 5th international essen workshop, transport in concrete:nano-to macrostructure,2007,127-136.
    [156]T. Z. Harmathy. Simultaneous moisture and heat transfer in porous systems with particular reference to drying [J]. Industrial and Engineering Chemistry Fundamentals,1969,8(1): 92-103.
    [157]H. K. Hilsdorf. A method to estimate the water content of concrete shields [J]. Nuclear Engineering and Design,1967,6(3):251-263.
    [158]R. W. Carlson. Drying shrinkage of large concrete members [J]. American Concrete Institute Journal,1937,33(3):327-336.
    [159]G. Pickett. The effect of change in moisture content on the creep of concrete under a sustained load [J]. American Concrete Institute Journal,1942,38(4):333-355.
    [160]Z. P. Bazant, L. J. Najjar. Drying of concrete as a nonlinear diffusion problem [J]. Cement and Concrete Research,1971,1(5):461-473.
    [161]S. E. Pihlajavaara, J. Vaisanen. Numerical solution of diffusion equation with diffusivity concentration dependent [R]. Helsinki, Finland:State Institute for Technical Research, No.87, 1965.
    [162]S. E. Pihlajavaara. On the main features and methods of investigation of drying and related phenomena in concrete [D]. Helsinki, Finland:State Institute for Technical Research,1965.
    [163]R. Mensi, P. Acker and A. Attolou. Drying of concrete:analysis and modeling [J]. Materials and Structures,1988,21(1):3-12.
    [164]黄达海,刘光廷.混凝土等温传湿过程的试验研究[J].水利学报,2002,33(6):96-100.
    [165]M. Asad, M. H. Baluch and A. H. Al-Gadhib. Dring shrinkage stresses in concrete patch repair systems [J]. Magazine of Concrete Research,1997,49(8):283-293.
    [166]Y. Xi, Z. P. Bazant, H. M. Jennings. Moisture diffusion on cementitious material-adsorption isotherms [J]. Advanced Cement Based Materials.1994,1(6):248-257.
    [167]J. M. Torrenti, L. Granger and M. Diruy. Modeling concrete shrinkage under variable ambient conditions [J]. American Concrete Institute Journal,1999,96(1):35-39.
    [168]J. Carmeliet, H. Hens, S. Roels, O. Adan, H. Brocken, R. Cerny, Z. Pavlik, C. Hall, K. Kumaran, And L. Pel. Determination of the liquid water diffusivity from transient moisture transfer experiments [J]. Building Physics.2004,27 (4):277-305.
    [169]P. Haupl. Feuchtetransport in Baustoffen und Bauwerksteilen [D]. Dissertation, Universitat Dresden.1987
    [170]P. Haupl, H. Fechner. Hygric material properties of porous building materials [J]. Building Physics.2003,26:259-284.
    [171]M. Krus. Feuchtetransport-und speicherkoeffizienten poroser mineralischer baustoffe [D]. Theoretische Grundlagen und neue Messtechniken, Dissertation, Universitat Stuttgart.1995
    [172]B. Villmann, V. Slowik, F. H. Wittmann, P. Vontobel and J. Hovind. Time-dependent moisture distribution in drying cement mortars-Results of neutron radiography and inverse analysis of drying tests [J]. Restoration of Buildings and Monuments,2014,1,12-25.
    [173]W. H. Press, B. P. Flannery, S. Teukolsky, W. T. Vetterling. Numerical recipes in pascal [M]. U.K.:Cambridge University Press,1989.
    [174]Z. P. Bazant, W. J. Raftshol. Effect of cracking in drying and shrinkage specimens [J]. Cement and Concrete Research.1982,12(2),209-226.
    [175]Jensen, O. Mejlhede. Thermodynamic limitation of self-desiccation [J]. Cement and Concrete Research.1995,25(1):157-164
    [176]Jensen, O. Mejlhede, H. P. Freiesleben. Influence of temperature on autogenous deformation and relative humidity change in hardening cement paste [J]. Cement and concrete reseach. 1999,29(4):567-575
    [177]郑翥鹏.高强与高性能混凝土的抗裂影响因素及理论分析[D].硕士学位论文,福州:福州大学,2002.
    [178]V. C. Li. H.Horii, P. Kabele et al. Repair and retrofit with Engineered Cementitiouse Composites[J]. Engineering Fracture Mechanics,2000,65:317-334.
    [179]公成旭.高韧性低收缩纤维增强水泥基复合材料研发[D].硕士学位论文,北京:清华大学,2008.
    [180]M. Sahmaran, M. Lachemi, K. M. A. Hossain and V. C. Li. Internal curing of Engineered Cementitious Composites for prevention of early age autogenous shrinkage cracking[J]. Journal of Cement and Concrete Research,2009,39(10):893-901.
    [181]V. G. Papadakis, C. G. Vayenas and M. N. Fardis. Fundamental modeling and experimental inestigation of concrete carbonation[J]. ACI Materials Journal,1991,88(4),:363-373.
    [182]V. G. Papadakis, C. G Vayenas and M. N. Fardis. Experimental investigation and mathematical modeling of the concrete carbonation problem[J]. Chemical Engineering Science, 1991,46(5-6),:1333-1338.
    [183]朱安民.混凝土碳化与钢筋混凝土耐久性[J].混凝土,1992,6:18-22.
    [184]许丽萍,黄士元.预测混凝土中碳化深度的数学模型[J].上海建材学院学报,1991,12:347-357.
    [185]张誉,蒋利学.基于碳化机理的混凝土碳化深度实用数学模型[J].工业建筑.1998,1:16-19.
    [186]The EuropeanUnion-Brite EuRam Ⅲ. Models for Environmental Actions on Concrete Strucres:174
    [187]混凝土结构耐久性评定标准CECS 220:2007[S]中国工程建设标准化协会标准.北京:中国建筑工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700